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THE MULTIVARIATE INCLUSION-EXCLUSION
FORMULA AND ORDER STATISTICS
FROM DEPENDENT VARIATES

By WiLLI MAURER! AND BARRY H. MARGOLIN?
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A variant of the general multivariate inclusion-exclusion formula of
Meyer (1969) is derived for the case where K classes of events are considered
and specific subsets of the events, one from each class, are related to one
another by set inclusion. This result, in turn, yields a formula for the
cumulative distribution function of any subset of order statistics from de-
pendent random variables in terms of cumulative distribution functions of
subsets of the unordered variables. An important example of dependent
random variables, where the variables are jointly distributed as a Dirichlet
D,(1,1, .-, 1), is discussed in detail; various authors’ results for this distri-
bution are extended, or rederived as special cases via the formulae presented.

1. Introduction. General results for order statistics from dependent random
variables are rare when compared with those for the more restrictive independ-
ence case; this observation is corroborated by the paucity of references to papers
dealing with dependence in the recent text on order statistics by David (1970).
In formula 5.5.3 of his book, David presents one of these results, namely, an
expression for the marginal cumulative distribution function of the rth order
statistic from n exchangeable random variables in terms of the joint cumulative
distribution functions of subsets of the unordered exchangeable variables. This
expression is most easily deduced from the well-known inclusion-exclusion for-
mula (e.g., page 109, Feller (1968)). The argument proceeds as follows.

The inclusion-exclusion formula states that if 4,, ..., 4, are n events, and if
the probability of realizing at least r of the events {4,};_, is denoted by P(r; n)
then

(1.1) P(rin) = Zaer (=1)"7(72) S »

where
S = Dij<ig<-<iy P {1 45} -

If one now considers n random variables Z,, - - -, Z, that are exchangeable, i.e.,
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the joint cumulative distribution function of {Z,}7_, is symmetric in its arguments,

and if one defines A, = {Z; < y},i = 1, - - -, n, then it follows immediately from
(1.1) that for the corresponding order statistics Z,) < Z,, < -+ < Z,,),

(1.2) PriZ,) =y} = Lo (=D)"7GDE) Pr{Nm (Z: < y)} -

This argument has been repeated in its entirety because in Section 2 of this
paper, (1.1) will be generalized to permit consideration of K classes of events
for which specific subsets of the events, one from each class, are related to one
another by set inclusion. This result will then lead to a generalization of (1.2)
for joint behavior of subsets of the order statistics from dependent, not necessa-
rily exchangeable random variables. The paper’s final section will consider an
example where the dependent variables are exchangeable and distributed jointly
with a Dirichlet D,(1, 1, - .-, 1) probability density function.

2. A special case of the multivariate inclusion-exclusion formula. The in-
clusion-exclusion formula in (1.1) has been extended by Meyer (1969) to the
case of K (finite) classes. To extend (1.2) to the joint distribution function of
subsets of order statistics from dependent random variables, one is led to consider
an extension of (1.1) for events related by inclusion. The desired form does not
follow trivially from Meyer’s results; it is simpler to produce the desired gener-
alization from first principles.

Consider collections of events 7, = {4, Y- i=1,2, ..., K, such that for
all j, 4,; S 4,; S -+ & Ay ;. Let t = (t, 8, ---, ;) denote a vector of K
nonnegative integers, let P[t; n] denote the probability that exactly 1, events from
&7 occur, and let P(t; n) denote the probability that at least 1, events from .7
occur, i = 1,2, ---, K. For both probabilities, one’s interest focuses on cases
wheret, < t, < ... < t,. The first probability is zero otherwise and the second
is unchanged if ¢, is replaced by max (1, t,, - - -, t,), for all i. Moreover, it suffices
to consider 7, > 0 for P(t; n); one can always discard %] if , = 0.

The following notation will be employed. For each vector of length K, say
X = (X3, Xp, + -+, Xg), define x, =0, and x,,, = n unless specified otherwise.
Then define x* = (x,, x5+, Xy ); Ax;=x, —x,,, i=1,2,..., K+ 1;
Ax = (Ax;, Axy, - -+, Axg); A*X = (Axy, Axy, -+, Axgeyy); and x, = 21K x,. A
K-length vector whose elements are all ones will be denoted by 1. For two
vectors of the same length, say x and y, the interpretation of x < y will be ele-
mentwise weak inequality. Finally, 3}, will denote summation over all vectors
X that are ordered 0 < x, < x, < -++ < X, < n, and }%_, will denote summa-
tion over all vectors x that are ordered as above but in addition satisfy s <
x < r for r and s of length K.

