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LATENT ROOTS AND MATRIX VARIATES: A REVIEW
OF SOME ASYMPTOTIC RESULTS

By RoBB J. MUIRHEAD!

Yale University

The exact noncentral distributions of matrix variates and latent roots
derived from normal samples involve hypergeometric functions of matrix
argument. These functions can be defined as power series, by integral
representations, or as solutions of differential equations, and there is no
doubt that these mathematical characterizations have been a unifying
influence in multivariate noncentral distribution theory, at least from an
analytic point of view. Froma computational and inference point of view,
however, the hypergeometric functions are themselves of very limited value
due primarily to the many difficulties involved in evaluating them numeri-
cally and consequently in studying the effects of population parameters on
the distributions. Asymptotic results for large sample sizes or large popu-
lation latent roots have so far proved to be much more useful for such
problems. The purpose of this paper is to review some of the recent results
obtained in these areas.

1. Introduction and summary. The classic 1964 paper of A. T. James provides
a survey of exact noncentral distributions of matrix variates and latent roots
derived from normal samples. These distributions, and consequently the likeli-
hood functions of noncentrality parameters and population roots, all involve
hypergeometric functions of matrix argument, functions which have power series
representations in terms of zonal polynomials. These series, however, tend to
converge extremely slowly for cases of particular interest (for example, large
sample sizes, large population roots) and it is very difficult to obtain from them
any feeling for the behavior of the density and likelihood functions. In particu-
lar, two problems are generally of interest:

(a) Where do the regions of appreciable likelihood occur? What are the
parameter values which maximize the likelihood ?

(b) In making inferences about a subset of population latent roots the other
roots are nuisance parameters. What effect do these have on such inferences?

The first problem is primarily a mathematical one while the second is statistical;
unfortunately the power series expansions for the hypergeometric functions shed
little or no light on either.

In the years since James’ paper appeared a number of authors have worked
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6 ROBB J. MUIRHEAD

on the problems of approximating the distributions and likelihood functions by
finding asymptotic representations for the hypergeometric functions involved.
Such an approach leads to solutions (or at least to asymptotic solutions) of the
problems posed above since these asymptotic representations can be written in
terms of more elementary functions or in terms of functions which are com-
paratively easy to compute, and as such permit an examination of the way in
which sample and population latent roots interact with each other. The purpose
of this paper is to review some of the work done in this area; the paper is mainly
expository but a few new results are included.

The distributions reviewed here follow those in James (1964); the latent root
distributions are (i) the roots of a covariance matrix (Section 3), (ii) roots when
X, #+ Z, (Section 4), (iii) noncentral means with known covariance (Section 6),
(iv) noncentral roots in multiple discriminant analysis (Section 8) and (v) canon-
ical correlation coefficients (Section 9), while the matrix variate distributions
are the noncentral Wishart (Section 5) and the noncentral multivariate F (Sec-
tion 7). Section 3 is the longest; this is not only because more has been written
about the distribution of the latent roots of a Wishart matrix but also because
many of the comments made there, particularly with respect to problem areas,
are applicable also to the other root distributions and are not repeated else-
where.

It should perhaps be said that the main emphasis of this paper is in the area
of asymptotic representations for distributions of sample roots and matrix variates,
rather than the area of asymptotic distributions of suitably standardized variables.
These asymptotic representations for latent root distributions involve “linkage
factors” of the form a; — a, corresponding to distinct population roots a, and a;
(an advantage in an investigation of likelihood functions since the effects of the
population roots become obvious) whereas the asymptotic distributions do not
preserve such linkage factors. This is not to say the asymptotic distributions are
not important; they are indeed but they do not form the primary motivation
for this work although some results from this area are also included. One of
the most interesting facets about asymptotic representations for joint distributions
of latent roots is that they yield asymptotic representations for conditional dis-
tributions of subsets of roots given the remainder which do not depend on the
population roots corresponding to the conditioned sample roots. This suggests,
for example, testing equality of a subset of population roots using such a con-
ditional distribution since it is then possible, in an asymptotic sense, to eliminate
the effects of nuisance parameters. Some work in this area is also reviewed.
Finally it should be noted that in most cases no attempt has been made to present
results in complete generality. In the latent root distributions different asymp-
totic results can be obtained by varying the multiplicities of the population roots.
In practice, however, it is generally of interest to test equality of a subset of
roots, usually the smallest. Most of the asymptotic results given here cover the
situation where the smallest population root is a multiple one while the remain-
ing ones are simple.
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2. Preliminaries. There are essentially three ways of defining the hypergeo-
metric functions of matrix argument which occur in noncentral multivariate
distributions. These are briefly reviewed, with some comments on their uses and
limitations.

(i) Power series. The matrix variate distributions involve hypergeometric
functions ,F,, with an m X m matrix R as argument, defined by the series

(Constantine (1963), James (1964))
. . _ o (a )x e (a )x CK(R)
(21) qu(al’ "',ambp ""bqu)— Zk:o Z: (bi),(b:),c A

where C,(R) is the zonal polynomial of R (a homogeneous symmetric polynomial
of degree k in the latent roots of R) corresponding to the partition x = (kyy -+,
k), k, = -+ =2k, =0, of kand

(@), = TIm, (a — (i — 1))1‘1: s xp=x(x+1).---(x+k—1).
The series (2.1) is a generalization of the classical (generalized) hypergeometric
function, to which it reduces when m = 1. The latent root distributions involve
hypergeometric functions ,F ™, with twom X m matrices R and S as arguments,
defined as

(2.2) JF.™(ay, -, a

by, -+, b R, S)

e o (@), (@), CARICAS)
= L B b, KL

Although no explicit formula in general is known for the zonal polynomials,
tables and algorithms are available for their computation (see James (1966, 1968),
Parkhurst and James (1974), McLaren (1976)) and in principle the series (2.1)
and (2.2) could be used for numerical work. Unfortunately, however, they tend
to converge very slowly if even one of the latent roots of the argument matrix
or matrices is large. Another type of convergence problem arises when the roots
in the argument are not large (as in the distribution of canonical correlation
coefficients where the roots lie between 0 and 1) so that as k increases the zonal
polynomials quickly become numerically very small. At the same time however,
the other terms (a;), in the numerator rapidly become very large, the net effect
being that convergence of the series is extremely slow. A discussion of the com-
putational problems involved in computing'zonal polynomials has been given by
McLaren (1976). A review of the literature on zonal polynomials has been given
by Subrahmaniam (1974), and Farrell (1976) has given a detailed discussion of
their group theoretic construction.

It is worth pointing out that when the argument matrices are of size two it is
possible to express some of these functions in terms of series of classical hyper-
geometric functions. For example, the ,F, function in this case has the expansion

2.3)  JFia b;c; R) = Yo, (e~ @uB)le = b), ()"
N C P Y
X JF(a+k,b+k;c+2k;r,4+r,—nr) Re(c)>%
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where r, and r, are the latent roots of R. Similar types of expansions for the ,F,
and (F, functions given by Herz (1955) and Muirhead (1975) follow from (2.3)
via the confluence relations

(2.4) Fi(a; ¢; R) = lim,_, ,F\(a, b; ¢; b7'R)
and
(2.5) Fi(c; R) = lim,_, ,Fi(a; ¢; a"'R) .

