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DISTRIBUTION-FREE TOLERANCE INTERVALS FOR
STOCHASTICALLY ORDERED DISTRIBUTIONS!

By K. M. LAL SAXENA
University of Nebraska-Lincoln

Consider k stochastically ordered distributions with Fi3) < +++ < Fu).
The present paper deals with distribution-free tolerance intervals for F\;
based on order statistics in samples of same size from each of the k distri-
butions. Two criteria are defined for determining such intervals. These
two criteria are extensions of S-expectation tolerance intervals and g-
content tolerance intervals with confidence coefficient 7 used in the single
population literature. A tolerance interval for the lifetime distribution of
a series system is considered as an example.

1. Introduction and formulation of the problem. Confidence intervals for
ordered parameters have been considered by Alam, Saxena and Tong [3] and
Alam and Saxena [2], among others. This paper deals with tolerance intervals
for distributions of a stochastically ordered family, such as the largest or the
smallest of k distribution functions. The results obtained here have potential
applications to reliability and life-testing problems for j-out-of-k systems. In
particular, consider a series system of k components whose lifetime distributions
are stochastically ordered. Then a tolerance interval for the lifetime distribution
of the system is related to a tolerance interval on the largest of the distribution
functions of the k components (see Section 4).

Consider k (= 1) distributions with unknown continuous cdf’s F;, i = 1, - - -,
k, and assume that the distributions can be stochastically ordered, i.e., F;, < - -
=< F,, where (1), - - -, (k) is a permutation of the first k positive integers. Let
Xy -+ -5 X, be a random sample from F,, i = 1, ..., k. For a fixed j we con-
sider tolerance intervals I; = I,(X,,, - - -, X,,), for the jth smallest cdf F ;. Let
F = (F, .-, F,), and let Q denote the set of all k-tuples F. Let P, (I;) denote
the probability coverage of I, by F,;,. Since I, is a random set function depend-
ing on kn random variables X,,, - -, X,,, P /(I;) is itself a random variable.
The following two criteria are used in the construction of tolerance intervals.
These criteria are extensions of those used in the single population literature,
see for example Guttman [6].

CRITERION A. An interval /; is a S-expectation tolerance interval for F ;, if
(1.1) infy Ex(P;,(1;) = 8 -

CrITERION B. An interval /; is a f-content tolerance interval for F;, at
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confidence level 7 if
(1.2) infy Py{Pu() 2 B} 2 7 -

2. Proposed procedure and the infima. Consider independent random samples
of size n from each distribution. Let Y, , denote the rth order statistic in the
sample from F, and let the ranking of Y., ,’s be denoted by

Yorrn S Yorra S+ = Yoo -

1)ir,n = @)r,n =

For every i define Y, = —oo and Y .41, = +00. Fori<iandr <,
(with at least one strict inequality), let the tolerance intervals to be considered
for F;, be labelled as

L;: (—00, Y for " =k—j+ i;
2.1 Lt (Yiyirms ) for i<k—j+1;
I; 2 (Yiiyirms Yiiryio,n) for isk—j+1<i¥, r=s, with
at least one strict inequality.

Then ‘
(2.2) P(L;) = Fis(Yiiyien) »

(2.3) Pyly) =1 = Fip(Yayem)
(2.4) Pij(Is;) = Fi5(Yiniem) — Fiy(Yiiir,n) -

Some more notation used in the sequel: Let Z, ,(r, n) denote the ith order
statistic in a random sample of size j from a beta distribution with the pdf

. F(” + 1) r—1 n—rt+1-1
2.5 s Iy = 1 - + ’ 0 1 ’
2.5) 9(z; r, n) TOT( —r = 1) zm Y 2) <z<L

and with the cdf G(z;r, n) which in the standard notation of incomplete beta
functions is I(r,n — r + 1). Then the cdf of Y,, , is G(F(y); r, n). Let Q(})
denote the restricted set of k-tuples F for which F,;, is held fixed. Note that the
subscripts /, j etc. are being used both as running subscripts and preassigned
subscripts.

The following Theorems 2.1 and 2.2 give the infima for the Criteria A and B
respectively.