The generalization of (1.1) follows:

THEOREM 2.1. For a vector a = (a,, a,, - - -, ay) of integers such that 0 = a, <
a < -+ < ay < ag,, = n define

P, =27 Pr{nN&y ‘:,f:iiﬂ Aiiri b
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where Y’ denotes summation over all

(s+a)

sets of indices (ji, jz, co vy Ja) Such that j, < jo. for re(a; + l,a,+2,---,

@y —1),i=0,1,..-,K—1,and j, # j,when 1 = r s = ag.
Then
; ¢ * Aq,
(2.1) P[t’ n] = (_1) + a=t (_1)a+ 1{{=1< Zt ) Pn
a, — t,
and
22) P(t; ) = (= 1)+ Zil (= 1) <(Aa) _t 1)

Proor. For w = (wy, - -, wg), let o(w) = 3., P, ]'[,.=1 w;te. It is easily veri-
fied that
(2.3) e(W) = E[T13-0 28 (s — Limy, A+ 2 Wr)].
where I, ; is the indicator function of set 4, ;. For this verification, note that
if a pomt belongs to A, ; and not to 4,_, ;, then it belongs to none of the sets

A, ; for r < iand to all sets 4, ; for r = i (j fixed).
Next for z = (z;, - - -, Zg) let

2.4) ¢lz] = L. Pt n] 17 2/°
It is easily verified that
(2'5) ¢'[Z] = E[H?:l (Zf:l (Ii,j - ’L -1 ])) Hr i r]

The right-hand sides of (2.3) and (2.5) are equal if, for all J,

iz, =14 Zkw
this implies that w, = (z; — 1) [T 2 I < K, and w, = z, — 1. Hence,
(2.6) glz] = o((z — ) a2 (2 — D IIFs 2 oo 20 = 1)
= DL P IIE (2, — 1z
Equating coefficients in (2.4) and (2.6) yields:

Pt = m I8 (0% - (CDeeen,

a; — t,

which proves (2.1).

The proof of (2.2) is also based on (2.6). Let

¢lz] = D P(t m) THE 20 = 20 1S 2% Zoed PIS3 1]
= 3, P[t; n] TIE, (254 — 1)(z, — 1)1

The replacement of every polynomial Q(z;) in (2.4) and (2.6) by (z, — 1)(z,Q(z;) —
Q(1)) for the cases of interest with a = 1 yields
2.7) glz] = TP TIE (7 — D)eeoiz ot
Consequently P(t; n) is equal to the coefficient of J[i,z,' in (2.7). Using the
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extended definition of binomial coefficients, one finds

P(t;n) = 3, (— 1)@+t P, Hf=1( (Aa) — 1 )

t,—a,_, — 1

= (=0 e (=1 1 (B9~ T P

a, —t,

Note that the upper limit a* in the sum cannot be replaced by (t* — 1) because

for a, = a,_,,

(Aa;) — 1) — (—1)%t

< a, —t; a ( ) ) 2

If, in addition to the assumptions of Theorem 2.1, the events are assumed ex-
changeable within classes, i.e.

2.8)  Pr{S NMaen Aus,) = PO N0 A} = P
for all sets of indices considered in ',
then
P, = ()P

and this simplification can be introduced in (2.1) and (2.2).

For K = 2 and the exchangeability in (2.8), (2.1) and (2.2) reduce respectively
to:
. — (_1\+s S'n s __1)\a+d n!
(@9 Pl snl = (<17 Dt Dt (D

X (afr)(ll;:g)pa,b
and

(2.10)  P(r,s;m) = (=1)* T3, b, (= 1)***

X (TP -
The following recurrence relations then hold:

n!
(n—b)! (b — a)! a!

THEOREM 2.2. For K=2,and 1 <r < s<n — 1, if one assumes (2.8) and
the assumptions of Theorem 2.1, then
(2.11) nPlr,s;n — 11 = (r + 1)P[r + 1, 5 4 1; n]

+ (s —r+ 1)P[r, s + 15 n] 4 (n — $)P[r, s; n]
and
(2.12) nP(rysin— 1) =rP(r + 1,5 + 1;n) + (s — r)P(r, s + 1; n)

+ (n — 5)P(r, s; n) .

PrOOF. A “dropping” argument similar to one employed previously for order
statistics (David (1970), page 83) will be constructed. Of the n paired events
(A1, 45;), j =1, -+, n, consider dropping from consideration one pair at ran-
dom. For the dropping to have resulted in the occurrence of exactly r 4,’s and
s A,’s from the remaining n — 1 pairs, one of three disjoint possibilities would
have had to obtain:
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(a) exactly (r + 1) 4,’s and (s + 1) 4,’s occurred initially, and then a pair
(A, ;, 4, ;), for which both events had occurred, was dropped;

(b) exactly r 4,’sand (s + 1) 4,’s occurred initially, and then a pair (4, ;, 4, ;)
for which 4, ; had occurred but 4, ; had not, was dropped;
or

(c) exactly r 4,’s and s 4,’s occurred initially, and then a pair (4, ;, 4,,;), for
which neither event had occurred, was dropped.
Since (a), (b) and (c) have respective probabilities ((r + 1)/n)P[r + 1, s 4 1; n],
((s — r + 1)/n)P[r, s 4 1; n] and ((n — s5)/n)P[r, s; n], the result for P[r, s;n — 1]
follows.

