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LIKELIHOOD RATIO TESTS FOR ORDER RESTRICTIONS
IN EXPONENTIAL FAMILIES

By TiM ROBERTSON' AND EDWARD J. WEGMAN?
Unuversity of Iowa and University of North Carolina, Chapel Hill

This paper considers likelihood ratio tests for testing hypotheses that
a collection of parameters satisfy some order restriction. The first problem
considered is to test a hypothesis specifying an order restriction on a col-
lection of means of normal distributions. Equality of the means is the sub-
hypothesis of the null hypothesis which yields the largest type I error prob-
ability (i.e., is least favorable). Furthermore, the distribution of T= —In
(likelihood ratio) is similar to that of a likelihood ratio statistic for testing
the equality of a set of ordered normal means. The least favorable status
of homogeneity is a consequence of a result that if X is a point and 4 a
closed convex cone in a Hilbert space and if Z e A, then the distance from
X 4 Z to A is no larger than the distance from X to 4. The results of
a Monte Carlo study of the power of the likelihood ratio statistic are
discussed.

The distribution of T is also shown to serve as the asymptotic distri-
bution for likelihood ratio statistics for testing trend when the sampled
distributions belong to an exponential family. An application of this re-
sult is given for underlying Poisson distributions.

1. Introduction. A problem of great practical interest is the detection of
trend in parameters indexing a set of populations. If, for example, o, repre-
sents the variance of ¢; in the linear model,

Yiz.Bo’f'.BlXi’f'ei; i=1,2,--.,K
and if one believed that the ¢,* exhibit a trend such as ¢* < 0, < -+ < g,?
then an analysis based on weighted least squares would be more appropriate
than the usual least squares procedure.

Other circumstances of interest include the detection of trend in the means
in a time series context, the detection of trend in binomial parameters, p,, in
the construction of dosage response curves, and finally, the detection of trend
in the parameter of a Poisson process. We illustrate this last application with
an example in Section 5.

In Section 2, we develop likelihood ratio tests of trend in the means of several
normal populations. Section 3 contains a Monte Carlo study of power for these
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underlying normal populations and, in Section 4, asymptotic tests are developed
when the underlying populations are of an exponential type.

2. Tests of trend for the normal case. Following the notation and termi-
nology of Barlow, Bartholomew, Bremner and Brunk (1972), suppose we have
independent random samples from each of k normal populations having means
¢(x;) and known variances o*(x,); i = 1,2, .-+, k. Let S = {x;, x,, ---, x,} and
suppose K is a partial order on S. A function r(+) on S is isotone with respect
to & or simply isotone provided r(x;) < r(x,;) whenever x; € x;. Consider the
likelihood ratio test for testing

H,: p(+) isisotone

against all alternatives. Let X(x,) denote the sample mean of the items of the
random sample from the population indexed by x,. We denote the maximum
likelihood estimate of yx(+) which satisfies H, by z(+). Let 2 be the likelihood
ratio (i.e., the quotient of the likelihood function at (i(+), ¢*(+)) and the likeli-
hood function at (%(+), ¢*(+))) and let H, be the hypothesis which places no
restriction on g(+). The likelihood ratio test for testing H, against H, — H,

rejects H, for small values of 2 or equivalently for large values of T), = —21n 4.
A straightforward algebraic computation yields
(2.1) Ty, = Xt off(x;) — %(x;)]
where w; = n,/0*(x;) and n, is the number of sample items from the distribution
at x;.
Let
Hy: p(x) = p(x)) = -+ = p(x)

and note that H, C H, C H,. H, is the least favorable alternative among hy-
potheses satisfying H, in the sense of yielding the largest type I error prob-
ability. This fact is a consequence of a smoothing property for projections on
closed convex cones in Hilbert space. Since this smoothing property might be
of independent interest, we present the result in that generality. (For a dis-
cussion of projections on closed convex cones in Hilbert space and applications
to isotonic inference see Brunk (1965).) Following Brunk (1965), suppose H
is a Hilbert space. We are not necessarily assuming that H is either infinite
dimensional or separable. If 4 is a closed convex cone in H and X e H then
we denote the projection of X on 4 by P(X| A). Now, if Xe H and Z ¢ A then,
by the definition of P(. | A)

X+ Z— P(X + Z| )| < X + Z— V|
for every Y e 4. Letting Y = P(X| A) + Z yields the following result.
THEOREM 2.1. If Z e A then for any X ¢ H,
X+ Z — P(X + Z|4)| = |X — P(X[4)]|-

Let H be the Hilbert space of all real valued functions on § with inner
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product defined by (7(+), 0(+)) = Xk, 7(x;) - 6(x;,) - @, = § 7 - 6 dW where W is
the measure on the collection of all subsets of S defined by W({x,}) = w;. The
collection 7, of all isotone functions on S is a closed convex cone in H, () =
P(%(+) | 1) and T, = () — Z()|P. For any e = (s(x), p(xs), -+ > (), let
P (E) be the probability of the event E computed under the assumption that g
is actually the vector of means of the populations. For w fixed, satisfying H,,
let y(x) = (x) — p(x), § = P(y|I)and T = [[5(+) — y(-)|. Then P,[T = 1] =
P,[T,, = t] where (0,0, --.,0) = 0. Furthermore by Theorem 2.1 we have
T, < Tsothat P[T,, > t] < P[T = t] = P,[T,, = t] for any real t. We have:

THEOREM 2.2. If pr = (p(x,), p(X,), - - -, p(X,)) is any isotone vector of means
then

PITyz ] < P[Ty 2 1].

Thus, if we compute significance levels for critical regions by assuming that
all of our means are equal then our test will be conservative in the sense that
the actual significance level of the test is no larger than the one that has been
computed.

Let T, be the likelihood ratio statistic studied by Bartholomew (1956, 1959a, b,
1961) for testing H, against H;, — H,. The distribution of T,, under H, is given
in Theorem 3.1 of Barlow et al. (1972). By appropriately modifying their argu-
ment we obtain the distribution of T, under H,. In fact, we obtain the joint
distribution of T, and T}, under H,. This joint distribution is useful, for ex-
ample, if one is interested in a resolution (cf. Hogg (1961)) of the standard
likelihood ratio test of H, against H, — H, into tests of H, against H, — H, and
H, against H, — H,. We need two lemmas. The first is a straightforward gen-
eralization of Lemma C on page 129 of Barlow et al. (1972).