THEOREM 2.1. (a) For i =k—j+1,
infy B[P ;(h;)] = EZ iy j,5(5 1) .
(b) Fori<k—j+1,
infy Ee[P;\(Ly)] = 1 — EZ ) 4 ja(rs 1) .
(¢) Fori <k —j+4 1<, r < s with at least one strict inequality,

infy Eg[P;\(I;)] Z EZ 1445y, 5(S5 1) — EZ ) 4_jia(75 1) .
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THEOREM 2.2. (a) Foriz=k —j+ 1,
info Pe{P () 2 By =1 — G(G(B; s, m); i — k 4], ) -
() Fori<k—j+1,
infy Pe{P;)(I,;) = B} = G(G(1 — By r,n); i,k —j+ 1),
(c) Fori <k —j+ 1< andr < s with at least one strict inequality,
infy Po(P () Z B} > 6 (6 (15 L5 rum)s ik —j+1)
—G(G<1'|2"8; s,n>; i’—k-|-j,j>.

The following lemmas are needed for proving the theorems.

LEmMA 2.1. Let X = (X}, - -+, X,) be a random vector of k independent com-
ponents, X, with the cdf F;,, i =1, ..., k. Let ¥(x,, ---, x,) be a nondecreasing
(nonincreasing) function of x; when the other components are fixed. For any j, let
F=(F, ---,F;_, Fi,Fippy o v, F)yand¥* = (Fp, -+, F;_, F*, F; 1, -+, Fy).
Then '

Ex(¥(X)) 2(=2) En(¥(X))
if F; < F;*.

This lemma is essentially the same as a lemma of Alam and Rizvi [1] and

hence the proof is omitted.

LEMMA 2.2. Let X be any order statistic in a sample of size n from a distribution
F(x; 0) which belongs to a stochastically increasing family {F(x; 6), 0 e Q}, i.e.,
F(x,0") < F(x, 0) for all 6, 6’ € Q such that § < 0'. Then E,(X), if it exists, is a
nondecreasing function of 0.

Proor. It is sufficient to note that X is a nondecreasing function of the
unordered observations of the sample. Then Lemma 2.1 applies.
PROOF OF THEOREM 2.1,
Part (a). Since F;(Y ), ) is @ nondecreasing function in each of the
<y Y400 from Lemma 2.1
infnu‘) EF[F(J.)(Y”-,,;M)] = EFlj[F(i)(Y(i’);s,n)] >
where F'/ has j components equal to F;, and the rest are equal to unity. For
the configuration F¥, F (Y ,,,,) =0 if <k —j. For i’ = k — j+ 1, the
distribution of Y, , under F* is the distribution of (i — k + j)th order sta-
tistic in a sample of size j from a population with the cdf G(F;,(y).,.). So
infmj) EF[F(j)(Y(i');a,n)] = EFlf[F(j>(Y(i');s,n)]
(2.6) = (5 2d[G(G(z; 5, n); " — k + ], )]
= EZ;_i1j),i(s5 ).

Since (2.6) is free of F;,, infimum over Q(j) is also the infimum over Q.

Y,

1;5,n0 °
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Proof of (b) follows in a similar manner. For proof of (c) note from (2.4)
that

(2.7 infy Eg[P;)(Iy;)] = infg E¢[F;,(Yi0y6,4)] — SUPa Ee[F (Y iiyira)] -

Now using (a) and (b) in the two terms on the right side of (2.7), the result is
obtained.

ProOOF OF THEOREM 2.2.

Part (b). Define an indicator variable
Tu =1 if F(i)(Y(i);r,ﬂ) = )
=0 otherwise. )
Then
PelF (Yiiirn) = 3} = Ex(T,) .

As a function of Yy, ,, -+ -, Y., ,, clearly T, is a nonincreasing function of each
of them. Now from Lemma 2.1, infy;, E¢(T,) is obtained when all the G(F,)’s
are as small as possible. Since F;, is fixed for F in Q(j), the infimum is ob-
tained at F* in which k — j + 1 components are equal to F;, and the rest are
zero. Fori >k —j+1,Y,, ., = +oco for the configuration F* and conse-
quently infimum of E¢(T) over Q(j) is zero. Fori < k — j 4 1, the distribution
of Y., under F% is the distribution of the ith order statistic in a sample of
size k — j + 1 from a population with the cdf G(F;,(y); r, n). So

info) Ee(T,) = Proi Yoiir,n < FRH(0)}
(2.8) = §gwrm d[Gu; i, k — j + 1)]
=G(G(y;r,n); ik —j+1).
Since (2.8) is free of F;,, the infimum over Q(j) is also the infimum over Q.
Since Pg(P;)(l,;) = B) = Ex(T,_;), the result follows.
The proof of (a) follows in a similar manner. For (c) note that
Pe{P;)(hy) = B}

