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ON CONDITIONAL LEAST SQUARES ESTIMATION
FOR STOCHASTIC PROCESSES

By LAWRENCE A. KLIMKO AND PAUL I. NELSON
University of Wisconsin and Bucknell University

An estimation procedure for stochastic processes based on the mini-
mization of a sum of squared deviations about conditional expectations is
developed. Strong consistency, asymptotic joint normality and an iterated
logarithm rate of convergence are shown to hold for the estimators under
a variety of conditions. Special attention is given to the widely studied
cases of stationary ergodic processes and Markov processes with are asymp-
totically stationary and ergodic. The estimators and their limiting co-
variance matrix are worked out in detail fora subcntlcal branching process
with immigration. A brief Monte Carlo study of the performance of the
estimators is presented.

1. Introduction and notation. We develop an estimation procedure for de-
pendent observations based on the minimization of a sum-of squared deviations
about conditional expectations. This approach, which we call “conditional
least squares” (CLS), provides a unified treatment of estimation problems for
widely used classes of stochastic models. The method is implicit in the obser-
vation of Mann and Wald (1943), Durbin (1960) and others that the assumption
of normally distributed error terms in autoregressive models renders maximum
likelihood estimation equivalent to the minimization of a sum of squares.

The method of CLS is motivated by the interpretation of conditional expec-
tation as an orthogonal projection on L®. Under a variety of conditions the
CLS estimators are shown to be strongly consistent and asymptotically jointly
normally distributed. The rate of convergence of the estimators is found to be
(((log log n)/n)t). The proofs of these results are presented in a very general
setting in Section 2. The assumptions made concern the application of strong
laws, central limit theorems and laws of an iterated logarithm to sums of de-
pendent random variables. A wide variety of conditions under which these
hold may be found in Stout (1974), McLeish (1974), and Heyde and Scott (1973).
These conditions are generally a trade-off among moment assumptions, station-
arity, the martingale property, mixing, ergodicity and the Markov property;
with no one set of assumptions bein'g “most” universal. The presentation of
Section 2 provides an uncluttered exposition of the basic ideas involved.

In Sections 3 and 4 the general results are shown to apply, under some mo-
ment conditions, to processes which are stationary and ergodic and to Markov
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processes which are asymptotically stationary and ergodic. The proofs of the
theorems in this section owe much to the work of Billingsley (1961a).

In Section 5 we apply the method of CLS to branching processes with im-
migration. Estimation for these processes has been treated in Heyde and Seneta
(1972, 1974) and Quine (1976). A correction to the asymptotic variance of the
estimator of the mean of the immigration process in Quine (1976) is given in
Quine (1977). A brief summary of a Monte Carlo study of the behavior of the
CLS estimators for branching processes is also given in Section 5 where it is
seen that the variances of the estimators are converging to zero at the rates
given by our formulas.

Let y,, t = 1,2, --. be a stochastic process defined on a probability space
(Q, &, P,), whose distribution depends on a (column) vectora = (a,, - - -, a,)
of unknown parameters with « lying in some open set 4 of Euclidean p-space.
Let E,(+) and E,(+ | -) denote expectation and conditional expectation under P,.
Denote the “true” value of a by a° = (a,°, - -, @,°)’. This latter statement is
taken to mean that all probabilities, a.e.’s and nonsubscripted expectations and
conditional expectations are taken relative to the measure determined by a°.
Let {F,};2, denote a sequence of sub-sigma fields with F, generated by an arbitrary
subset of {y,, y,, - -+, ¥}, t = 1, and let F denote the trivial sigma field. Assume
that y,e L', r = 1, 2, - ... Define the functions g(., ) by

(1.1) g(a, Fi) = E( Yo | Fo) t=0.

Given a set of observations y,, t = 1,2, ..., n, we estimate a by trying to
minimize the conditional sum of squares

(1.2) Qu(a) = XI5 [Yier — 9(a, F)T

with respect to a. The estimates are actually obtained by solving the “least
squares” equations.