Expansions for some of the two matrix functions are also given in Muirhead
(1975).
(ii). Integral representations. Starting with the function
oF(R) = exp(tr R),
Herz (1955) defined the general system of hypergeometric functions by means

of the Laplace and inverse Laplace transforms

piFo(ay, -+, a,, a5 by, -+, b; —R")(det R)™!
1

(2'6) = 11 (a) SX>0 exp(tr _XR) qu(al’ M) ap; bl’ M) bq; ‘_X)
X (det X)e-m+D X
and
oFoi(@y, + -y a,; by, - o, by, by —R)(det R)>-4m+D
ng(m—l)
2.7) = l‘m(b)W SR(Z)=X0>0exp(tr RZ)
X F(ay, -+ a,;b, -0, b, —Z7)(det Z)~* dZ
where

L(a) = mime=D [, Ta — 3( — 1))

and the integral (2.7) is taken over all matrices Z = X, 4- Y for fixed positive
definite X, and Y arbitrary real symmetric. The equivalence of these functions
with the ones defined by the zonal polynomial series (2.1) was established by
Constantine (1963). A large number of other integral representations for par-
ticular functions (primarily F,, ,F,, ,F,) were derived from (2.6) and (2.7) by
Herz (1955). The hypergeometric functions having two matrices as arguments
follow from the one matrix functions via (James (1964))

(2.8) qu(m)(al’ cee, b, -, bq; R, S)
= SO(m) qu(ap LY ap; bl, CRCICIN bq; RH'SH)(dH)

where (dH) is the invariant measure on the group O(m) of orthogonal m X m
matrices normalized so that the volume of O(m) is unity.

Multiple integrals of the form (2.6), (2.7) and (2.8) do not lend themselves
easily to exact numerical work; however, integral representations have proved
the most useful tool in obtaining the asymptotic behaviors of hypergeometric
functions, as indeed they are in investigations of the asymptotic behaviors of a
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large number of classical special functions. A multivariate extension of Laplace’s
method for integrals developed by Hsu (1948) has been widely used; this states
that if a function f(x) = f(x,, - - -, x,,) has an absolute maximum at an interior
point £ of a closed domain & in real m-dimensional space, then, under suitable
smoothness conditions, as n — co

(2.9) 5. AP dr ~ (22)7 e re@ae)

where a ~ b means that a/b — 1 as n — oo, and A(§) denotes the Hessian of

—log f, namely .
A(E) = det <—_%‘5a/;@> .

In most applications of this result in the area of hypergeometric functions of
matrix argument the space <7 is the orthogonal group O(m), the Stiefel manifold
V(k, m) of m x k matrices with orthonormal columns, or products of such
spaces.

(iii) Differential equations. Extending earlier work by James (1955) on the (F,
function, Muirhead (1970a) has shown that the commonly occurring hyper-
geometric functions of one matrix argument (,F,, ,F,, ;) can be defined as
solutions of systems of second order partial differential equations in the latent
roots of the argument matrix. For example the function ,F,(a, b; ¢; R), where
R has latent roots r, -+, r,, is the unique solution of each of the m partial
differential equations

0°F
r{(l —r) o

2

+{c——%(m—1)——[a—|—b—|—1—%(m——1)]ri

1 —r)) OF r(l —r,) oF
2.10 + 4 r_(_—;}#_l m A= T) 0F
( ) 2 Z] =1; j#1 r,— rj ari 2 Zy-l,y*z r, — r]- 3rj

— abF i:1,2""’m

subject to the conditions that F(R) be a symmetric function of r,, - - -, 7, analytic
at R = 0 with F(0) = 1. When m = 1 (2.10) reduces to the classical hyper-
geometric differential equation. Systems of differential equations for the func-
tions ,F, and ,F, follow from (2.10) using the confluence relations (2.4) and (2.5).
The two matrix functions have been studied by Constantine and Muirhead (1972);
the function ,F,"™(a, b; ¢; R, S) is the unique solution of the partial differential
equation

r; w OF
LTz ra +Z Z?"ﬂ:jm’f‘_—r‘ai'f‘[c l(m_l)]Zi=1—a_r:
3 O°F
(2‘11) (a+b+2—m)21lta 111 S
2 OF
-t Z,1f¢i—L—~=abZ_1st
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subject to the conditon that F has the series expansion

F(R, S) = Ziuo zxaxﬁc{?,—&)@l

with F(0, 0) = 1. Differential equations for the corresponding ,F,"™ and  F,'™
functions follow from (2.11) using obvious extensions of the confluences (2.4)
and (2.5); a nontrivial differential equation for ,F,* (R, S) is obtained by putting
a = ¢ = }(m — 1) in the differential equation for ,F,"(a; c; R, S). Further re-
sults in this area have been given by Constantine and Muirhead (1976), Chikuse
(1976), Fujikoshi (1975) and Glynn (1977). Although the differential equations
do not appear useful for obtaining the actual asymptotic behavior of these hyper-
geometric functions they have proved instrumental in the derivation of further
terms in asymptotic series, see e.g., Muirhead (1970b, 1972a, b), Sugiura (1972,
1974), Muirhead and Chikuse (1975), Constantine and Muirhead (1976), Glynn
(1977) and Chikuse (1976).

The hypergeometric functions are not the only classical functions which have
been generalized for matrix arguments and it seems appropriate to mention in
this section a few references where extensions of some other special functions
may be found:

Bessel functions of the second kind (Herz (1955), Muirhead (1972b));

The second confluent hypergeometric function (Muirhead (1970b), Muirhead
and Chikuse (1975));

Laguerre polynomials (Herz (1955), Constantine (1966), James and Constantine
(1974), James (1976));

Hermite polynomials (Herz (1955), Hayakawa (1969), James (1976));

Jacobi polynomials (James and Constantine (1974), James (1976));

Gegenbauer polynomials (Herz (1955), James (1976)).

The paper by Herz is concerned almost entirely with multiple integral represen-
tations; most of the other papers referenced deal primarily either with differential
equations or zonal polynomial expansions, or both.

A number of other review papers in the general area of multivariate distri-
bution theory have been written in recent years and it is appropriate to conclude
this section by referencing some which are particularly relevant to this work;
these include papers by Crowther and 'Young (1974), Subrahmaniam (1974),
Pillai (1976) and Krishnaiah (1977).

3. Latent roots of a covariance matrix. Of the latent root distributions sur-
veyed in this paper those associated with principal component analysis have been
the most widely studied, presumably because they are the least complex. Here
some of the work done in the areas of asymptotics and inference is reviewed
and some problems which appear to warrant further investigation are indicated.

The exact joint density function of the latent roots /,, [, - - -, [, of a sample
covariance matrix S based on a sample of size n 4 1 from an m-variate normal
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distribution with covariance matrix Z is (James (1964))

1p)imngm?
G.1) FLz(%);l_ﬁl—m) Iy et T, Lm0 I (b — 1) oFs™(—3nL, A)
m m\ 2

L>L>--+>1,>0

where 0 < a;, < @, < -+ £ a,, are the latent roots of the “information” matrix
X\ L =diag(l, -+, 1,), A = diag (a,, - - -, a,,). James (1966) has argued that
L is sufficient for A4 in the absence of knowledge about the latent vectors of X
(this definition of partial sufficiency being a group invariant one due to Barnard
(1963)) and suggests that, in such a situation, the distribution (3.1) of L be used
as a basis for inference on the population roots. The marginal likelihood func-
tion of the population roots is, then,

(3:2) 15, at Fy™(—4nL, A).

A number of authors have studied the problem of approximating the ,F, func-
tion for large degrees of freedom n; to obtain its asymptotic behavior all have
used Laplace’s method (see Section 2) applied to the integral representation

(3.3) oFo'™(—3%nL, A) = §o(m exp(tr —inLH'AH)(dH)

where (dH) is the invariant measure on the group O(m) of orthogonal m x m ma-
trices, normalized so that the volume of O(m) is unity. The asymptotic behavior
is basically determined by the maximum value of the integrand in (3.3) and the
sharpness of the peaks of the integrand at its maxima; this sharpness depends
fundamentally on the spread of the sample and population roots. Although the
sample roots are distinct (with probability one) it is of course possible that all
of the population roots a,, - - -, a,, are widely spaced or that some of them are
widely spaced while others are close together (and possibly equal). Asymptotic
expansions for the ,F, function when «,, - - -, @, are widely spaced have been
obtained by G. A. Anderson (1965), and by Bingham (1972) when m = 3.
Asymptotic results in the case of one or more multiple population roots have
been derived by James (1969), Chattopadhyay and Pillai (1973), Chikuse (1976)
and Constantine and Muirhead (1976).