1 —
(2.9) = Py {F(i)(Y(i);r,n) = 3 P and 1 — F;, (Y0 < Tﬁ}

1 —
> PF {F<j)(Y(i);r,n) § "2“£} - PF {Fd)(y(i');a,n) "2“—[;}

Now using (a) and (b) in the two terms of (2.9), the result (c) is obtained.

3. Choices for i, i/, r and s.

CRITERION A. For the intervals /,;, I,; and I,; it is desirable that i be as largé
as possible and i’ be as small as possible in order to keep the intervals as “small”
as possible. So in view of Theorem 2.1, take i =k — j+ 1 = . It is also
desirable that the value of s be as small as possible and the value of r be as
large as possible.
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Since the family of beta distributions (2.5) indexed by r, for each n, is a
stochastically increasing family, EZ , i(r, n) is, by Lemma 2.2, an increasing
function of r. So to satisfy (1.1) for the interval (—oo, Y _j,1),..) fOr F,
choose the smallest s such that EZ,, ;(s, n) = 8, where § lies between 0 and
EZ,, s(n,n) =T1 + 1/n)['(j + 1)/T(j + 1 4 1/n). The sample size n can be
made large enough to accomodate any assigned value $ in (0, 1). For the
interval (Y ;_; 14y, o0) for F;, to satisfy (1.1), choose the largest r satisfying
1 —EZ_;i14—j41(r> n) = B, where Blies betweenOand 1 — EZ;,_; ., ,_;.,(1, n) =
I'a + 1/m'tk — j + 2)/T'(k — j + 2 + 1/n).

Now consider (Y ,_;11y:r.n0 Yik—jin;s,n) @ @ two-sided B-expectation tolerance
interval for F ;. For s and r, choose the smallest s-(say s,) and the largest r
(say r,) so that

1
(3.1) EZ;, (S0 n) = ;— B s
and
1 -8
(3.2) EZ_jsnyp-jir(to 1) = 5
Then,

EZ ;) i(Son) — EZ_jipy imjia(rsn) 2 B,

where § lies between 0 and min,_; ,_;,, {2I'(1 + 1/n)['(¢ + 1)/T'(t + 1 + 1/n) — 1}
The following relations are helpful to determine r, and s,.

(3.3) EZ ir,n) + EZ; iy (n—r+1,n)=1, -

r r rn—r+1 LI

0 IS EZuen S S (o) U -
The identity (3.3) is easy to prove. The first inequality of (3.4) follows from
Lemma 2.1 and the proof of the second inequality of (3.4) can be found in
David [5], page 47. The values from the table in the appendix give strong indi-
cation that the upper bound given by (3.4) is quite close to the true value. For
illustration suppose n = 30, k = 3, j = 1 and 8 = .8. Then EZ, (s, 30) = .9
gives s = 28, and EZ, ((r, n) < .1 givesr = 1. Then the exact § value is .8446.
If r is chosen to be 2 then the exact 8 value is .8011. Working with the bounds,
if r = 2 and s = 28, then B = .7998.

For the asymptotic behavior of the tolerance intervals of Theorem 2.1, the
following lemma is needed.

LemMma 3.1. Ifrjn = 2+ O(1/n), 0 < 4 < 1, then for any fixed i and j (i < j)
and large n,

A1 — )\
EZ;, i(ryn) =2 + <_(—n““‘)‘> E(Z);) »

where Z,, ; is the ith order statistic in a sample of size j from the standard normal
distribution @.
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ProoF. Let Z, i(r, n), - -+, Z; ;(r, n) be a random sample of size j from a beta
distribution (2.5). Define
_ (Z;,;(r, n) — )n?