LemMA 2.3. Suppose Z,, Z,, - - -, Z, are independent normally distributed random
variables with common mean and variances b,7*, b,"%, - .., b,7', respectively, and
let Z = (X1_,b0,)" (Xi1b:2). Suppose Z is the r X 1 vector of Zs, C =
20 b(Z, — Z)* and A is a t X r matrix, each of whose rows sum to zero. Then
the conditional distribution of C given that A-Z > 0, where 0 is the t X 1 vector

of zeros, is that of a x* with r — 1 degrees freedom.

LemMA 2.4, Suppose T\, T,, - - -, T, are random variables and E,, E,, - - -, E, are
nonnull events, such that the | pairs (T,, IEl), (T, IE2), -y (T, 1)) are mutually
independent (I, denotes the indicator function of E;). If the conditional distribution
of T, given E, is y(r;) then the conditional distribution of Y.!_| T, given (N}, E, is
X(Xiar i)'

Proor. The proof follows by considering the conditional characteristic func-
tion of }I!_ T, given N!_, E,.

THEOREM 2.5. If H, is satisfied then
P[Ty = 1, Ty = )] = DL P(L KPP — 1) Z t,]P[x(k — 1) = 1]
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where, as in Barlow et al., P(l, k) is the probability that the isotonic regression

function, a(+), takes on exactly I levels (by convention y*0) denotes the distribution
assigning all of its mass to 0).

Proor. Neglecting sets of measure 0, suppose £, > O and #, > 0. Let & be
the g-lattice of subsets of S induced by « (relationships between « and & are
discussed in Robertson (1967)). We refer to members of & as upper layers and
henceforth use the symbol, L, with or without subscripts to denote upper layers.
For every nonempty subset 4 of § let ¥(A) = (X,eq @)™+ Lsjes @F(X)-
Using the minimum lower sets algorithm (cf. B.1 and B.2 on page 131 of Barlow
et al. (1972)) there exists a collection of pairs (C;, D,), i = 1,2, - - ., m of events
such that {C, n D;}r, partition the space and for each i, C; and D, have the
following form. There exists a collection, L,, L,, ---, L, of upper layers
(Lyw+r = @) such that S=L, DL, D --- DLy, L;— L, #+ @; j=1,
2, ..., (i) and

Ci = [’-C(Ll - Lz) < ’-C(Lz - La) <0 < x(Lm') - Ll(i)+l)]
and

D= Ny [max,_; , o ML — L) = %(L; — Ly,)] .

Furthermore, if x,€ L; — L;,, then g(x,) = *(L; — L;,,) so that on C, n D,
T, and T}, have the following forms

(2.8) Lo Zzﬂe Log=Lgyq wp[i(s) - )?(La - La+1)]2
(2.9) A2 Zx,,e Lag—Lay1 98 ° [¥(Ly — Layy) — ’-c(xﬁ)]2 ’

respectively. Since {C; N D,} is a partition of the space we can write
P[TOI g tO’ TlZ g tl] = ZZ”:I P[T01 g tO’ TlZ g tl’ Ci’ D’L] *

Fix i and consider P[T,, = t,, T}, = t,, C; N D,]. Define the random vectors
Z, and Z, as follows:

Z1 = (’-C(Ll - Lz)’ f‘(Lz - La)’ Tt X(Lt(i))) ;

Z,is a k — (i) dimensional random vector such that corresponding to each set
L, — L,,,, Z, has one less component that the number of points in L, — L,,,
and each component is of the form X(x,) — %(L, — L,4,) where x,e L, — L,,,.
For example, if L, — L, = {x,, X,, - - -3 x;} then the first j — 1 components of
Z, would be %(x,) — X(L, — L,), X(x;) — *(L, — L,), - -+, X(x;_;) — X(L; — Ly).
Using both the independence of the samples and the independence of %(x,) —
%*(L, — L,y,) and %(L, — L,,,) for x,e L, — L,,,, it is easily seen that each
component of Z, is independent of each component of Z,. However, the joint
distribution of Z, and Z, is multivariate normal, so that Z, and Z, are inde-
pendent. Now on C;, n D,, T, is a function of Z, and T, is a function of Z,
(cf. (2.8) and (2.9)). Furthermore, C; is a function of Z, and D; is a function
of Z,. Thus P[T, = ¢, Ty, = t, C;, D;] = P[T{, = t,, C;)P[T;, = t,, D;] where
T;, and T, are given by (2.8) and (2.9), respectively. Now from Lemma C on
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page 129 of Barlow et al. (1972) the conditional distribution of T¢, given C;
is that of a y* with /(i) — 1 degrees freedom. Similarly, if we let T, =
Diepe La-Lapy Pol¥(La — Latr) — X(x)]? and E, =[max,_; ., ¥L — Luy,) =
%(L, — L,,,)] then from Lemma 2.3 the conditional distribution of T, given E,
is that of a ¥ having number of degrees of freedom equal to one less than the
number of points in L, — L,,,. The pairs (T, E)), (T,, E,), - - -, (T1y» E10y)
satisfy the hypothesis of Lemma 2.4. It follows that P[T], >1t, D;] =
P[x*k — I(i)) = t,]P(D;). The desired result now follows from (2.10) by writing
P(C,)P(D,) = P(C; n D,) and repartitioning the space into sets where z(.) as-
sumes different numbers of levels (note that s(+) assumes (i) levels in C; N D,).

Theorem 3.1 in Barlow et al. (1972), giving the distribution of T,, under H,,
is obtained by letting 7, approach zero on the right. Similarly, letting #, approach
zero on the right, we have the following corollary.

COROLLARY 2.6. If H, is satisfied then

P[T,, = 0] = P(k, k)
and
P[T, = t] = Dt P, k)P[YYk — 1) = 1]
fort > 0.

The probabilities P(/, k) depend on both the partial order, <, and the weights,
w,. Barlow et al. (1972) discuss the computation of P(/, k) at some length and
they give tables for various partial orders under the assumption of equal weights.
The distribution of the test statistic, T,,, depends on the P(I, k) through equation
(2.7), and hence depends on the partial order.