One of the most important and commonly used tests in principal component
analysis is the likelihood ratio test of the null hypothesis that the g-smallest
latent roots of X are all equal. If they are, then the variation in the last ¢ dimen-
sions is spherical, and, if their common value is small compared with the other
m — g roots, then most of the variation in the sample is explained by the first
m — q principal components, and a reduction in dimensionality is achieved.
It seems reasonable here to concentrate on the case of one multiple population
root (which can be chosen as the smallest) rather than on the more general
situation of an arbitrary number of multiple roots.

The case when a group of the population roots are not widely spaced (and
are possibly equal) has been studied by Constantine and Muirhead (1976). It is
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assumed that the first k roots of X are widely spaced but that the smallest ¢ =
m — k roots are not. This assumption is expressed more precisely by requiring
that

(3.4) <A< KL< G S E s Za,

where

a, —a, = 0(n™) for i,j=k+1,...,m.
This, of course, includes the case when the g-smallest roots of X are equal and,
when k = m, it gives the case when all the roots are widely spaced. Under the
assumption (3.4) it is shown in Constantine and Muirhead (1976), using Laplace’s
method to obtain the limiting behavior and partial differential equations satisfied
by the ,F, function to obtain correction terms, that

oFo'™(—3nL, A)

(3.3) ~ F&T) exp(—3n Lioi L) TTics Tl Tevics <n2ﬂ >%

km
rt ij

X oF,™ ¥ (—4nL,, A,) {1 + LPI + 1? P, + 0(n‘3)} ,
n n

where
¢y = (I, = L)(a; — ),
A, = diag (e, - -+, @,,), , = diag ([yy, -+, 1),
P, = % Z{F=1 Z?:l;iq‘ Ci_jl

and

Py = 2k Dlevici &7 + $(2DFa Dlonics i)

The term of order n~? is also implicit in Constantine and Muirhead (1976). The
exact power series expansion (2.2) for the function (F,'™~*(—4nL,, 4,) could be
used for computational purposes. James (1966) has used such a combined
asymptotic and power series expansion to numerically investigate the likelihood
function (3.2). When k = m (all population roots widely spaced) the ,F,™*
function is taken to be unity; when a;,, = --- = a,, = a (i.e., 4, = al,_, and
the smallest root of X has multiplicity g)

OFo(m—k)(_%an, Az) = exp(—%na’ Zim=k+1 li)

and the right side of (3.5) is hence expressed entirely in terms of elementary
functions.

It is perhaps worth noting that when m = k = 2 a complete asymptotic series
is available, namely

3
FoP(—3nL, A) ~ exp(—in 32, L) <—E~> 2F0<%, 3 ~2—> .
ney,m ney,
This follows directly from a representation of (F,'* in terms of a classical con-
fluent hypergeometric function (see Muirhead (1975)) and has been obtained by

G. A. Anderson (1965) and Bingham (1972).
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Asymptotic results such as those described above have proved usefulininference
problems. For example, when all the population roots a,, - - -, a,, are well spaced
and n is large the likelihood function (3.2) can be approximated as

(36) Hzm=1 aiw oFo(m)(—'%nL, A)
~ K- ([ ") exp(—3n X, Lay) [T (a; — a,)7?

where K is a constant (depending on n, [, ---, [, but not onq,, ---, a,, and
hence irrelevant for likelihood purposes). This approximation has been investi-
gated numerically by G. A. Anderson (1965) and Bingham (1972). As noted by
G. A. Anderson (1965) and James (1966), the asymptotic likelihood is a pro-
duct of likelihoods of independent variance estimates

a" eXp(—%nliai)
multiplied by linkage factors
(a; — a;)7t

which show the dependence of the likelihood function on the effects of interac-
tions between roots. It is well-known (see e.g., Lawley (1956)) that the sample
roots [, are biased estimates of the corresponding population roots a,~*, the bias
term being of order n=*. G. A. Anderson (1965) showed that, in estimating the
population roots, a correction for bias is obtained by considering maximum
marginal likelihood estimates (i.e., the values of the a,~' which maximize the
right side of (3.6)), namely

a, =1 — l— Ly 20 s L
n l

4+ O(n7%).
i i
These estimates utilize information from other sample roots, adjacent ones of
course having the most effect, and their bias terms are of order n=%. An illumi-
nating discussion on the estimation of latent roots has been provided by Dempster
(1966).

Substitution of the asymptotic expansion (3.5) for '™ in (3.1) yields an
expansion for the density function of /,, - .-, [, when the g-smallest roots of

satisfy assumption (3.4). This expansion can be written, to order n~?, as

fo Tl 1807 exp(—gn Tt e Lty (-0 ) [1 4 Bt e

i A

I —1,

5 1
(3.7) X Tl v () [ 4 Bt B ]
a; — a, 2n

X H1m=k+l l:wb_m_l) ]Tk’”ﬂ;fq (li - lj) an(m_k)(—”%ana A2)

where
1 mn—Lk2m—k—1) 4m2—1k(k+1) 1
k, = (gn)im3 mhms Ly(3m)

LGmTa(3m)

Thelast twolinesin (3.7), multiplied by an appropriate constant, give an expansion
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to order n' of the conditional density function of the smallest g = m — k roots
lisss + -+, L, given the largest k roots [, - - -, [,. From (3.7) two points can be
noted:

(i) Intheasymptotic conditional distribution of the last ¢ roots /, the influence
of the first k roots /; is approximately via linkage factors of the form (/, — ! Db
If, as a first approximation these factors are ignored with /,_,, - - -, [, regarded
as satisfying co > I,,; > --- > [, > 0, then this asymptotic distribution in the
case when A, = al, would just be the distribution of the roots of a ¢ x ¢ sample
covariance matrix with n replaced by n — k, i.e., one degree of freedom is lost
for each conditioned root.

(ii) The asymptotic conditional distribution of the last ¢ roots given the first
k does not depend on a,, - - -, a, (the first k sample roots /,, - - -, [, are asymp-
totically sufficient for the corresponding population roots a;, - - -, a,). In a test
of the null hypothesis that the smallest ¢ roots of X are all equal, namely

H:@qpn= - =a, (=a, say) ,

@y, - -+, a,are nuisance parameters and James (1969) has suggested that the effects
of these should be eliminated by drawing inferences about the smallest roots
using this asymptotic conditional distribution.

The likelihood ratio statistic for testing the hypothesis H, is (T. W. Anderson
(1963)) _

Vo= TIten (L/1,)

where I, = (1/9) X™,,, [;, the average of the last ¢ roots and, when H, is true
(i.e., 4, = al,), the asymptotic conditional distribution of /,,,, ---, [, given
l, -+, 1, reduces to

(3.8) const. TTioy T17okss (h — 1)t TIfcrss L2 7Hm07
X exp(—gna Nl L) TIiaic; (= 1))

The hypothesis H,,: a, = ... = a,, (the “sphericity test”) and its associated
likelihood ratio statistic ¥, have been widely studied. It is shown in Anderson
(1958, page 263) that the statistic

T, = —<n — M) log Vm

6m

has an asymptotic y* distribution with (m + 2)(m — 1) degrees of freedom when
H, is true and that

E(T,) = §(m + 2)(m — 1) + O(n™?) .