(1.3) 00 ,(a)/0a; = 0, i=12,.---,p.
In specific applications it may be convenient to start the summation defining
Q,(a) at a positive integer greater than one. This is the case, for example, if
{y.} is an mth order Markov process (see Section 3). Define the difference
u(a) by

(1'4) ' ”t(a)=}’¢ _lgt(a’a Ft—1)1 t= 1929 .
Note thatif F, = o(yy, ¥y, - - -, y1), {#(a°)} is a sequence of martingale differences.

2. General results. The basic technique of proof is to control the behavior
of the first and second order terms in a Taylor expansion of Q,(a) about a°.
It is assumed throughout that g(a, F,) is twice continuously differentiable with
respect to « a.e., in some neighborhood S of a°. Without further notice, all
neighborhoods defined below will be taken to be contained in S. Then, for
0>0,|a —a°|| < 0, for some a*, 0 < ||@° — a*|| < 0 (henceforth, a* denotes
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an appropriate intermediate point not necessarily the same from line to line),
0,(a) = 0,(a°) + (@ — a®) 3Q,(a°)fde + H(a — a°) 7°Q,(a*)/0ct

(2.1) = 0,(a°) + (a — a°) 3Q,(a%)/0a

+ 3 — a®YV (@ — a®) + }(a — a®) T,(a)(a — a°),
where V, is the p X p matrix of second partials of Q,(a®)

V, = (0°Q,.(a°)/0a; da;), and

To(a%) = (°Q,(a*)fda* — V).

Note that
V. = (305 (9g(a®, F))[da; - 09(a®, F,)[0¢;))isp;550
— (X2 (9%g(a°, F,)[0a, Do)y, (X°))isp;isp -

The following is a requirement of all our results and is henceforth assumed to
hold.

(2.2) ASSUMPTION. (2n)~'V, — V'?*? a.e., a positive definite (symmetric) ma-
trix of constants. This condition can be verified by showing that

(2.3) (n™' X1z (9%g(a®, F,)[0a; 0a;)u,  (®))?*? — 07*?, a.e.

(strong laws for martingales can be used here when F, = 6(yy, Jys =5 1)y = 1
and integrability is assumed; see Stout (1974)) and

(n~* Yrzt 0g(a®, F)))oa; - 0g(a®, F,)[0a,)P*? — VP*? ,  a.e.

where the limit is assumed to be positive definite.
Strong consistency of the CLS estimators can now be shown.

THEOREM 2.1. Assume that:

(i) lim, . sup,_, (|T(a*);;|/n0) < o a.e., i < p, j < p,

(ii) (2.2) holds,

(iii) n~'0Q,(a®)/0a; — 0, a.e., i < p.

(The comment under (2.3) is also relevant here.)

Lete > 0, 0 > 0, be given and let N, denote the open sphere of radius o centered
at a°- Then, for some 0*, 0 < 0% < 0, there exists an event E with P(E) > 1 — ¢
and an n, such that on E, for any n > n,, the least squares equations (1.3) have a
solution {&,} in N,. at which point Q,(a) attains a relative minimum.

Proor. Using (i)—(iii) we can find by Egoroff’s theorems an event E with
P(E) > 1 — ¢, a positive §* less than d, M > 0 and an n, such that on E, for any
n> ny, a € N, the following three conditionshold: (a)|(@a —a°) 30, (a°)/da| < nd®,
(b) the minimum eigenvalue of (2n)~V, is greater than some A > 0 (recall that
yex? = lim (2n)~'V,, is positive definite), (c) (a — a°)'T, (a*)(a — a®) < nMd®.
Hence, using the Taylor expansion (2.1), for a« on the boundary of Nj.,

0.(a) = 0,(a®) + n(—8° + 6°A — M3®)
= 0,(a°) + nd¥(A — 6 — Md).
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Since A — 0 — M0 can be made positive by initially choosing ¢ sufficiently small,
Q,(a) must attain a minimum at some &, = (&,,, &,,, - - -, &,,)’ in N,,, at which
point the least squares equations (1.3) must be satisfied.