In the accompanying table, we assume a simple-order null H*: p(x,) =
@(x;) = - -+ = p(x,), and equal weights. Critical values are tabulated for k =
3(1)40. Critical values in other circumstances may be constructed using equation
(2.7) and results from Barlow et al. We note, in particular, for the simple order
null hypothesis,

1
P(1, k) = -
(1, k) p
Pk, k) = L
(’)_k!
and
1 k—1
P(l,k):_k_P(l—1,k—1)+_k—_P(l,k—l).

Now suppose that the variances of the underlying normal populations are
unknown but assumed equal. The null distribution of a likelihood ratio statistic
for testing H, against H, — H, is given in Theorem 3.2 of Barlow etal. (1972).
Again, by modifying their techniques one can obtain a conservative significance
level for the likelihood ratio test for testing H, against H, — H,. The likelihood
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TABLE 2.1
Critical values of the test statistic, T1z, for testing simple order
versus all alternatives: Equal weights, wi

o

k
0.1 0.05 0.025 0.01 - 0.005
3 3.275 4.578 5.902 7.673 9.022
4 4.701 6.175 7.640 9.565 11.014
5 6.048 7.665 9.248 11.305 12.841
6 7.353 9.095 10.783 12.958 14.571
7 8.630 10.485 12.268 14.550 16.234
8 9.888 11.846 13.717 16.098 17.848
9 11.131 13.185 15.137 17.611 19.423
10 12.361 14.505 16.534 19.096 20.966
11 13.581 15.811 17.912 20.557 22.483
12 14.793 17.103 19.274 21.997 23.976
13 15.996 18.384 20.621 23.420 25.450
14 17.194 19.655 21.956 24.827 26.906
15 18.384 20.918 23.279 26.221 28.346
16 19.570 22.172 24.592 27.602 29.772
17 20.751 23.419 25.897 28.971 31.186
18 21.927 24.660 27.192 30.331 32.588
19 23.099 25.894 28.481 31.681 33.980
20 24.267 27.123 29.762 33.022 35.361
21 25.432 28.347 31.036 34.355 36.734
2 26.593 29.566 32.305 35.681 38.098
23 27.751 30.781 33.568 36.999 39.455
24 28.907 31.991 34.826 38.311 40.804
25 30.059 33.197 36.078 39.618 42.146
26 31.209 34.400 37.326 40.918 43.481
27 32.357 35.599 38.570 42.213 44811
28 33.502 36.795 39.809 43.503 46.135
29 34.645 37.987 41.045 44.788 47.453
30 35.786 39.177 42.276 46.068 48.766
31 36.925 40.364 43.505 47.344 50.074
32 38.062 41.548 44.729 48.615 51.378
33 39.197 42.729 45.951 49.883 52.677
34 40.330 43.908 47.169 51.147 53.971
35 41.461 45.085 48.384 52.407 55.262
36 42.592 46.259 49.597 53.664 56.549
37 43.720 47.431 50.807 54.917 57.831
38 44.847 48.601 52.014 56.167 59.110
39 45.972 49.769 53.218 57.414 60.386
40 47.097 50.935 54.421 58.658 61.659

ratio for this test can be written

where

'212 = (622/ 612)N/2

0 = N1k, hayim (xij - }-C(xi))z
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and
6, = N7 Jios D, (kg — f(x))*
A likelihood ratio test rejects for large values of S;, = 1 — 23"

THEOREM 2.7. If po = (p(xy), p(X,), - - -5 p(X)) is any isotone vector of means
then

Pp[Slﬁ = t] = Po[Sm = t]
and if H, is satisfied then
P[S,;, = 1= Z;;l P(ls k)P[BQ(k—-l),Q(N—k) = 1]

for all t (B, , denotes a random variable having Beta distribution with parameters a
and b and is taken to be degenerate at zero if a = 0).

Proor. The random vector S,;, can be written
— R = 2O

[%(e) — £()IF + N&;’
Using Theorem 2.1 the first result follows exactly as in the proof of Theorem
2.2 using the fact that for any 4 > 0 the function ¢ - (+ + A4)~! is a nondecreas-

ing function of ¢ on [0, o).
Define the random vector Z; by

12

Zy = (X — X(x,), Xpp — X(X), -+, Xy 00 — X(X), -0 s
Xy — X(x), -+, Xpnp—1 — X(xp)) -
Then, using the notation from the proof of Theorem 2.5, the random vectors
Z,, Z, and Z, are independent. Furthermore on C; N D,,
_ R
" R+0Q

where R is a function of Z, and Q is a function of Z,. Thus

12

P[S,, = t, C;, D;] = P[S,, = t| D,]P(C; N D).

Now given D,, R and Q are independent and the distribution of R is that of a
x*(k — I(i)) and the distribution of Q is that of y*(N — k). The proof is complete.

3. Monte Carlo study. In this Monte Carlo study, we restrict our attention
to a null hypothesis which specifies a simple order, i.e., H,*: p(x;) =
u(xy) = - -+ = p(x,). We also take the variances o*(x,) to be one and draw the
same number of items from each population.

Van Eeden (1958) proposed another statistic for testing H,* against H, — H,*,
namely T3 = max, g, (¥(x;4,) — X(x;)) where %(x;) is the sample' means of the
ith population. Let a be a “target” significance level and let a* = a/(k — 1).
The critical point for Van Eeden’s test when o*(x;) = 1 is

Fa‘ = (2/?)& ) ga’
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where 7 is the number of observations made on each population and where &,.
is defined by

(1)) §5,. 4 d = a* .

The true significance level a, = sup,.,cy+ P[TH = .| #(+)] is bounded above
by a and below by @ — 4a?. For this study we choose @ = .05 and .01 so that
.04875 < a, < .05 for a = .05 and .00995 < «, < .01 for « = .01.