From testing H, Bartlett (1954) suggested the statistic
_<n k- Mﬁ) log ¥,
6q

which has an asymptotic * distribution with 4(g 4 2)(¢ — 1) degrees of freedom
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when H, is true. This statistic is suggested by the null conditional distribution
(3.8) when the linkage factors

Hi“:l H?=k+l (li - lj)é

are ignored. A further refinement which takes these factors into account was
obtained by Lawley (1956) and James (1969). The method of James also pro-
vides some information on the accuracy of the approximation and is based
directly on the null conditional distribution (3.8). James shows that when H .
is true the statistic

2¢* +q+2 1?2 >
T,= —(n—k—-—="2 T17T % L vk 72 . _JlogV
q <n 6q 2t U — Ly og Vv,

has an asymptotic y* distribution with }(g + 2)(¢ — 1) degrees of freedom and
that
E(Ty) =3¢+ 2)(¢9 — 1) + 0(n7?),

the expectation being taken with respect to the distribution (3.8).
In connection with the likelihood ratio test of H, there are (at least) two
problem areas which need further investigation.

(a) How good is the asymptotic y* approximation? 1If n is small or moderate the
x’ approximation to the distribution of 7, may not be accurate enough for prac-
tical purposes. Little appears known about the accuracy of the approximation.
The case ¢ = m has been studied and correction terms are available which are
useful for small or moderate sample sizes. For example, it is shown in Anderson
(1958, page 263) that, when H, is true,

(m* — 4)(m — 1)2m® + 6m* 4 3m + 2)
288m*n?p*
X [P(tfes < X) = Py < x)] + O(n7?)
where f = §(m + 2)(m — 1) and

KT, <x)=PQ/ <x) +

2m4m 42

=1
o 6mn

The correction term, which is of order n=2%, can be used to assess the accuracy
of the asymptotic y* distribution, and to correct it if necessary. It would be of
interest to know how such correction terms should be modified when dealing
with the null distribution of 7', for ¢ = m. Some recent work by Fujikoshi
(1976¢) is related to this problem although the statistic under investigation is
not precisely T,.

(b) How sensitive is the test T,? Very little appears known about the power
of the test of H, based on the likelihood ratio statistic T,, except when g = m.
The asymptotic nonnull distribution of T, depends in a fundamental way on the
alternatives being considered. For example, under the alternative X # a~'[,,
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Sugiura (1969) has shown that
T, — nlog [(i tr Z>M/|Z|:l
m
f
{Zmn [m tr X ljl}
(tr Z)?
is asymptotically standard normal, and has obtained an asymptotic expansion
up to terms of order n~# for its distribution function in terms of the standard
normal distribution and density functions. This asymptotic result breaks down
(or “blows up”) for alternatives that are too close to the null hypothesis and
various authors have obtained asymptotic nonnull distributions of T, for se-

quences of alternative hypotheses approaching the null hypothesis. For example,
under the sequence of alternatives

L =a¥(I, + nr Q)

whose Q is a fixed matrix, Nagao (1970) has shown that the asymptotic distri-
bution of T, is noncentral y* on (m + 2)(m — 1) degrees of freedom with non-
centrality parameter }(tr Q* — m~!(tr Q)?) and has also obtained the term of
order n~* in an asymptotic expansion for the distribution function of T,,. By
changing the sequence of alternatives it is possible to go from a limiting non-
central y* distribution to a central y* distribution. Under the sequence of alter-

natives
X=ayl, + n“IQ) s

considered by Nagao (1970) and Khatri and Srivastava (1974), the asymptotic
distribution of T, is (central) y* on 4(m + 2)(m — 1) degrees of freedom, with
Q entering only in later correction terms.

Very little attention appears to have been paid to the numerical evaluation
and comparison of these (and other) asymptotic results. Problems of some inter-
est are: How close can one get to the null hypothesis before Sugiura’s normal
approximation becomes too inaccurate for power calculations? For alternatives
close to the null hypothesis, which approximation is more accurate, the central
or noncentral y2?

The entire area dealing with the nonnull distribution of T,, for g + m, is open
to study. One might suppose that the asymptotic distributions are similar, with
appropriate modifications in means, variances, degrees of freedom, noncentrality
parameters, and so on, but this remains a conjecture. It certainly appears that
the asymptotic distribution (3.7) should be useful for investigating the nonnull
distribution of 7', under the sequence of alternatives

Ay =a™'l,_, + n1Q
for fixed (diagonal) Q.

Before moving on to discuss other types of asymptotic distributions for the
sample roots it is worth noting that an asymptotic representation for the marginal
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distribution of /;, valid for /; € (4,,,, 4,_,), can be obtained easily (from (3.7), for
example) when a; is a simple population root as '

3 — 3
(3.9 (£> e4n2,~H=m+D exp (—nl,[22,)l 3 T[izk (———lf li)
T

A — A
m lz - 'z 4
X T Peiss (—F = 2)
where 1, = a;,7', i = 1, ..., m, are the latent roots of . If the term

2 (A — L e (e — )
is neglected, (3.9) suggests that nl/,/2; is approximately distributed as y* with n
degrees of freedom (G. A. Anderson (1965)).

The asymptotic distributions discussed above in (3.7) and (3.8) resemble pro-
ducts of gamma distributions linked by factors of the form /, — /;. By making
a suitable transformation it is possible to obtain a more highly asymptotic “nor-
mal type” of distribution which no longer preserves linkage factors corresponding
to distinct population roots. Putting

x1:<£>i<ll_lzl> i:1’__,,m’
2 A;

1

Girshick (1939) showed, using the asymptotic theory of maximum likelihood
estimates, that if 4, is simple then x; is asymptotically independent of x; for
J # i and the limiting distribution of x, is standard normal. When Z has multi-
ple latent roots the theory is rather more complicated; the definitive paper in
this area is due to T. W. Anderson (1963) who investigated the asymptotic dis-
tributions of the roots and vectors of S in some detail, together with a large
number of inference problems in principal component analysis. Suppose that X

has r different roots with multiplicities ¢,, - - -, ¢, (335, ¢, = m), namely
A =4, =0
'zq1+1 = = 'qu+q2 =0,
'zm—q,d-l = = 'zm = 5r 9

with 6, > d, > --- > 4, > 0, and put

3 —
(3.10) xi:<%> (’f - 5a> for ieJ, a=1,... r,

where J, denotes the set of integers

g+, 209 90=0.

Using the fact that n¥(S — X) is asymptotically normal T. W. Anderson (1963)
showed that the x;’s corresponding to different roots of X are asymptotically
independent and that the x;’s corresponding to the same multiple root of X are,
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asymptotically, the roots of a symmetric matrix whose elements have limiting
independent normal distributions. The limiting distribution of the x;’s can then
be obtained from the asymptotic distribution of this matrix. An extension of
Anderson’s argument was used by Fujikoshi (1976a) to obtain an asymptotic
expansion for the joint distribution of x,, - - -, x,, up to terms of order n~*, namely

(3.11 Hr_l{ﬂfi exp(—4 Trer %) Tlec it sers (i — x.)}
28T, (39.) “ iciibieda Xi = %
X {1 + n74Q, + n7'Q, + O(n~)}
where
3%, — 3%,
Q= 2 [T, (b2 — 40 + 1%) + } Tucs Ties, Loy (3= 2%}
a— Up

and

0. = 30 — Fm(2m* + 3m — 1) — T, (bt — H(m + D)

0,x; — 0,x,)? — 0,0
-3 Za<ﬂ Dliedq Zje./ﬁ*( = 'sx]) LI

(0 — 35)°
This expansion can also be obtained by making the change of variables (3.10)
in expansions for the joint distribution of I, - -, L, of the type discussed previ-

ously, obtained by expanding the (™ function. For example, (3.11) has also
been derived by Sugiura (1976a) from an expansion for the ,F, function in
the multiple root case given by Chattopadhyay and Pillai (1973). The result
(3.11) encompasses all cases of interest; when r = 1, ¢, = m (all roots of X are
equal), the limiting term in (3.11) has been given by T. W. Anderson (1963);
when r = m (each root is simple), the limiting term is a product of standard
normal density functions and the correction terms Q, and Q, were also derived
in this case by Muirhead and Chikuse (1975). An expansion for the marginal
distribution of x; when 1, is simple is then easily obtained and has been given
by Muirhead and Chikuse (1975) and Sugiura (1973). This expansion has been
examined numerically for the largest root x, by Muirhead (1974).