COROLLARY 2.1. Under the assumptions of Theorem 2.1, there exists a sequence
of estimators &, such that &, — a° a.e., and for ¢ > 0, there is an event E with
P(E) > 1 — ¢ and an n, such that on E, for n > n,, &, satisfies the least squares
equations (1.3) and Q,, attains a relative minimum at &,.

Proor. Apply Theorem 2.1 with ¢, =2-* and §, = k™, k=1,2,--- to
determine a sequence of events {E,} and an increasing sequence {,} having the
properties specified in the theorem. For n, < n < n,,, define &, on E, to be a
root of (1.3) within d, of a° at which Q, attains a relative minimum and define
@&, to be zero otherwise. Then &, — a° on lim inf E, and this set has probability
one. The latter assertion in the corollary clearly holds.

The joint asymptotic normality of the estimators {&,} obtained in Corollary 2.1
follows from the assumption that the linear term in the Taylor expansion (2.1)
has asymptotically a joint normal distribution. This assumption may be verified
by using the Cramér-Wold technique (see [6] or [5], page 48) and an appropriate
central limit theorem on

neie(a — a®) 9Q,(a°)fda = —2n~4 Fpzf (Dhey ¢ 0g(a, F)foas)uy (@) ,
where ¢/ = (¢, ¢,, -+ +, ¢,) is an arbitrary nonzero vector of constants.
THEOREM 2.2. In addition to the conditions of Theorem 2.2, assume that
(3)n~% 0Q,(a®)/0a — , MVN(0***, W),
where W?*? is a positive definite matrix. Then,
n¥(a, — a®) -, MVN(0**, VWV ~Y) .

Proor. Since we are dealing with an asymptotic result, we may assume that
{a,} satisfies the least squares equations (1.3). Expand the vector n~t 6Q, (a°)/0a
in a Taylor series about a° to obtain (using the notation of (2.1))

(2.4) 071 = n~4 0Q,(a,)/0a
= n"t0Q0,(a,°)/0a 4+ n~}(V, + T, (a*))- n¥(a, — a®).

Since n=(V, + T,(a*)) — 2V a.e., the limiting distribution of n}(&, — «°)is the
same as that of (2V)~'n~% 0Q,(a®)/da. This yields the desired result.

The application of laws of the iterated logarithm to the right side of the Taylor
expansion (2.4) yields rates of convergence for n¥(@, — a°). See Stout (1974)
and Heyde and Scott (1973) for a variety of conditions under which such laws
hold. Those conditions pertaining to martingales seem most relevant here. The
proof given below indicates that the same rates of convergence can be obtained
for maximum likelihood estimates. This observation has been independently
made by Basawa et al. (1976).
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COROLLARY 2.2. In addition to the conditions of Theorem 2.2, assume that for
any nonzero vector of constants ¢’ = (¢;, - - -, €,),

= h(a®, F,, c)ut+1(a°) =1

lim sup,,_., a.e.,
(2n0? log log n)?
where
h(a®, F,, ¢) = 3P, ¢, 09(a°, F,)/0a;
and
g =cVIWV-lc.
Then
te'(dd. —
lim Sup”ﬁw_n__c_(gn__a"_)_ =1 ae.
(24% log log n)?

Proor. The proof follows from (2.4).

The following corollary is the CLS analogue of the result for maximum like-
lihood estimation that twice the logarithm of the likelihood ratio has a limiting
chi-square distribution with p degrees of freedom (Rao (1973), (6e. 1.6)).