(a1 —ar

Let H,(y; r, n) denote the common cdf of Y, ;(r, n). Then the cdf of Y, ;(r, n)
is G(H,(y;r, n); i, j). Since H,(y;r, n)— ®(y) as n — oo where ®(y) is the
standard normal cdf, G(H,(y; r, n); i, j) — G(®(y); i, j) as n — oco. Further we
have

(3.5) Y, ,(r, n)

n

E\Y; ; r, L
|Y 4y, 5(rsn)] 21 =7

E(Z, i(r, n) — 2)

< " I Rz - 2.
A —2) (i — DG — i)

Since r/n = 2 + O(1/n),

e rir +1) 2__2)',2
BZutom == ey T Ta g

So, there exists a number M such that sup, E|Y,;, ;(r, n)]* £ M. Using Theorem
4.5.2 of Chung [4], lim, _, EY,, ;(r, n) = EZ, ;. Hence

= 0(1/n).

EZ(, (r n) = 2 + <@>* EY,, ,(r.n)

A1 — 2

3
> EZ, ;.
n

=1+ (

Now consider result (c) of Theorem 2.1. Letr/n =6 + O(1/n)and s/n = 2 +

O(1/n), 0 < 6 < 4 < 1. Then an approximate lower bound for infimum of the

expected probability coverage of the interval /;; by F,,, withi =/ =k — j + 1
as recommended earlier, is

Note that when k = 1, and the rth and sth order statistics are used, the exact
expected probability coverage is (s — r)/(n 4+ 1). Thus when n is large, the
present procedure for a tolerance interval of an ordered distribution works
almost as well as the procedure when only one distribution is under conside-
ration. To choose r,, s, replace the expected values in (3.1), (3.2) by their
asymptotic equivalents.

CRITERION B. As with Criterion A, choose i as large as possible and i’ as
small as possible, i.e., take i = k — j + 1 = 7',

For fixed x and n, G(x; s, n) is a nonincreasing function of s. Therefore to
satisfy (1.2) for the interval (—oo, Y ;_;,,).,..) for F;,, choose the smallest s to
satisfy 1 — G(G(B; s, n); 1, j) = 7, provided y lies between 0 and 1 — G(G(;
n,n); 1, j) = (1 — p*)¢. For the interval (Y _; 4., o0) for F;, choose the
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largest r to satisfy G(G(1 — B;r, n); k — j+ 1,k — j 4 1) = 7, provided 7 lies
between 0 and G(G(1 — B; 1, n);k —j+ 1,k — j 4+ 1) = (1 — -+, For
the two-sided tolerance interval (Y ;,_j,1);s,00 Yikejinye ) fOr Fj;, to satisfy (1.2)
the following procedure is recommended for deciding the values for r and s:
choose the largest r and the smallest s so that

G (1 . ﬁ; , n> > (1 + r)l/(k—jﬂ)
2 - 2

and

1-[1—6(~ELam)[ 21T,
2 -2
provided y is between 0 and min,_; ,_;,, {2(1 — ((1 + B)/2)*)* — 1}.

For illustration, suppose k =3, j=1, f = .8, y = .75 and n = 50. Then
using incomplete beta function tables [8], we find r = 2 and s = 48. Tables by
Somerville [10] or graphs by Murphy [7] can also be used. Scheffé and Tukey
[9] have given a useful approximation formula for determining n from inequali-
ties like (3.1) when other parameters are given. For large n, the normal approxi-
mation @((—r + 1 4 nx)/(nx(1 — x))*) can be used for G(x; r, n).

4. Application. Consider a series systems of k independent components whose
lifetime distributions F,’s are stochastically ordered. If H,() denotes the cdf of
the lifetime of the system, then

H()=1—T[i. (1 = Fy)).

Suppose a p-content lower tolerance bound is required for the lifetime distri-
bution of the system, and this is to be done without testing the system as a
whole. To do so take samples of size n from each of the k populations cor-
responding to k different components and put them on test. For each sample
stop testing as soon as the rth failure is observed and note Y., ,,i=1, ..., k.
Then take the lower bound to be Y., ,, i.e., take the tolerance interval for the
lifetime ‘distribution of the system as Iy = (Y, ,, o). Then

Pe(Py,(Is) 2 B) = Pe(Ilic (1 = Fi(Yoyir,)) Z B)
(4'1) / = PF(I - F(k)(Y(l);r,n) = ﬁl/k)
= GGl — B r,m); 1, 1) = G(1 — BY*; r, n).
The inequality in (4.1) is due to (b) of Theorem 2.2. So to have a g-content
lower tolerance bound with confidence level y, choose largest r which satisfies
G(1 — B r,n) = 7.