4. Latent roots when X, = X,. Suppose that the m X m matrix variates S,
and S, have independent Wishart distributions W, (n,, Z,) and W ,(n,, Z,) respec-
tively and let I, ---, [, be the latent roots of §,S,7*. Various functions of
I, ---, 1, have been proposed as statistics suitable for testing the null hypothesis
T, = Z,. The exact joint density function of these roots is (see James (1964))

™, (4n)

4.1 - ;m_ iinl ?:1 li’!(”l_’"—l’ ;,,, ; li _ 1.
( ) ]‘m(%nl)l‘m(%n»r'm(%m) H -1« H H " ( ])

X 1F0(m)(%n; _L, A) 11>12> '~-.>lm>0
where n =n, +n, 0< &, <, < --- < a, are the latent roots of (Z,2,7%)™",

L =diag(l,, -+, 1,), A= diag (a,, - - -, a,). The marginal likelihood function
of the population roots is thus

(42) 5, ad™ Fi™(3n; —L, A) .
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To approximate the ,F,™ function for large n Laplace’s method is applied to
the integral representation

Fom(gn; — L, A) = Soom det (I, + LH AH)™¥(dH) .

The asymptotic behavior depends on the spread of the populationrootsa,, - - -, ,,.
When these are all distinct Chang (1970) derived the limiting term and further
terms in an asymptotic series were obtained by Li, Pillai and Chang (1970) and
Constantine and Muirhead (1976). Asymptotic results in the case of one or more
multiple population roots have been derived by Chattopadhyay and Pillai (1973),
Sugiura (1976a), Chang (1973) and Li, Pillai and Chang (1970).

A situation which has not thus far been dealt with explicitly is when some of
the population roots are close, parallelling the discussion in the previous section.
Assume that a;, - - -, a,, satisfy

(4.3) a, < L <KWy S Xy T S Ay
with
a, —a, = 0(n™) for i,j=k+1,...,m.
The method used by Constantine and Muirhead (1976) to obtain the asymptotic
expansion (3.5) for ,F,'™ can be used here to show that

.2 27 \*
(44)  Fem — L)~ B (1 L T e ()
i

X Fm0(4n; —Ly, Ay) {1 +lp 4 O(n—z)}
n

where

= (Il — L)(a; — @) ,
T+ La)( + La))
L, = diag (lyyy, -+ In) A, = diag (@}, - -+, @),

Py =} Dby Dlewee € + g [k — D(#k + 1) + 6(m — k)(2m — 1)].

The zonal polynomial series for the function ,F(™~*(4n; —L,, 4,) could be used
for computational purposes. When k = m (all population roots well spaced)
the ,F,™~® function is taken to be unity, and when a,,, = .-+ = @, = a (i.e.,
A, = al,_,), '

Fom o Gn; — Ly, ) = [l (1 + Le)™H™ .

When all the population roots are well spaced and n is large the likelihood
function (4.2) can be approximated as

(4.5) 15, at™ Fy™(3n; — L, A)

o™
~ K- Hlm=1 ‘

(U aginmen s (4 = @)™

where K does not depend on «,, - - -, a,,. Essentially the asymptotic likelihood
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can be interpreted as a product of likelihoods of independent variance ratio

estimates
ai,}nl(l + lia,i)—i(n—m-g-l)

multiplied by linkage factors (a; — «;)~%. The maximum marginal likelihood

estimates of o, 7!, - - ., ,, 7!, obtained by maxnmlzmg the right side of (4.5), are,
with n, = k,n, n2_kn k, 4+ k, =1,
L ki,  (m4 1) s
s EEAS 2 S VLN = O(n
al kl nkl nk Py Z]#l ] + ( )

Comparing this with (Chikuse (1974))

_ k _ 1 a, ‘a7t
E(l) = kl a;”! o (m + Da, ™" + s i P

2 2 2 i &y

+ 0(n™?),

A

it is seen that E(&,7') = a,7' 4+ O(n~?) and hence the estimates &;,~! provide a
correction for bias.

Substitution of (4.4) in (4.1) gives an asymptotic representation for the density
function of /,, - - -, [, under the assumption (4.3). Ignoring terms of O(n~!) this
representation is

k[TTk, L m=0(1 + La) ¥k D] TTE, (;ZL_‘ILY
a;, — a;
k m li - lj 4 m $(ng—m—1) sk
(4.6) X Tt T (=) e [0+ L]
i T

X II%i<; 6 — lj) 1Fo(m_k)(%n; —L,, A,)
where

k, = mim-twrn DnGOTuGm)Gn) om0 g gy
m(z I)FM(Z Z)FM(%m)

The last two lines in (4.6), multiplied by an appropriate constant, give an asymp-
totic representation for the conditional density function of the smallest ¢ =
m — kroots [, ---, [, given the largest k roots [, - - -, [,. In a test of equality
of aj};, -, a,!, the g-smallest roots of X 2,71 the effects of the nuisance
parameters a;, - - -, @, can be eliminated asymptotically by basing inferences on
the conditional distribution of /,,, ---, [, given [, - .-, [,. When the null hy-
pothesis H,: a,,, = --- = a,, (= «) is true, it is seen from (4.6) that this con-
ditional distribution has the asymptotic representation

const. TT¥ ) [T7ksr (I — 1)} TITeksr [ ™74 70(1 4 ady)~hmrma®]
X i< (= 15)
which does not depend on a, - - ., a,. If the linkage factors
k=1 H?=k+l (li - li)%
are ignored then this asymptotic distribution is just the distribution of the roots

of §,8,7* where S, and S, have independent Wishart distributions W (n, — k, X))
and W (n,, aX,) respectively.
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The asymptotic distributions obtained by approximating the ,F,™ function
resemble products of F-distributions linked by factors of the form /, — /.. Bya
suitable standardization of the roots asymptotic distributions can be obtained
which are of a normal type. Assume that X, X,~* has r different roots with multi-

plicities ¢,, - - -, g, (X5_, ¢, = m), namely

,21 — e = lql = 51
2q1+1 == ’lq1+q2 =0,
lm—qr+l = = lm = 57‘

withd, > d, > --- > 0, > 0. Writen, = k,n, n, = k,n where k, 4+ k, = 1 and

put
Xi:<k1kan><kl 1> for ieJ,, a’:l,"',r
2 k0,

where J, is the set of integers

g+ 1, g,

Making this transformation in an expansion of the density function of /,, - .., [,
given by Chattopadhyay and Pillai (1973) in the multiple root case Sugiura
(1976a) obtained an expansion for the joint density function of x,, - - -, x,, as

” n-*'la(qa 1 9
ITe-s {a“aI‘ (1 )e P(—% Xicr, %) Tliciiinjer, (X — xj)}
X {1 + n73Q, 4+ O(n™")}
where
2 \4
0= (o) 3 + k) Timx + [oktm — 1) = (m + D] T x,
172

4 Ty Ties, Biesy 57 ‘; il
The term of order n~' has also been given by Sugiura. In the special case r =
k+1,9, =1, a=1,...,k, q,,, =m — k (i.e., all roots simple except the
smallest, which has multiplicity m — k). this expansion was also obtained by
Chikuse (1974); when r = m (each root is simple) the limiting term is a product
of standard normal density functions.