COROLLARY 2.3. Assume that the conditions of Theorem 2.2 hold. Let {y;} be
independent chi-square variates each with one degree of freedom. Then,

(2.5) Qu(@®) — Qu(@,) =2 Dl Lids»
where 2, i = 1,2, ..., p are the (nonnegative) eigenvalues of V-'W.
ProoF. From (2.1) we have
Q.(a°) — Q.(a,) = —(a, — a°) - 0Q,(a®)/0a — (&, — a®) -V, - (&, — a°)
- %(&'n - ao)’Tn(an*)(&n - ao) .
The Taylor expansion (2.4) yields
_aQn(ao)/aa = (Vn + T‘n(an*))(&ﬂ - ao) :
Thus
Q.(x°) — Q.(a,) = §(&, — a°)'(V, + T.(a*))(&, — a°)
= [n¥(a, — a°®)'|(V,/2n + T, (a,*)/2n)[n}(a, — a°)].
Since V,/2n + T,(a,*)/2n — V a.e. and n}(&, — a®) — Z where
Z ~ MVN(@*, YWy -1),

the limiting distribution of Q,(a°) — Q,(&,) is given by the distribution of Z'VZ.
The moment generating function of Z'VZ is
E(e*V?) = |1 — 2tV 'W|?
= (T2 (1 — 202))°+,
where 4, i = 1, - .., p are the eigenvalues of V~'W. Nonnegativity of the 2,

follows from Lancaster (1969), Theorem 2.15.1, and this identifies the distribu-
tion of Z'VZ as that given in the right side of (2.5).
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3. Stationary ergodic processes. Throughout this section it is assumed that
{7}z is a stationary ergodic sequence of integrable random variables and for
an arbitrary positive integer m, F, = 0(ys, Yic1s ** s Veema)s E=m — 1,m, - ..
For reasons of symmetry now define

Qu(@) = i [Veer — 9(a; F)J".

The proofs in this section are based on a Taylor expansion of Q, () carried out
to third order terms.

(3.1) Q.(a) = Q,(@°) + (@ — a®) 3Q,/0a + L(a — a®)'V, (a — a®)y + R,,

where as before V,»*? = 9°Q,(«°)/da® and R, is the usual remainder term.
It is assumed that the function g = g(a, F,) satisfies the following regularity
conditions:

(i) 99/0a;, d’g[oa; 0a; and 0%g/da, da; da, exist and are continuous for all
aed,i<p, j<p k=p;

(i) for i< p, j < p, E(ym — 9) 99/0,| < o0, E|(yp — g) 0*9/0at; 0at;| < oo
and E|dg/da, - dg/da;| < oo where g and its partial derivatives are evaluated at
a® and F,_,;

(iii) fori,j, k =1, ..., p there exist functions
H(O)(ym—l’ ey .yo) R Hi(l)(ym—l’ cee, yo) R H%?;’(ym_p e, J’o) s

Hi(:;')k(.ym—l’ Tt yo)
such that
0l < HY,  |ogjoa] < HO,  [0gfoa, da;| < HE
|0°g/0a; Oax; Oa,| < H(), forall aec A
and
Elym - HG(Ym-r + -5 yo)l < 00,
E{H(O)(ym—v trey yo) : H%’k()’m—v tre, )’o)} < o,
E{Hi“’(ym_p ) }’o) : H;'Zk)(}’m—v R} }’o)} < .

Note that if y, and all the H’s in (iii) are square integrable, then the inte-
grability requirements in (ii) and (iii) will be satisfied because of the Cauchy—
Schwarz inequality. Finally we denote by V the p X p matrix of expected
values

(3.2) V = (E(dg(a®; F,,,_l)/a;xi - 9g(a°; F,_y)[0a;)) -

We will assume throughout that V' is positive definite. Since V' is always non-
negative definite, this is the same as assuming that V' is nonsingular.

The approach here is to use the above assumptions to show that the conditions
of the corresponding theorems of Section 2 are satisfied.