For illustration, let k = 5, n = 50, 8 = .7, y = .8; then r = 2.

Acknowledgment. The author is thankful to the referee and the editor for
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APPENDIX
TABLE 1
Expected values of Z;),(r, n), upper bounds and the normal approximation:
First entry is the exact value of EZj), (r, n), the second entry is the
upper bound given by (3.4) and the third entry is the normal

approximation given by Lemma 3.1

n: 10

20

30

2

3

4

2

4

5

6

7

j=1 .0909

.1000
j=2 .1342
.1388
.1535
j=3 .1621
.1651
.1803
j=4 .18
1850 .
1977
j=5 .1986
.2016
.2103

L1818
.1818
.2000
.2433
.2461
2714
.2793
.2814
.3070
3042

3081

.3302
.3231
.3303
.3471

.0476 .0952
.0476 .0952
.0500 .1000
.0708 .1292
.0738 .1314
.0775 .1378
.0861 .1496
.0882 .1512
.0912 .1568
.0974 .1640
L0991 .1662
.1002 .1691
.1063 .1752
.1082 .1787
.1066 .1780

.1429
.1429
.1500
.1841
1859
.1950
.2079
.2096
2175
.2243
2275
.2319
.2367
.2423
.2429

.1905
. 1905
.2000
.2373
.2388
.2505
.2633
.2654
2757
.2811
.2854
.2921
.2945
.3021
.3040

.0323
.0323
.0333
.0481
.0503
.0518
.0586
.0602
L0611
.0664
.0677
.0671
.0725
.0739
.0714

.0645
.0645
.0667
.0879
.0896
.0924
.1021
.1034
.1052
1122
L1138
1135
.1200
1224
.1196

.0968 .1290
.0968 .1290
1000 .1333
1255 .1619
1269 .1632
.1309 .1683
.1422 1806
.1435 1820
.1464 .1859
.1539 .1934
.1560 .1962
.1564 .1972
.1627 .2031
.1665 .2080 .
.1637 .2055

.1613
.1613
.1667
.1976
.1988
.2051
2178
.2194
.2242
2315
.2350
.2367
.2418

2480

.2458

.1935
.1935
.2000
.2327
.2339
2412
.2541
.2560
.2618
.2686
2727
2752
.2794
.2867
.2849

.2258
.2258
.2333
.2674
.2685
.2769
.2898
.2919
.2986
.3048
.3096
3128
.3160
.3244
.3231

40

5

6

7

8

9

10

j=1 .0244
.0244
.0250
j=2 .0364
.0381
.0389
j=3 .0444
.0457
.0459
j=4 .0503
.0514
.0504
j=5 .0551
.0561
.0537

.0488
.0488
.0500
.0666
.0680
.0694
.0775
.0785
.0792
.0853
.0865
.0855
.0913
.0931
.0901

.0732
.0732
.0750
.0952
.0964
.0985
.1081
.1091
1102
171
1187
1179
.1240
1267
L1234

.0976
.0976
.1000
1229

.1268
1373

.1240

.1385
.1401
.1473
. 1495
.1488
.1549
.1586
.1552

1220
.1220
.1250
.1501
1511
.1545
.1658
.1671
.1693
.1766
1792
.1788
.1847
.1893
.1858

.1463
.1463
.1500 .
.1768
1778
.1819
.1936
.1951
1977
.2051
.2082
.2081
2137
2191
2157

.1707
.1707

1750

.2033
.2043
.2089
.2210
2227
.2259
.2330
".2366
.2368
.2400
.2481
.2449

1951
.1951
.2000
.2295
.2304
.2357
.2480
.2498
.2535
.2605
.2645
.2651
.2697
.2767
.2735

.2195
.2195
.2250
.2555
.2563
.2623
.2747
.2766
.2809
.2875
.2919
.2929
2971
.3047
.3018

.2439
.2439
.2500
.2812
.2821
.2886
.3010
.3031
.3079
3142
.3190
.3205
.3241
3323
.3296
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