5. Noncentral Wishart distribution. Let X be an m X n matrix variate whose
columns are independently normally distributed with common covariance matrix
Z and E(X) = M; the density function of XX’ is (see James (1964))

det X4

I (gyzins SR tr ZTXA) det (Xa7)iny
m 7” "

(5.1)

X exp(—3 tr ZUMM?) Fy(3n; 2X'E- MM S-1X) |
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The ,F, function in (5.1) is a symmetric function of the nonzero latent roots
of 4’4 where 4 = M'27'X, having the integral representation (James (1964),
Herz (1955))

(52) i3 34 A) = S, eXp(tr AH)(dH) .

If 4’4 has rank r it can be assumed without loss of generality that 4 =
diag (a;, ---, a,,0, ---, 0) wherea, 2 a, > --- =2 a, > Owithap?, ..., a,’being
the nonzero latent roots of 4’4. When these roots are large, a situation which
would arise for example if M has the form

[f]

with the mean vectors in M, being large, the zonal polynomial series for ,F,
converges slowly. Laplace’s method can be applied to the integral (5.2) in order
to derive its asymptotic behavior for large 4 (i.e., large a,, - - -, a,) and partial
differential equations satisfied by ,F, can be used to obtain further terms in an
asymptotic series. The result is

I.(in 2\ 2\
i 3a) ~ P exp(nz e 11z () s (25
X [1+ P+ O(A7%)]
where the terms of order 4~ (i.e., a,7', i = 1, - .., r) are given by
Pi=} i@ +a)t—dn—r(n—r—2)3 a7
The asymptotic behavior of F, was derived when r = n by G. A. Anderson
(1970). For r + n the above asymptotic behavior was conjectured by Anderson
and verified by the author. Anderson also gives the term of order 4~°.

6. Noncentral means with known covariance. Let X be an m X n matrix
variate whose columns are independently normally distributed with common
covariance matrix £ and E(X) = M. The joint density function of w,, ---, w,,
the latent roots of Z-2XX’, is (James (1964))

(6.1)

mim?
e exp(—34 D™ W, m wi%‘”-’”—“ mo(w,—w,
zim"r‘m(%n)r\m(%m) P( 2 Zl—l ) H 1 H <J ( J)

X exp(—3% Z:"=lwi)0F1(m)(%n; %Q’ W) wy>w,> oo >w, >0
wherew, > w, > -+ = »,, = Oarethelatent roots of 2-'MM’, Q = diag(w,, - - -,

w,), W = diag (w,, - - -, w,,). The marginal likelihood function of the noncen-
trality parameters w,, - - -, w,, is then

(6.2) exp(—#% 2m, ) F, '™ (En; 3Q, W)

For large Q the asymptotic behavior of the ,F,'"™ function can be obtained
from the integral representation

oFl(m)(%n; %Q, W) = SO(m) oFl(%n; %QH'WH)(dH)
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and the asymptotic behavior of the (F, function in the integrand given in the
previous section. Under the assumption that

(6.3) 0> S>>0, = - =0,=0

where @,, - - -, o, are large, Leach (1969) has shown that

(6:4)  WF™(3n; 49, W) ~ 2menoketiz- s D, ()T (4m) exp[ S, (w,0,)!]
X ﬁ?=1 (@;wr ™= TTE Tl siics €3t

where
C; = (0; — @;)(w; — w;) ij=1,--, k
= w(w; — w;) i=1,..k; j=k+1,...,m.
The asymptotic behavior when w,,,, - - -, o,, are small compared with @, - - -, o,

but nonzero is not known. When k = m (i.e., all noncentrality parameters large
and distinct) further terms in an asymptotic series can be obtained using a partial
differential equation for ,F,‘™ given in Constantine and Muirhead (1972). To
order Q- the expansion is

Fi™(353Q, W) ~ Gl + P, + O(Q)]
where G, denotes the right side of (6.4) with k = m and
iWq 4 W) - _
P = b T ) O 40—~ m— ) B 0

Substitution of (6.4) in (6.1) gives an asymptotic representation for the density

function of w,, - - -, w,, under the assumption (6.3) with w,, - - -, w, large. Ignoring
terms of order w,7}, i = 1, - - -, k, this representation is
1 Sk k 3 k Ha—m—2) TTk w, — w;\
(6.5) kyexp[—% 2t wi + Do (0w )] TTEows Ik, w——wf«
i@

XTI TL5ks (W6 — w5)b exp(—4 Dlpay W) TTHiyy wit*=m 0
X Hzm<j;k+1(wi — Wj)
where
o mm BT (3n)Ty(3m)
Fm(%n)l"m(%m)zgmn—;k<m+n—k—3)

3 =

exp(_% Z:n=1 wi) f:] wi—}(m+n_2k) .

The last line in (6.5), multiplied by an appropriate constant, is an asymptotic
representation for the conditional density function of the ¢ = m — k smallest

roots w,,, - - -, w,, given the k largest roots w,, - - -, w, when the null hypothesis
H,: o, = -+ = o, = 0is true, with ,, - - -, w, large. Note that it does not
depend on w,, - - -, ®,, the nuisance parameters in a test of H, (cf. Section 3).

If the linkage factors

for TPk (Wi — wy)?
are ignored, then the asymptotic conditional distribution is just the distribution
of the roots of a matrix having the W (n — k, I,) distribution. This has been
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exploited by Leach (1969) in a study of the likelihood ratio test of the rank of
the matrix of means M.

7. Noncentral multivariate F. Let X and Y be m x n, and m X n, matrix
variates respectively, n, < m < n,, with columns all independently normally dis-
tributed with covariance matrix £ and with E(X) = M, E(Y) = 0. The density
function of the n, X n, matrix variate F = X'(YY’)"2X is (James (1964))

L (G + my))
T GmT(3(ny + 1y — m))
X exp(—3} tr Q) Fy(3(n, 4 my); gm; $Q(1 4 F71)7)
where Q = M’2-'M. If the transformation n, -m, m —n,, n,—n, +n, — m
is made then (7.1) becomes the density function of F = §,:S,7'S;* where S, is
noncentral Wishart W, (n,, Z, Q) and S, is central Wishart W, (n,, Z), with S,
and S, independent.

The ,F, function in (7.1) is a symmetric function of the latent roots of the
argument matrix R = $Q(I + F~')"'. The problem of approximating this func-
tion when some of these roots are large has been studied by Constantine and
Muirhead (1976). Letr,zr = --- zn>r,=---=r, = 0be the latent
roots of R; the asymptotic behavior of the ,F, function for large r,, - - -, r, can be
obtained from an integral representation due to Herz (1955, Equation (2.9)) as

Fi(3(n, + ny); 3m; R)
~ _ L@m)
L(3(n, + ny))
X 1 Fy(3(ny + 1y — k); 3(m — k); R)(1 + P + O(R,™))
where R, = diag(r,, - - -, r,), R, = diag (ry4y, -+ -, 1) and
P =11 —n)m —n, —n) Xt r".

Since R, contains the small roots of R the zonal polynomial series for the F,
function on the right side of (7.2) could be used for computational purposes;
when R, = 0 this function is identically equal to one.

When k = n, (i.e., all roots of R large) it is possible to obtain a complete
asymptotic series, namely (see Constantine and Muirhead (1976))

L, (3m)
—_—2 L exp(Xnm,r) [Im, rimtremm™
F'nl(?l_(nl + nz)) ! 1

X sFu(3(1 — m), 3m — m, — m); RY).