THEOREM 3.1 (consistency). There is a sequence of estimators {@,} such that the
conclusions of Corollary 2.1 hold.
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Proof. The ergodic theorem yields:
nYa — a°) 0Q,(x°)/0a — 0 a.e.,
2n)Ha — a®)V,(a — a®) > (@ — a°)'V(a — a°), a.e.
Together with the above regularity conditions (i)—(iii), it also implies that
R, = }(a — a°)'T, (a*)(@ — a°) satisfies (i) of Theorem 2, where the expression

on the right is the remainder term in (2.1). The assumptions of Theorem 2.1
are thereby satisfied. An application of Corollary 2.1 completes the proof.

THEOREM 3.2 (asymptotic normality). In addition to the above, assume:

(3.3) E(y|ye-1 5 ¥0) = E(yelyievs -5 yeom) 2-€-, tzm,
3.4 E(u,}(a°)|0g(a®, F,_,)/0a, - dg(a°, F,_,)[0a;|) < oo, LjZp
where (as before) u,(a°) = y,, — E(yn|Fn-1). Define the p X p matrix W by
(3.5) W = (E(u,*(a°) dg(a®, F,_,)/0a, - dg(a®, F,_,)/0a;)) .

Let {@,} be the consistent sequence of estimators obtained on Theorem 3.1. Then
ni(a&, — a®) — MVN(O, V*WV-1) .

Conditions (3.3) and (3.4) are imposed so that a martingale central limit theo-
rem may be used. The Cauchy-Schwarz inequality implies that (3.4) holds if
y. and the partial derivatives dg(a, F,,_,)/0a; have finite fourth moments (under
a®); but, sometimes (specifically in the case of a branching process with immi-
gration) it is possible to get by with less than fourth moments. See Section 5.

Proor. Expand the vector 9Q,(&,)/0a in a Taylor series about a° and mul-
tiply through by n~*
(3.6) 07xt = n~4 9Q,(&,)/0a
= n"t0Q,(a®)/0a + n~Y(V, 4+ U,)n}a, — a°),
where U,»*? = (27! }3P_, (&,, — @,°) 0°Q,(a*)/0a; 0a; 0a}),<,.;<, and We may as-
sume without loss of generality that {a,} satisfies the least squares equation and

a* is an appropriate intermediate point. We have n~'U, — 077 a.e. Billingsley’s
(1961Db) central limit theorem may be applied to the martingale

rm 0P (c; 0g(a®, F,_))[0a)u,(a®)

for all nonzero vectors of constants ¢ = (¢, ¢,, - -+, ¢,). Thus, the conditions
of Theorem 2.2 are satisfied and the result follows.

There is a relationship between the positive definiteness of ¥ and that of W.
It is easy to see that if

E((ym — 9 Ymers -+ > Yoy @) | Frey) >0 ace.,

then positive definiteness of ¥ implies the same of W. Forifc = (¢, ---,¢,) # 0
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is any vector, then
cWe = E[(yn — 9) (L1 ¢: 09/0a;)’]
= E[(2Z121 ¢ 09/0a:)’E((Ym — 9)*| F)]
and this latter quantity is positive since

E[(Xr,c;09/0a,)'] = c'Ve > 0.
On the other hand the following example shows that it is possible to have V
positive definite and W only semi-definite. Consider a Markov process with
state space {—2, —1} U (0, 1) and transition measure depending on a single
parameter a € (0, 1) as follows. If the process is in —2 or —1 it goes to «,
while if the process is in (0, 1), it goes to —2 or —1 each with probability 1.
Then, letting F, = o(y,),

9(a; F,)) = E,(y¢|yic) = if y,=-2 or —1
= —3 if y,_,€(0,1),
SO
0g(a; F,_,)[0a =1 if y_,=-2 or —1
=0 otherwise.