Normal pseudo-random variates were generated according to the well known
Box-Mueller transform and sample means, %(x,), based on n = 100 were calcu-
lated. For three different types of alternate hypotheses estimates of the power

TABLE 3.1
Monte Carlo estimates of power and standard errors (in parentheses) for the likelihood
ratio test and for the test statistic Tt. Significance level, « = .05 and
alternatives p(x,) = B -i

Power for likelihood ratio test «
statistic, Tiz Power for Ti:

N 3 6 9 12 3 6 9 12

10 1 1 1 1 1 1 1
(0) (0) (0) (0) (0) (0) (0) 0)
3 1 1 1 1 1 1 1 1
(0) (0) 0) (0) (0) (0) (0) (0)
3 .997 1 1 1 .910 .999 1 1
(.002) (0) 0) (0) (.009)  (.001) (0) (0)
i .951 1 1 1 .670 .863 .921 .940
(.007) (0) (0) (0) (.015)  (.011)  (.008)  (.008)
b .810 1 1 1 .466 .648 .723 774
(.012) (0) (0) (0) (.016)  (.015)  (.014)  (.013)
3 .666 1 1 1 .337 .485 .568 .593
(.015) (0) (0) 0) (.015)  (.016)  (.016)  (.016)
3 .545 1 1 1 .258 .363 .436 .453
(.016) (0) (0) (0) (.014)  (.015)  (.016)  (.016)
i .461 .997 1 1 .226 .315 .346 .368
(.016)  (.002) (0) (0) (.013)  (.015)  (.015)  (.015)
1 .397 .989 1 1 .187 .264 .282 298
(.016)  (.003) (0) (0) (.012)  (.014)  (.014)  (.014)
i .342 .968 1 1 .170 .229 .244 .269
(.015)  (.006) (0) (0) (.012)  (.013)  (.014)  (.014)
oo .151 .461 .887 .997 .076 .110 .114 .121
(. 011) (.016)  (.010)  (.002) (.008)  (.010)  (.010)  (.010)
. .233 .552 .856 .054 .075 .089 .086
(.009) (.013)  (.016)  (.011) (.007)  (.008)  (.009)  (.009)
7o .087 .181 .362 614 .050 .067 .079 .079
(.009)  (.012)  (.015) © (.015) (.007)  (.008)  (.008)  (.008)
k. .081 .151 .240 .416 .055 .059 .074 .073
(.009)  (.011)  (.014)  (.016) (.007) " (.008)  (.008)  (.008)
o .080 127 .183 .305 .049 .065 .070 .067
(.009)  (.010)  (.012)  (.015) (.007)  (.008)  (.008)  (.008)
o .052 .121 .164 .241 .034 .049 .063 .065
(.007)  (.010)  (.012)  (.014) (.006)  (.007)  (.008) (. 008)
o .068 .091 .143 .209 .038 .046 .048
(.008)  (.009)  (.011)  (.013) (.006)  (.007)  (.007) (.008)
0 .060 .051 .054 .056 .036 .043 .038 .041

(.008) (.007) (.007) (.007) (.006) (.006) (.006) (.006)
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and the standard error of the estimate of the power were calculated based on
1000 replications of the Monte Carlo experiment. In the first study the means
were taken to the linear according to the rule u(x,)=p-i;i=1,2, ...k,
k=3,6,9128=1,4,4%, - -, %> d» - - *» g and finally for « = .01 and .05.
Results of this study are given in Tables 3.1 and 3.2 and Figures 1 and 2.

As we might reasonably expect, the likelihood ratio statistic outperforms T,
often impressively so, as illustrated by Figures 1 and 2. For example, for
k =12, p = {;and « = .05, T#’s power is approximately .27 while the power
of the likelihood ratio statistic is still 1. For alternatives of this type, the powers

TABLE 3.2
Monte Carlo estimates of power and standard errors (in parentheses) for the likelihood
ratio test and the test statistic, T13. Significance level, « = .01 and
alternatives u(x,) = B -i

Power for likelihood ratio test
statistic, Tz

N 3 6 9 12 3 6 9 12

Power for T,

1 1 1 1 1 1 1 1 1
0) (0) (0) (0) (0) (0) 0 (0)
3 1 1 1 1 .992 1 1 1
0) (0) (0) (0) (.003) (0) 0) (0)
3 .983 1 1 1 .642 .901 .955 .973
(.004) 0) (0) (0) (.015)  (.009)  (.007)  (.005)
1 .829 1 1 1 .351 512 .590 .653
(.012) 0) 0) 0) (.015)  (.016)  (.016)  (.015)
1 .601 1 1 1 .197 .320 374 .401
(.016) 0) (0) 0) (:013)  (.015)  (.015)  (.016)
i 412 1 1 1 124 .200 .239 .250
(.016) 0) (0) (0) (.010)  (.013)  (.014)  (.014)
3 .300 .998 1 1 .088 .124 .148 .161
(.014)  (.001) 0) 0) (.009)  (.010)  (.011)  (.012)
i .228 979 1 1 .065 .095 .107 119
(.013)  (.004) 0) 0) (.008)  (.009)  (.010)  (.010)
3 178 .949 1 1 .052 .091 .095 .103
(012)  (.007) ) 0) (.007)  (.009)  (.009)  (.010)
=S .145 .882 1 1 .050 .073 072 .091
(.011)  (.010) 0) (0) (:007)  (.008)  (.008)  (.009)
2o .050 .261 .709 .991 .018 .030 .026 .023
(.007)  (.014)  (.014)  (.003) (.004)  (.005)  (.005)  (.005)
& .027 .075 .301 .694 .009 .016 .018 .020
(.005)  (.008)  (.014)  (.015) (1003)  (.004)  (.004)  (.004)
& .021 .055 .139 .366 .014 .015 .012 .012
(.004)  (.007)  (.007)  (.015) - (.004)  (.003)  (.003)  (.003)
. .024 .036 .075 .189- .015 .017 .017 .020
(.005)  (.006)  (.008)  (.012) (.004)  (.004)  (.004)  (.004)
& .023 .042 .063 127 .007 .018. .018 .015
(.005)  (.006)  (.008)  (.010) (.003)  (.004)  (.004)  (.004)
Ao .013 .026 .055 .083 .009 .017 .017 .015
(.004)  (.005)  (.007)  (.009) (.003)  (.004)  (.004)  (.004)
& .010 .023 .037 .075 .004 .007 008 .012
(.003)  (.005)  (.006)  (.008) (.002)  (.003)  (.003)  (.003)
0 .008 .013 .009 .009 .005 .004 .005 .005

(.003) (.004) (.003) (.003) (.002)  (.002) (.002) (.002)
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FiG. 1.