This approximation has also been obtained, up to terms of order r,~%, i =1,..,n,
by Sargan (1976).

(7.1) det Fim-m-U det (I + F)~tmtng)

(72) exp( if=1 ri) Hf:l rig(n1+n2—m)

1F1(%(n1 + n2); %m; R) ~

8. Noncentral latent roots in discriminant analysis. Suppose that the m x m
matrix variates S, and S, have independent Wishart distributions W, (n,, Z, Q)
and W, (n,, Z) respectively and let /,, - - -, [, be the latent roots of S,(S, + S,)*.
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The exact joint density function of these roots is, for n, > m (Constantine (1963))

i) (3(n, + ny)) —m— —m—1
m m [l — )R ) m ol =1
Fm %nl)rm(%n2)rm(%m) i [ ( ) : ] H < ( J)
8.1) X exp(—% X, ), Fi™(3(n, + ny); 4n,5 3Q, L)
I>L>L>-->1,>0

where w, > 0, = -+ = o,, = 0 are the latent roots of the noncentrality matrix
Q, L = diag(l, ---, ,) and, without loss of generality, Q = diag (,, - - -, ®,,).
For n, < m the distribution of the nonzero roots /,, - --, [, is obtained from
(8.1) via the transformation

m-—n,, n,—m, n,—n, +n, —m.

In a multivariate analysis of variance situation the matrices S, and S, are re-
spectively the “between groups” and “within groups” matrices of sums of squares
and sums of products. In a typical multivariate analysis of variance it is usually
of interest to test whether Q = 0, at least as a first step. If this is rejected (and
it is concluded that there exist real differences between the groups) interest cen-
ters on the problem of testing whether the last few noncentrality parameters o,
are zero, in which case the corresponding discriminant functions are not useful
for discriminating between the groups (see e.g., Kshirsagar (1972, Chapter 9)).
From (8.1) it is seen that the marginal likelihood function of the noncentrality
parameters is

(8'2) exp(—% Zz?n=1 wi) 1F1(m(%(n1 + ”2); %”1; %Q, L) .

When some or all of the noncentrality parameters are large the asymptotic
behavior of the ,F,™ function can be obtained from the integral representation

FL(E( A+ m); dns 305 L) = Som 1Fi(3(m + m); ni; 3QHLH)(dH)

and the asymptotic behavior of the ,F, function in the integrand given in the
previous section. Under the assumption that

(8.3) W > SO>S0 Z O, = 20, 20
(1

where w,, - - -, o, are large. Constantine and Muirhead (1976) have shown that

FL (S (ny + ny); g 3Q, L)
Fk(%nl)rk(%m) Qik(2m—k—2ny—1)

(8.4) I‘k(%(nl + n,)) ike+1) exp(% o1 @; li) Hf:l (wili)wz
X Ty T Fesiics €t FL 7 0(E (0 + ny — k); $(ny — k); 292, L,
X [1 + P, + 0(Q,7)]

where

Ci; = (wi - wi)(li - l.’l) ’
Q, = diag (o, -+, @), Q= diag (@, -, 0,),
L2 = dlag (1k+l’ ity lm)
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and
Pl = %nz("l + ny —m — 1) f:] (wzli)_l + % Zf=l ;‘n=l;i<j cz_j] .
When k = m (all noncentrality parameters large and distinct) the ,F,""~® func-
tion is taken to be unity, as it isalsowhenw,,;, = -+ = 0,, = 0(i.e., 2, = 0).
Substitution of (8.4) in (8.1) gives an asymptotic representation for the density
function of /;, - - -, [, under the assumption (8.3) with »,, - - -, ®, large. Ignoring
terms of order w,”', i = 1, - - -, k, this representation is

— . \?
kyexp(h Thoy L) TTkws [l m(1 — Lyonsd] T (el )

0, — o;
(8.5) X Ty T Fere (e — 1) TPk [L2 ™7 0(1 — LR l]
X M Fensicy (= L) ™Gy + 1y — K); 3(ny — k) 38, L)
where
k, = gimi=tele 0D dk(am—k—2ny—1) I (G + n))L(3n)T(3m)

L) Cur)TaGmL (3, + )
X exp(—4 Tty 00) T, @40

The last two lines in (8.5), multiplied by an appropriate constant, give an asymp-
totic representation for the conditional density function of the g = m — k small-
est roots /,,,, - - -, [, given the k-largest roots /;, - - -, [,. Note that it does not
depend on w,, - - -, w,. When the null hypothesis H,: w,,, = --- = o, = 0is
true the asymptotic conditional distribution becomes

(8.6) const. [Ti, [T7oksr (I — L)} TTPss [LE™M™70(1 — [)Hmemm=0]
X Hﬁ+1;i<j(li - 11) :
If the linkage factors
f=1 H;'n=k+1(li - Ij)é
are ignored, this is just the distribution of the latent roots of S,(S, + S,)~* where
S,and S, have independent Wishart distributions W ,(n, — k, Z)and W (n, — k, Z)
respectively.

Another situation which can arise in practice is when both the error degrees
of freedom and the noncentrality matrix are large. Here it is assumed that
Q = n,A where A is a fixed matrix with latent roots d, > ... > d, = 0 and
that n, is large. W. Glynn (1977) in a.recent Yale Ph. D. thesis, has derived
the asymptotic behavior of the function ,F,"™(4(n, 4 n,); 4n,; $n,A, L)as n, — co
under the assumption that

0, > - >5k>5k+1= e =90,=0.
Glynn’s results will undoubtably be published at a later date. What is particu-
larly interesting is that although the asymptotic representation of the joint density
function of [, - .-, [, in this case is markedly different from that given by (8.5),

the asymptotic representation for the conditional distribution of [, ---, 1,
given [, - -, [, is the same as that given by (8.6); that is, (8.6) serves as both
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the asymptotic conditional distribution when w,, - - -, w, are large (independently
of n,) and the asymptotic conditional distribution when w,, - - -, o, are large in
a way depending on n, via w, = n,0,.

A third possibility that can arise is when n, is large and the noncentrality
matrix Q remains fixed. Some asymptotic work in this direction has been done
by Chattopadhyay and Pillai (1973) and Chattopadhyay, Pillai and Li (1976);
however the asymptotic behavior of the ,F,"™ function given by these authors
involves the one-matrix function ,Fy(4(n;, + n,); 3n;; QL) and as it stands does
not appear particularly amenable to numerical or inference work. It appears
that this situation requires further analysis.