For this example V' = (})and W = (0) for alla € (0, 1). Note that E((y,—9)*| Fm-1)
is positive with positive probability in the example. If we had combined states
—2and —1, E((yn — 9)*| F,,_,) would have been zero a.e.

The conditions of Corollaries 2.2 and 2.3 can be seen to hold under the
assumptions of Theorem 3.2. In Corollary 2.2 the remainder converges to
zero as indicated above and Stout’s (1970) law of the iterated logarithm for
stationary ergodic sequences of martingale differences can be applied to
{—2'7-16Q,(a®)/0a} and to the individual terms of the vector 9Q,(a°)/da.
The convergence to zero of the remainder term in Corollary 2.3 follows from
the ergodic theorem, the stochastic boundedness of ni(&, — a°) (Theorem 3.2)
and the convergence of &, to a®.

4. The nonstationary Markov case. Let {y,} be a Markov process with sta-
tionary transition probabilities p,( y, -) for which there exists a unique stationary
distribution r,(+), and assume that for every y the transition measure p,.(y, +)
is absolutely continuous with respect to the stationary distribution p,.(+). Then,
according to Theorem 1.1 of Billingsley (1961a) the process will be stationary
and ergodic if z,.(+) is the initial distribution, and the ergodic theorem will be
in force. Moreover, the conclusion of the ergodic theorem will hold for any
initial distribution. The proof of this theorem in [3] actually contains the result
that if A is any set measurable on the o-field generated by y,, y,, - <+, and if A
has probability zero under the stationary distribution, then A has probability
zero for any initial distribution. This result shows that if any strong law
holds under the stationary distribution, then, a fortiori, it must hold with the
same limit for any initial distribution. These observations seem to be a part
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of the folklore of the subject. In the same vein (see Billingsley (1961b), last
paragraph), if the martingale CLT of [4] is applicable under the stationary dis-
tribution, then it may be applied, yielding the same limit, with any initial distri-
bution. Thus, if the assumptions of our theorems are satisfied when the process
starts with the stationary distribution, all of the convergences used in the proofs
will hold for any initial distribution, and therefore the conclusions hold re-
gardless of the initial distribution.

5. An application. Lety,, t =0, 1, ... be a branching process with immi-
gration whose offspring distribution has mean 2, < 1 and finite variance ¢,> and
whose immigration distribution has mean 2, > 0 and finite variance o,>. Let
the process have any initial distribution. Set

=24/ —2)
cz —_ ,Lla'lz _I_ 0.22
and
ol =2c(1 — 4.
When the offspring and immigration distributions have finite third moments, set

7 =[2G — 2%, + #2( — B)Y; + 3ol — 2)7(1 — A

where {f;} and {b,} are the offspring and immigration distributions respectively.
It is shown in [15] and [16] that the state space for this process contains an
irreducible positive recurrent class of states and that the stationary distribution
has a finite second moment and even a finite third moment when the offspring
and immigration distributions have finite third moments. In [16] the functional
equation for cumulant generating functions is also given and may be used to
show that the stationary distribution has y, ¢,* and y as its mean, variance and
third central moment respectively.

Heyde and Seneta (1972), in Section 5, give an interesting account of how
this model is used in the natural sciences and of attempts to estimate various
parameters in the model. In particular, maximum likelihood estimation leads
to a rather unwieldy equation. See Bartlett (1955), page 247. The method of
conditional least squares which we have developed here can be used to estimate
Z,and 2,. We have that E(y,| F,_,) = 4, y,_; + 4,. Solving the least squares equa-
tions (1.3) yields
(5.1 1= nZy, 1y — (Zyi)(Zy)

nZyi_ys — (Zyi)’