Tizand for T -« = .0l and k =

R Lo

2 3 456 20 30 40 60 80 00

Power as a function of f(u(xi) = 8- i) for the likelihood ratio test statistic,
3

A
20 3040 60 80 I0O

Fic. 2. Power as a function of f(u(x:) = 8-i) for the likelihood ratio test statistic,

Ti2 and for Ti2 - a = .0l and & = 12.
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of both tests increase as k increases and, of course, as 8 increases. The case
B = 0 corresponds to the null hypothesis H**: u(x,) = 0;i=1,2, ---, k and,
hence, here the power is an estimate of the significance level. These estimates
of the significance levels for T} generally underestimate the “target” significance
level as Van Eeden’s theory predicts but in most cases this estimate is within
two standard deviations of the target level.

Since T} is based on differences between adjacent sample means one might
reasonably expect it to be more sensitive to alternatives where one or more of
the differences between adjacent population means is large. Table 3.3 gives

TABLE 3.3
Monte Carlo estimates of power and standard errors (in parentheses) for the likelihood
ratio test and the test statistic, T, with slippage alternatives wx,) =0,
i=2,3,.--,k and p(x1) as indicated

Power for the likelihood ratio test "
statistic Thz Power for Tt

%
T3 6 9 12 3 6 9 12

a=.05 —g 055  .054  .050 .06 037  .055  .052  .048
(.007)  (.007) (.007)  (.007) (.006) (.007) (.007)  (.007)
- 065 .05  .049 .04l 036  0.39 .02  .043
(.008). (.007)  (.007)  (.006) (.006)  (.006) (.006) (.006)
-7 .08  .075 .05  .059 060  .053 .05 .05
(.009) (.008) (.008)  (.008) (.008)  (.007) (.007)  (.007)
— 15 .085 .08l 072 .064  .053  .055  .048
(.010)  (.009)  (.009)  (.008) (.008)  (.007) (.007)  (.007)
- 188 .148  .105  .091 104 074 .064  .063
(.012)  (.011)  (.010)  (.009) (:010)  (.008)  (.008)  (.008)
& 277 .29 189 .168 171 140 116 .099
(.014)  (.013) (.012) (.012) (.012)  (.011) (.010)  (.009)
- 479 447 383 336 320 258 226 .200
(.016) (.016) (.015) (.015) (.015)  (.014) (.013) (.013)

s 916  .909  .873  .839 .761 .68  .638  .597
(.009) (.009) (.010) (.012) (.014)  (.015) (.015) (.016)

-5 1 1 1 1 1 1 1 1
(0) (0) 0) 0) 0) (0) (0) 0)
a=.01 —g; 014 .01l .011 .003 .008  .008  .005  .004
(.004)  (.003) (.003) (.002) (.003)  (.003) (.002) (.002)
& .010  .005  .003  .009 007  .007  .007  .009
(.003)  (.002) (.002)  (.003) (.003)  (.003) (.003) (.003)
- 023 019  .012  .018 011 .009 011 .014
(.005)  (.004)  (.003) , (.004) (.003)  (.003) (.003)  (.004)
s 026 .22 .019  .017 .014  .016  .020  .018
(.005)  (.005)  (.004)  (.004) (.004)  (.004) (.004) (.004)

— 058 .40  .027  .021 027 .023 .04  .013
(.007)  (.007)  (.005)  (.004) (.005)  (.005)  (.004)  (.004)

- .101 .087  .069 .05l .057  .040  .031 .027
(.010)  (.009) (.008)  (.007) (.007)  (.006) (.006) (.005)

—d 260 215 153 133 147 102 084 071
(.014) (.013) (.011) (.011) (.011)  (.010)  (.009)  (-008)
- 57 742 694 .633 .55 483 440  .409
(.014)  (.014) (.015) (.015) (.016) (.016) (.016)  (.016)

1 1 1 1 1 1 1 1
©) ©) ©) © ©) ©) ©) 0)
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estimated power for slippage alternatives of the type p(x,) = pu(x) = -+ =

#x) = 0and p(x,) = — oy, —p — 75 — o5 — &5 — > —35 —Fp and — .
Table 3.4 gives further data for slippage alternatives: p(x)) = —.35 while
w(X;)=0 for j=+i i=1,2,...,12. Also given in Table 3.4 is a step
type alternative for which p(x;) = —.35 for j < i and p(x,) =0 for j > i;

i=1,2,...,12.

In Table 3.3 the likelihood ratio statistic is more powerful than T} except
for p(x;) = —(g5) or —(g%)- In these two instances the slippage is so small that
the power is essentially equal to the size of the test. As expected, the differ-
ences in power for T} and the likelihood ratio statistic in Table 3.3 are not
nearly so dramatic as those in Tables 3.1 and 3.2. Heuristically one might
predict this since the likelihood ratio statistic is based on all the means simul-
taneously and hence should be more sensitive to the sorts of alternatives in
Tables 3.1 and 3.2 compared to those in Tables 3.3.

We may, in Table 3.4, compare powers as the location, i, of the slipped mean
ranges from 1 through 12. The power of the likelihood ratio monotonically

TABLE 3.4
Monte Carlo estimates of power and standard error (in parentheses) for the likelihood
ratio test and the test statistic, T3 with slippage or step located at i.
Size or slippage of jump is —.35 and k is 12

Slippage alternative Step alternative
Likelihood T* Likelihood T*
ratio test 12 ratio test 12

T s o 05 .ol 05 .ol 05 ol
1 .664 .434 .470 272 .664 434 .470 272
(.015)  (.016) (.016) (.014) (.015)  (.016) (.016) (.014)

2 .640 411 .449 .250 .937 .813 445 .250
(.015)  (.016) (.016)  (.014) (.008) (.012) (.016) (.014)

3 .629 .368 .476 271 .987 .944 .478 .271
(.015)  (.015) (.016) (.014) (.004)  (.007) (.016) (.014)

4 .625 .369 .486 .285 .995 .981 .489 .285
(.015)  (.015) (.016) (.014) (.002)  (.004) (.016) (.014)

5 .600 .353 .460 .270 .998 .985 .461 .270
(.016) (.015) (.016) (.014) (.001)  (.004) (.016) (.014)

6 .558 .322 .433 .267 1 .988 .435 .269
(.016)  (.015) (.016) (.014) (0) (.003) (.016) (.014)

7 .520 .297 .459 .262 .995 .977 461 .262
(.016)  (.014) (.016)  (.014) (.002)  (.005) (.016) (.014)

8 .529 275 .449 .249 .996 .988 .450 .249
(.016)  (.014) (.016)  (.014) (.002)  (.003) (.016) (.014)

9 .483 .255 .468 .243 .990 .950 .470 .243
(.016)  (.014) (.016)  (.014) (.003)  (.007)" (.016)  (.014)

10 411 .205 .447 .253 .927 .813 449 .253
(.016) (.013) (.016)  (.014) (.008)  (.012) (.016) (.014)

11 .293 .124 .438 .268 .667 .430 .442 .268
(.014)  (.010) (.016) (.014) (.015)  (.016) (.016)  (.014)

12 .030 .008 .051 .012 .056 009 .058 .014

(.005)  (.003) (.007)  (.003) (.007)  (.003) (.007)  (.004)
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decreases with this location shift whereas the power of T} stays relatively
constant. For i = 10, 11, T} beats the likelihood ratio and significantly for
i = 11. Notice that as the location of the slippage increases the alternative
comes closer to satisfying the null and in fact for i = 12, H * is satisfied so that
the powers approximate the size of the test.