To conclude this section it is worth noting that in the second case discussed
above (i.e., Q = n,A) it is possible to obtain asymptotic distributions of suitably
standardized roots which are of a normal type and do not preserve linkage fac-
tors corresponding to distinct noncentrality parameters. Such asymptotic distri-
butions have been studied by P. L. Hsu (1941b) and T. W. Anderson (1951).
Assume that A has r different roots with multiplicities q,, - - -, g, (25, 9, = m),
namely

6 =-=d, =n
g1 = 0 = 0040, = T
5m—q,+1 = ... =90, =7
with y, > -+ > r,_, > 7, = 0 and define new variables x,, - .-, x,, by putting
3 .
xi=< " >< l —ra> for ield,, a=1,...,r—1
41, + 20,7\,
and
Xi=n2—1i1 for ielJ,
where J, is the set of integers 3 72! g, + 1, - -+, 3¢, ¢;. The asymptotic joint
density function of x,, - - -, x,, as n, — oo is (Hsu (1941 b), Anderson (1951))
tqalaq—1 4o
r-1 [ exp(—1 ie xi2 i<ii e X, — X.) — ot
e gt (g POTH 2o Mhrestsess 00590 a0 3
X eXp(—4% Zies, Xi) [Lies, x; o= [Ticsitises, (xi — x;)
where

Si=m—XiAq,  S=m— X5
More recently Fujikoshi (1976 b) has obtained the term of order n,~* in an asymp-
totic expansion for the joint density function. The x;’s corresponding to the
multiple zero population root have, asymptotically, the same distribution as
the roots of a matrix with the W, (s,, I) distribution while the asymptotic distri-
bution of any x, corresponding to a simple nonzero population root is standard
normal.
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9. Canonical correlation coefficients. The joint density function of the squares

r? ..., r,? of the sample canonical correlation coefficients between variates
Yoy, and x;, -, x,, p < g, calculated from a sample of size n 4 1 from
a (p + g)-variate normal distribution is (Constantine (1963))
T, (3n)xt?’ N b(gmp1 Nin—gop1
11:”=1 [(riz)g,(q 3 )(1 . riz){,m q-p )]
LG — )L, G (3p)
(9-1) X Tl (r® = r?) TP (1 = o), (31, $n5 g5 P, RY)

1 >r12>r22> >rp2>0
where 1 > p, = p, = --- = p, = 0 are the population canonical correlation
coefficients, P = diag (o, - - -, p,), R = diag(r,, - - -, r,). The likelihood func-
tion of the population coefficients is then
9-2) T2 (1 = o) Fu 7 (3n, b3 3q: P, RY) .

An often used test in canonical correlation analysis is the likelihood ratio test
of the null hypothesis that the p — k smallest population canonical correlation
coefficients are zero when the first k population coefficients, corresponding to
real relationships between the two sets of variates, have been removed. Hence
it is of particular interest to know the asymptotic behavior for large n of the
,F,'"’ function in (9.1) under the assumption that

(9-3) I1>0>0> - >0> 00 =0p=" " =p=0.
This has been obtained by Glynn and Muirhead (1977) using Laplace’s method
applied to a complicated multiple integral representation for ,F,”’. For large n,
74, 4 45 P RY)
(9.4) ~ (§n)tkrak=Dp bk, (1T, ()27
X LA = rip) 74750 (ry 002270} Ty T Bereniis €35
where
¢y = (1" — r)(e — p;7) Lj=1,--k
=(ri2—rj2)loi2 j:-]’...’k;j:k+1,...,P_
An alternative asymptotic result has been given by Chattopadhyay and Pillai
(1973) and Chattopadhyay, Pillaiand Li (1976); however the asymptotic behavior
given in these papers involves a ,F, function with the matrix P?R* as argument
and as it stands does not appear amenable to numerical or inference work. It
would be of some interest to have an asymptotic result for ,F,'”” when the last
p — k population coefficients are small (and not necessarily zero), but this re-
mains an unsolved problem.
When the population coefficients are all distinct (k = p) and n is large the
likelihood function (9.2) can be approximated as
112 (1 - Piz))‘sz1(m(%na %n; %q; P2, RZ)
(9.5) ~ K- T2 [(1 — pd)(1 — r,0;)~"4e+a-0p =0 T2 (02 — p?)~
X [1 4+ n7'P, + O(n™%)]
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where K is a function of n, r,, - .., r, but not of p, - -, p, and

p = 3 r, (L= ro)(L = rp)(rips + ri0)
(rd = r(e — o))
3@ =P —p—=2) 2 (np)™ + § Ziirips -
As estimates of the parameters £, = tanh~! p, the statistics z; = tanh~!r; have

bias terms of order n~*; the maximum marginal likelihood estimates of the &,
obtained by maximizing the right side of (9.5), are

. 2
bmz— oy [pra—24 2 —r) D ]+ 0

2nr, —r}
having as their first two moments
E@&) = & + 0(n™)
Var (&) = % +O(nY).

Thus these corrected estimates &, not only stabilize the variance to order n~! but
also provide a correction for bias.

Substitution of (9.4) in (9.1) gives an asymptotic representation, for large n,
of the density function of %, - . ., r,> under the assumption (9.3). Ignoring terms
of order n~! this representation is

by T [0 (1 — )i t(1 — pppomero) Iz, (5 =00,
o — p;
(9-6) X Tk, H?:kﬂ (ri2 - rjz); A [(riz)i(q_p_l)(l — ri2)5m_q_p_l)]

X I1%416<; (r*— rj2)
where

Ky = T <3>W+q-k-“ T,(3mT(39)Te(3p)
2 n T,(4(n — 9)T,(39)T,(3p)
X T2 (1= o) TTk, pfmtose

The second line in (9.6) is proportional to an asymptotic representation for the

conditional density function of the p — k smallest coefficients r;,,, - -, r,? given
the largest k coefficients r}?, - - ., r,> when the null hypothesis that o, , = .. =
0, = 0withp, > ... > p, > Oistrue. Note thatitdoesnotdependong,, ---, g,.

If the linkage factors
Ik, H?=k+1 (r* — rf)*

are neglected then this asymptotic conditional distribution is just the null distri-
bution of the canonical correlation coefficients between variates y,, - - -, y,. and
Xy, - -+, X, calculated from a sample of size n’ 4 1 observations from a (p’ + ¢')-
variate normal distribution, where n’ =n — 2k, p’ = p — k and ¢’ = g — k.
The likelihood ratio statistic for testing that the last p — k population canoni-
cal correlation coefficients are zero when the first k population coefficients have
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been removed is

Voo = TlPcks (1 — 1)
Glynn and Muirhead (1977) have shown (see also Lawley (1959), Bartlett (1947))
that, under the null hypothesis, the statistic

Tpoo=—n—k=3p+q+1)+ Tir]logV,.,
has an asymptotic y* distribution with (p — k)(¢ — k) degrees of freedom and
E(Ty) = (p — k)g — k) + O(n™),

the expectation being taken with respect to the conditional distribution of
Ty oo« 1t given.r? ..., r2 Comments similar to those made in Section 3
regarding remaining problems in connection with the likelihood ratio test are
also applicable here.

From the asymptotic joint distribution of %, ..., r 2 it is a simple matter to
obtain marginal distributions. When p, is distinct from the other population
coefficients the asymptotic marginal density function of r? is

3
%<i”;> (1 — pAirpA=0(1 — r, )~ "+r+a-D(p2)ta-p-4

) 2 p2\t F2 o 02\
X (1= rz)emramy 5 (ﬁ"2 - ) (m— — ) ’
0; 0; 0: 0;

valid for r* e (0},,, 0}_))-
The asymptotic distributions discussed so far resemble products of beta dis-
tributions linked by factors of the form r;> — r.>. A suitable standardization of
the coefficients yields asymptotic distributions which are of a normal type.

Putting
) 1= )

zpi(l_pizj
xj:nr].2 j=k—l—1,"',P

=1,k

in the asymptotic distribution (9.6) of r., ..., r,* under the assumption (9.2)
gives an expansion for the joint density function of x,, - - -, x,,, the limiting term
of which is

9.7 £ p(x,) - G
OO M) o Ger, )
X k<5 (X0 — X;)
where ¢(+) denotes the standard normal density function and p’ = p — &, q =
g — k. This limiting result was first given by P. L. Hsu (1941a). From (9.7)
it is seen that asymptotically the x,’s corresponding to distinct nonzero p,’s are
marginally standard normal, independent of all x;, j # i, while the x,’s cor-
responding to zero population coefficients are nonnormal and dependent, and
their asymptotic distribution is the same as the distribution of the latent roots
of a p’ X p’ matrix having the W,.(¢', I,,) distribution.

2

exp("’% Z?=k+1 xj) H§=k+1 xj%(ql_p'_l)
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