and

a

1 R
(5.2) = — By = A2y

where all sums run from 1 to n. These estimates are essentially the same as
those in Quine (1976), page 319, the only difference being whether or not an
initial term or final term is included in certain sums; hence both pairs of esti-
mators have the same 2symptotic behavior. It is easy to see that the regularity
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conditions of Section 3 are satisfied in a neighborhood of the true parameters
and (see below) that V' is positive definite when at least one of ¢,* and ¢,’ is
positive; thus (see Theorem 3.1 and Section 4) A, and 1, are strongly consistent.
By conditioning on y,_, it can be shown that (3.4) holds when the stationary
distribution has a finite third moment; this will be so when both the offspring
and immigration distributions have finite third moments. In this case n*(,?1 — 2,
4, — 2,) will have the limiting multivariate normal distribution given in Theorem
3.2. Furthermore the law of the iterated logarithm will hold for (4, 45). The
matrices ¥ and W are obtained from (3.2) and (3.5). The expectation is of
course computed under the stationary distribution. In evaluating (3.5) one
first conditions on y,. The results, expressed in terms of the first three moments
r,, r, and r,, and the variance ¢,2 = r, — r;? of the stationary distribution, are

(5.3) V = <r2 rl) V-l=g9¢ _2< 1 —rl)
o1 T \—r r,
and
(5.4) W:(W%+%% #G+%%)
a’r, + o2r,  o’r, + o

For this process we have
(5'5) E((Ym - g)lem—l) = Ulzym—l + o,

which is positive a.e. when at least one of ¢,* and ¢,’ is positive. Thus, by a
remark after Theorem 3.2, W is positive definite. We can multiply out V-*Wp-*
and express the stationary moments in terms of stationary central moments to
obtain expressions for the asymptotic variances and covariance. After a long
and somewhat tedious calculation we obtain

(5.6) (VWY = (o + ot

(57) (WY = —(uor + peto,? — o090

and

(5.8) (VWYY = (lo’y + pPce? 4 o0t — pe’et)fo.

To get some feeling for how these estimators behave we have done some
simulations for the case in which the offspring distribution is Bernoulli (one
with probability p and zero with probability ¢ = 1 — p) and the immigration
distribution is Poisson with mean A. ' The transition matrix for this chain is a
bit complicated, but one can write it down and then use it to check that the
stationary distribution is Poisson with mean x = 4/q. Alternatively one can
check that the Poisson cumulant generating function satisfies the function equa-
tion in [16], page 321. The estimates f and 1 are given by the right sides of (5.1)
and (5.2) respectively and the limiting covariance matrix of n}(p — p, 2 — 2) is
found from (5.6), (5.7) and (5.8) to be

(5.9) (q[Pq + A1+ plA —A1+p) ) :
—4(1+p) ALAL + p) + 9l/q
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To carry out the simulations uniform random numbers were generated by the
multiplicative congruential method using the equation

X,., = ax, mod m

where a = 16807, m = 2* — 1 and the initial value x, (which can be completely
arbitrary) was taken to be 142867893 on every run. This particular random
number generator is described and evaluated in [12] where it is found to be
“highly satisfactory.” Computations were done on a Xerox Sigma-7 at the Freas-
Rooke Computer Center, Bucknell University, and the random numbers were
generated using double precision arithmetic (14 significant hexadecimal digits).
A separate run was made for each pair of values of p and 2. The initial distri-
bution was taken to be the stationary distribution and 100 steps of the process
were generated. The estimates p and 4 were computed successively after every
10 steps of the process. Also computed were estimates of p with 2 known.
1000 repetitions were made on each run.

The simulation results for p = .4, 2 = 3 are typical and a sampling of these
results is presented below. In all of the tables  is the number of steps the pro-
cess has run. All of the results in the tables were determined on the basis of
1000 repetitions. Table 1 gives the means, variances and covariance of p and
A. Tt is clear from this table that p is biased down and 4 is biased up. This
inverse relationship can be anticipated from the negative covariance between
pand 1. The presence of bias is not entirely surprising in view of the close
connection, already observed by Heyde and Seneta (1972), between the esti-
mation technique used here and time series models. The problem of bias is a
familiar one in the analysis of time series data. Table 1 also shows that when
2 is known, p is nearly unbiased. Tables 2 and 3 are intended to provide an
informal test of normality. They give the number of times the estimate fell
within one, between one and two, etc., standard deviations above and below
its mean, where the means and standard deviations are those determined in
Table 1. It can be seen from Tables 2 and 3 that the distribution of p is skewed
to the left while that of 1 is skewed to the right.