Finally for the step alternatives, the likelihood ratio statistic has maximum
power near k/2 and its power decreases in both directions while T} has essen-
tially constant power. Again notice that the case i = 12 satisfies H,* so we have
another estimate of the size of the test.

4. Tests of trend for an exponential class of distributions. Now let us turn
our attention to extensions of the likelihood ratio test to distributions of the
exponential type. Suppose y(+) is a o-finite measure on the Borel subsets of the
real line and consider a regular exponential family of distributions defined by
the probability densities of the form

(4.1) f(x; 8, 7) = exp[py(0)pu(7)K(x) + S(x, 7) 4 q(0; 7)] 5
0e(0,0,),7eT,
with respect to 7 and with —c0 < 6, < 6, < 0. We make the following
assumptions:
(4.2) p(+) and g(-;7) both have continuous second
derivativeson (6,,64,) forall zeT,

(4.3) p/(0) >0 forall 6e(d,,0,), pi(t) >0 forall zeT,

and
(4.4) q'(0;7) = —6p,/(0)py(7) forall 6e(4,0,) and zeT.

We are thinking of ¢ as fixed so that all derivatives are with respect to 6. If X
is any random variable having density function f(x; 6, 7) then using Theorem 9
on page 52 of Lehmann (1959), the integral, § f(x, 6, 7) dy(x) = 1, can be twice
differentiated, with respect to , under the integral sign, obtaining E[K(X)] = @
and V[K(X)] = [p/(O)p(7)]™"

Suppose we have independent random samples from each of k populations
belonging to the above exponential family where the ith population has pa-
rameters 6(x;) and 7, (z, is known). Let the items of the random sample from
the ith population be denoted by X;;: j= 1,2, -- ., n, and suppose  is a par-
tial order on S = {x,, Xx,, - -+, x,}. Consider the following hypotheses:

Hy: 0(x)) = 0(x;) = - - = 0(x,),
H,: 6(-) isisotone with respect to <«

and H, places no restriction on 6(-). We consider a likelihood ratio statistic
for testing H, against H, — H,. The maximum likelihood estimate of 6(-) under
H, is given by 6(+) where 8(x,) = n;”* %, K(X;;). Furthermore, the maximum
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likelihood estimate of the common value of #(+) under H, is given by

0y = [ZDicinpt)]™ - Xl ”iPz(Ti)éi

so that from Robertson and Wright (1975) it follows that the maximum likeli-
hood estimate of () under H, is 6(+) = E[é(o)| /] where / is the o-lattice of
subsets of S induced by « (cf. Barlow et al. (1972)). The expectation is taken
with respect to the space (S, 25, d) where 0 is the probability measure on the
collection, 25, of all subsets if S which assigns mass n, - p,(7;) =~ [ Xk, n;ps(7;)]
to the singleton {x,}. Maximum likelihood estimation of parameters of distri-
butions belonging to an exponential family were first discussed by Brunk (1955).
For a discussion of this and related work, see Barlow et al. (1972).

If 2, is the likelihood ratio for testing H, against H, — H, and T, = —21n 4,,,
then

Ty = 2 Ny (n0(x)pu(e)[ p(0(x)) — PO + ndq(@(x); 7:) — q(0(x:); 7)1} -

Expanding p,(+) and ¢(+; 7;) about 6(x;) by using Taylor’s theorem with second
degree remainder term and substituting for p,(f(x;)) and q(8(x,); ;) we obtain

Ty = 2 Do {[n()piep! (O(x)) + 1eq' (0(x0: 2)N0(x) — O(x)]

— [m0(x)pi(zp)" () - 271 + niq"(Bi3 70) - 270[0(x,) — O(x)T} >
where @, and §; converge almost surely to 6(x;). This convergence follows
from well known properties of f(x;) and f(x,). Now from (4.4), ¢'(6(x;); 7:) =
—0(x,)p,/(0(x,))py(z;) so that
(45)  Tu= — Shanlf(x)p(ep (@) + ¢"(Bs w)N0(x) — 6(x)T -

THEOREM 4.1. If f(x; 0, 7) is of the form (4.1) where p,(+) and q(+; ) satisfy
(4.2)—@4.4)and if 6(x)) = 0(x;) = -+ =0(x,)andn, =n, = --- =m =n then
asn— oo,

Tis —1ew Lter PATIEX(+) | £)(x0) — X(x)))’
where X(x,), X(x;), - - -, X(x,) are independent normal random variables having zero

means and V(X(x;)) = p(z;)~". The expectation E(X(+)| /) is taken regarding
X(+) as a function on the space (S, 25, 8). (Note that 5({x;}) = pu(r:) + 2f-1 pa(75)-)

PrOOF. Let the common value of 6(+) be #,. Then from (4.5), using well
known properties of the conditional expectation operator

Ty = — D [0(x)p (@)pi(z) + (B 7]
X [E(n}(0() — 60)| £)(x)) — n(0(x)) — 00)] -
Now 6(x;) is the sample mean of i.i.d. random variables having means 6, and

variances [p/(8,) - py(r;)]* < oo. Let Z, be the 2k dimensional random vector
defined by '

Z,, = é(xi)Plil(ai)Pz(Ti) + qn(ﬁi; Ti) ; i=1,2,...,k
:ni[é(‘xi—k)_eo]; i=k+1,k+2,...,2k.
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Using the law of large numbers, the central limit theorem and Theorem 4.4 of
Billingsley (1968), Z, converges weakly to Z where