In judging normality we have compared the estimates with their actual means

TABLE 1
Expected values, variances and covariances, as determined by 1000 simulations

A o x (2 known)
n Ep) EQ n-Var(p) n-VarQ) n-Cov(p,2d) _—
E(p) n-Var(p)

20 .290  3.56 .907 26.85 —4.33 .380 .167
40 344 3.28 .896 25.75 —4.31 390 155
60 .361 3.20 .879 24.81 —4.16 .394 .164
80 3712 3.14 .859 23.09 —3.99 .396 .159
100 .380 3.1 .868 22.82 —3.99 .397 .161

o .400  3.00 .888 24.00 —4.20 .400 155
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TABLE 2
Number of times p fell within 1, between 1 and 2, etc. standard deviations
above and below its mean in 1000 simulations

n —4 -3 -2 -1 1 2 3 4
20 1 26 135 321 367 140 9 1
40 5 24 133 328 348 148 14 0
60 3 27 133 317 360 145 15 0
80 2 24 135 332 356 132 19 0
100 3 32 124 326 363 137 15 0
oo 1 22 136 341 341 136 22 1
TABLE 3
Number of times 2 fell within 1, between 1 and 2, etc. standard deviations
above and below its mean in 1000 simulations
n —4 -3 -2 -1 1 2 3 4
20 0 4 149 385 301 122 36 3
40 0 7 153 374 303 134 23 6
60 0 12 148 370 305 134 27 4
80 1 13 135 376 320 129 21 5
100 0 17 131 378 321 120 28 5
) 1 22 136 341 341 136 22 1
TABLE 4

Number of times various confidence intervals covered their
parameters in 1000 simulations

p 2
g 909 959 98% 909 959 989
20 856 889 893 840 885 894
40 878 935 973 880 946 971
60 884 943 978 900 948 975
80 887 951 980 901 951 980
100 888 949 980 905 952 981

and standard deviations (as determined from 1000 simulations). Of more practical
interest is the question of how the estimation procedure behaves when confidence
intervals are formed using normal critical values and using the variances from
(5.9) with p, g and A replaced by their estimates. A problem that can arise here
is that  may not fall in (0, 1) or 4 may not come out positive. This can result
in negative estimates of variance. The problem of A<O0or p = 1 wasrate, but
P < 0 was common for small p and for small n. Table 4 gives the-number of
times out of 1000 simulations that various confidence intervals, when formed
by the above procedure, covered their parameters. When either estimate fell
out of bounds the case was not counted. From Table 4 it can be seen that
the results are extremely good, and we would not hesitate to recommend this
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procedure for the particular model considered here. For more extreme values
of p, the results were not quite as good, but still impressive.

6. Concluding remark. It might appear that the estimation method developed
here is limited to those parameters which appear in the conditional expectation
(1.1) of the process. However by suitably choosing functions {f};_, and ap-
plying the method to a conditional sum of squares defined by

Qn(a) = Z{:l Z(fi()’wv Vs =t yt—q) - E(fi()’t+1’ trty yt—q)'Ft—q—l))z s

estimates can be obtained for a wide variety of parameters. CLS estimates,
for example, can be obtained for the transition probabilities of a Markov chain
by choosing {f;;} as the indicator functions of jumps from state i to state
J- The estimates in this case are the same as the MLE’s. If the {y,} are
i.i.d. and fi(x) = x%, i < r, this formulation of CLS amounts to the method of
moments.
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