Zi = 0op"(00)pl7s) + 97003 70) 5 i=1,2,..k

= Y(x;_) i=k+1L,k+2,...,2k

where Y(x,), Y(x,), - - -, Y(x,) are independent normal random variables having
zero means and V(Y(x;)) = [p,'(6,)p,(z:)]*. The conditional expectation operator

is continuous so that T, is a continuous function of Z,. It follows from Corollary
1 of Theorem 5.1 of Billingsley (1968) that

Ty —1aw — L= [06p1""(00)pa(7s) + 47 (003 T)NE(Y(+) | £)(x:) — Y(x))]* -
The desired result now follows since ¢”(6y; 7;) = 6,p,"(0,)ps(7:) — p)'(60)po(7:)
from (4.4).
Theorem 2.5 now yields

COROLLARY 4.2. If the hypotheses of Theorem 4.1 are satisfied then for each
real number t

lim, , P[T,, = 1] = Sk, Py}, = 1] P(l, k)

where yi_, is a x* random variable having k — | degrees freedom and, as in Barlow
etal. (1972), P(l, k) is the probability that E(X(+)| /) takes on I levels. The prob-
abilities P(l, K) depend on the partial order & and on the weights py(z,).

We now show that Corollary 4.2 provides the large sample approximation to

the critical level for testing H, against H, — H,. As with the proof of Theorem
2.2 this property is a consequence of the fact that our isotonic estimators can
be viewed as projections on closed convex cones in the Hilbert space of all
functions on § = {x,, x,, - - -, x,} with inner product defined by (7(+), 7(+)) =
b r(x) - p(x)w; and w; = n;py(z;) = X% n;py(t;). Suppose () satisfies H,.
But not H,, letv; < v, < .-+ < v, be the distinct values among 6(x,), 6(x,), -
6(x,) and let S; = {x;; 0(x;) = v;};i = 1,2, ..., h. Define the partial order g
on S by x, £ x, if and only if x, € x, and x,, x, € S; for some i. Let /(6) be
the g-lattice of S induced by K and let /()(/) be the collection of all functions
on S which are isotone with respect to £ («). The collection I(4)(]) is a
closed convex cone in the Hilbert space of all functions on Sand E(n(+)| /(6))
(E(n(+)| £)) is the projection on I(f)(I) in this space (cf. Brunk (1965)).
Furthermore,

(4.6) 1 I6)
and using Corollary 2.3 of Brunk (1965), if E((-)| £(6)) € I then E(;y( )| £(00) =
E((+)| £)-

LemMma4.3. If max, . Slr;(xi) <min, . s,,’i(xi) Smax, . 7(x;) < min, .o n(x;)< - - -
= min, ., 7(x;) then E(y(+)| £(9)) = E(n(+)| £)-

Proor. Itsufficestoshow that E(y(+)| £(6)) € I. Supposeg(+) = E(3(+)| £(8))
and x, € x,. If x,, x; € S; for some i then x, £ x, and ¢(x,) < #(x,). Suppose
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X, €8; x,€8;and i # j. Since 0() is isotone with respect to « the sets S; +
Sipi+ o + S,andS; + S, + - + S,arein £sox,e S +iS, 4+ - + S,
and therefore i < j. Now ¢(x,) ($(x,)) is an average of the values of y(.) at
points in S; (S;) so
P(x,) < max, s 9(x;) = minzlesj n(x;) = ¢(x,)
and ¢(+) el
For any 6(.) let P,(E) be the probability of the event E computed under the

assumption that @(+) is the true vector of parameter values and let Py(E) be the
probability of E computed under H,.

THEOREM 4.4. If 0(.) satisfies H and n, = n, = ... = n, = n then ?l
lim, o P[Tyg = 1] < lim, . P[Ty = 1] . |
Proor. Define £, /(6)and the sets S, S,, - - -, S, as before. Now 6(x;) 4.5,
6(x;), so for sufficiently large n with probability one max, . 6(x) <
min,, 5(x,) < -+ S min, g, c‘j(x,) and from (4.5) and Lemma 4.3
Ty = — Dhanlf(x)p"(@)pi(r:) + "B T)IED(+)| L(0))(x)) — 6(x)T

for sufficiently large n with probability one. Using an argument similar to the
one used for Theorem 4.1 we obtain

Tiy —1ew Zoiea PATEX() | L)) () — X(x,)]?
where X(.) is defined as in Theorem 4.1. Here it is necessary to use the fact

that p,(6(+)) is positive and constant on the sets S, S;, - -+, S,. The desired
result follows from (4.6) since

i=1 Po(TLE(X(+) | Z£(0))(x0) — X(x)]" = ||E(X(+) | £(9)) — X(-)IP

= [IE(X(e) | £) — XC)IP

= Zia P(eIEX(+) | £)(x:) — X))
It seems clear that the hypothesis n, = n, = --- = n, could be relaxed. It

was required to take n inside the conditional expectation. However, the measure
on 25, on which the expectations depend, also depends on n, so that such a
relaxation would still require some assumption about the way the n;’s go to
infinity.

Likelihood ratio tests for testing H, against H, are discussed in Barlow et al.
(1972) (also see Boswell and Brunk (1969)). However, most of the results are
restricted to simple orders and we have been unable to find an analogue to
Theorem 4.1 for this test. An argument similar to the argument given for
Theorem 4.1 yields:

THEOREM 4.5. Let T, = —2 In A, where Ay is the likelihood ratio for testing
H, against H, and assume the hypotheses of Theorem 4.1 are satisfied. Then

Ty, —=1aw 2iie Pz(TZ)[E(X(')I L)(xz) - X]z
where X = Y¥_, p(t)X(x;) + 2k, pi(c;) and X(+) is as in Theorem 4.1.
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COROLLARY 4.6. If the hypotheses of Theorem 4.1 are satisfied then
lim, .. P[Ty 2 1] = Sk, Pl = 1P(, k)
for all t (cf. Theorem 3.1 of Barlow et al. (1972)).

In closing this section it is worthwhile to point out that among families with
densities of the form given by (4.1) are the normal, binomial, Poisson and ex-
ponential families. In particular, in the normal case, if the g(x;) are known
and 6(x;) is taken to be ¢%(x,), then one may form likelihood ratio tests for trend
in the variance. As indicated in the introduction, such a test is useful in the
analysis of residuals from an ordinary least squares procedure to determine, for
example, if there is some trend in the variance and hence if weighted least
squares is appropriate. Moreover, if there is trend, the isotonized variance es-
timate can be used to determine the weights in the weighted least squares
procedure.

5. An example. Figure 3 represents spike trains generated by a single neuron
in the somatosensory cortex of a monkey. This neuron was responding to brush
stimulus on hairy skin—each of the 25 spike trains represents one such stimulus.
The neuron generates pulses at random (i.e., according to a Poisson process) and
as the brush touches the skin, the mean intensity of firing increases rapidly, and
then decays somewhat more slowly as the stimulus is removed. See Figure 3.
(Strictly speaking, the neuron does not fire “at random” because there is a short
refractory period following each firing in which the probability of firing is
reduced. However, this effect is negligible for purposes of our analysis.) In
analogy to the case for probability densities, we shall say that the Poisson pa-
rameter is unimodal when it first is monotonically nondecreasing (with respect
to time) and then is monotonically nonincreasing. A spike train which exhibits
this unimodal behavior is characteristic of a single neuron firing whereas spike
trains from two or more neurons would in general exhibit a multimodal spike
train. A problem of great interest is to separate single neuron records from
multineuron records automatically. This can be done by testing H,: # is uni-
modal versus H, — H, where as usual H, places no restriction on .

For purposes of this analysis, we divide the 0 to 2 second time interval illus-
trated in Figure 3 into 40 consecutive intervals each lasting 50 milliseconds and
we label them x,, ..., x,,. On each of the intervals, we assume we are ob-
serving firings of a Poisson process with a constant mean intensity 6 = 6(x,).
We can estimate 6(x,) by (x,), simply the sample mean number of firings over
the 25 replications. -

Next let S = {x,, --+, x,} and let € be a partial order on S defined by
X; & Xy & Xy Xpiy 2> Xmyg D X In general, 1 < m < 39, but for this particular
example, we choose m = 21. We let the isotonized estimate of § be §. Both
and @ are given in Table 5.1.

For the Poisson distribution, p,(0) = logf, p,(r) =1, ¢(b, 7) = —@ and
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TABLE 5.1

Time interval ~ X(s) = 6(s) a(+) Time interval ~ X(+) = 6(s) a(+)
1 .36 .36 21 1.92 1.92
2 .56 .39 22 1.80 1.80
3 .24 .39 23 1.20 1.32
4 .40 .39 24 1.36 1.32
5 .36 .39 25 1.40 1.32
6 .56 .41 . 26 1.00 1.04
7 .40 .41 27 1.08 1.04
8 .56 .41 28 .76 .79
9 .44 .41 29 .68 .79
10 .36 .41 30 .92 .79
11 .40 .41 31 .52 .52
12 .40 .41 32 .44 .50
13 .44 41 33 .56 .50
14 .28 .41 34 .28 .28
15 .32 .41 35 .24 .26
16 .40 .41 36 .20 .26
17 .76 .76 37 .20 .26
18 1.52 1.52 38 24 .26
19 1.84 1.74 39 .44 .26
20 1.64 1.74 40 04 .04

K(x) = x. The test statistic, T, is given by equation (4.5) where «a,, 8, and
6(x;) all converge a.s. to 6(x;). Hence T,, is asymptotically equivalent to

Ts = Thampi(e)[f(x) — 0(x)
For our particular case,

Ty = Y14, 25[0(x;) — 6(x,)]* = 5.605 .

To complete this example, we need only compute the critical points. As
pointed out in Section 2, the critical points depend on the P(/, k)’s which in
turn depend on the partial order, <. Let P,(I, k) denote P(l, k) for the partial
order discussed in this section and let P(l, k) without subscript represent the
probabilities for the simple order, equal weights case. It is not hard to see

Po(l,K) = Sbes Py mP(L — jo k — m).

Using this equation together with eqﬁation (2.7) we may construct tables of
critical values for the asymptotic test. Table 5.2 gives the critical values when
k = 40 and m = 2(1)39. ’

For m = 21, we fail to reject H, at all tabulated significance levels.
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TABLE 5.2
Critical values for ‘‘unimodal’ partial order, equal weights. k = 40

a

0.1 0.05 0.025 0.01 0.005

2 45.443 49.226 52.663 56.845 59.808
3 45.105 48.879 52.309 56.483 59.441
4 44,860 48.629 52.055 56.223 59.177
5 44.672 48.437 51.859 56.023 58.975
6 44.522 48.283 51.702 55.864 58.813
7 44.398 48.157 51.574 55.733 58.681
8 44.295 48.052 51.467 55.624 58.571
9 44.208 47.963 51.377 55.533 58.478

10 44.135 47.888 51.301 55.455 58.399
11 44.072 47.824 51.236 55.389 58.333
12 44.019 47.770 51.181 55.333 58.276

13 43.975 47.725 51.135 55.286 58.228
14 43.937 47.687 51.096 55.247 58.189
15 43.907 47.656 51.064 55.214 58.156
16 43.882 47.631 51.039 55.189 58.130
17 43.864 47.612 51.020 55.169 58.110
18 43.851 47.598 51.006 55.155 58.096
19 43.843 47.591 50.998 55.147 58.088
20 43.840 47.588 50.996 55.144 58.085
21 43.843 47.591 50.998 55.147 58.088
22 43.851 47.598 51.006 55.155 58.096
23 43.864 47.612 51.020 55.169 58.110
24 43.882 47.631 51.039 55.189 58.130
25 43.907 47.656 51.064 55.214 58.156
26 43.937 47.687 51.096 55.247 58.189
27 43.975 47.725 51.135 55.286 58.228
28 44.019 47.770 51.181 55.333 58.276
29 44.072 47.824 51.236 55.389 58.333
30 44.135 47.888 51.301 55.455 58.399
31 44.208 47.963 51.377 55.533 58.478
32 44.295 48.052 51.467 55.624 58.571
33 44.398 48.157 51.574 55.733 58.681
34 44.522 48.283 51.702 55.864 58.813
35 44.672 48.437 51.859 56.023 58.975
36 44.860 48.629 52.055 56.223 59.177
37 45.105 48.879 52.309 56.483 59.441
38 45.443 49.226 52.663 56.845 59.808
39 45.972 49.769 53.218 57.414 60.386
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