Via straightforward algebraic reduction, the second portion of the theorem

follows from the fact that
P(r,s;n— 1) = et >zt Pli, jon — 1] O
Similar, albeit more complicated, recurrence relations can be derived for
K > 2; for K = 1, it is easily verified that:
(2.13) nP[r;n — 1] = (r + 1)P[r + 1;n] + (n — r)P[r; n],
(2.14) nP(ryn — 1) = rP(r 4+ 1; n) 4+ (n — r)P(r; n) .
In the next section the connection between (2.12) and a recurrence relation

known to exist for distribution functions of order statistics from exchangeable
random variables will be discussed.

3. Order statistics from dependent random variables. In much the same way
that (1.2) followed from (1.1), so one may deduce the following result for the
joint distribution function of subsets of order statistics from dependent random

variables.

THEOREM 3.1. Let Z = (Z,, Z,, - -+, Z,) be a vector of n dependent random
variables and let ¢ denote a vector of real numbers (c,, ¢y, - -+, Cg) Withe, S ¢, < -+

< ci. Foravectors = (5, 5, +++, Sg) of zntegers such that1 <5, <5, < -+ =
sx < n, let Z(s) denote the vector (Z(sl,, Zigps - Z ) of K order statistics of Z.
Then
@1 Pr(ze) z ¢ = (~ 1+ ma (=D I (G4 1)

i b

X Z'Pr{NE Nwi i (25, Z cx-i}
where Y’ denotes summation over the same set of indices as in Theorem 2.1

and where 1, = n + 1 — s¢,, ;, j =1, ---, K. Equivalently,

(3.2) Pr{Z(s) <'c} = (—1)+ e, (—1)%+ e, <(Aaj) - 1>

a; — s;

X L' Pr{NS NuZepn (25, = ¢} -
Proor. Both (3.1) and (3.2) follow immediately from (2.2). For (3.1) define
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theevent 4, ; by 4, ;, ={Z; = cxyy i}, j=1,---,n, and let &, ={4,;, j =
1,...,n} forz =1, ..., K. The events {4, ;} satisfy the assumptions in Theorem
2.1. Moreover Pr {Z(s) = ¢} = Pr{NK, (at least ¢, events from &, occur)},
where t;, = n + 1 — 5., ;. From (2.2) and the fact that

P, = 3 Pr{N&’ Matin (Z5, = -}
one arrives at (3.1); (3.2) is proved in a similar fashion with 4, ; = {Z;, < ¢;}
and Pr {Z(s) < ¢} = Pr{NX, (at least s, events from % occur)}. D

Equation (2.1) may be used to derive a result similar to Theorem 3.1. The
proof, which parallels the proof of Theorem 3.1, will not be given.

THEOREM 3.2 (without proof). Let Z represent a vector of n dependent random

variables. Consider a vector ¢ of K constants c¢,, such that ¢, < ¢, < -+ < ¢
and a vector s of K integers s, 1 <5, <5, < - sy <n+1for1 <K<n.
Z(s) will continue to be defined as in Theorem 3.1; in addition, define Z, = —co

and Z,, ., = co. Then

Pr{Z(s — 1) < ¢ < Z(s)}

(3.3) = (=1 D (= T Aa’))
X %' Pr{NE Nuidin (Z;, = cx-0)}
wheret; =n+ 1 — sz, ., j=1,-.., K.

If the random variables Z,, Z,, - - ., Z, are exchangeable, then paralleling (2.8),
one notes that

(3.4) 2 Pr Nntin(Z;, = cx o}
= (A*.) Pr{ nmﬂé +11(Zn = ki)

and this simplification can be introduced in (3.1) and (3.3). A similar simplifi-
cation for exchangeability in (3.2) is clear.

This section concludes with comments on (3.1), (3.2) and (3.3) for the case
K =2.

(1) Fors; =r, s, = s, (3.2) and (3.4) provide an expression for the bivariate
cumulative distribution function of the rth and sth order statistics from a sample
of n exchangeable random variables; this distribution function is usually denoted

Fr,sm(ya Z).

The recurrence relation in (2.12) for P(r, s; n — 1) implies the following for
Fr (¥, 2):
(3.5) Fysin(Vs 2) = 1y 0414(95 2) 4 (s = NF, 1n(Ds 2)
+ (0 = )F, 0y, 2) -

The recurrence relation in (3.5) has been established previously (see David
(1970), page 83); (2.12) is in one sense a generalization of equation (3.5) beyond
order statistics.
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(2) Ifonesetss, =n— 1,5, =n, and a < B, (3.2) yields:
Pr{Z, S Zy = B} = N3 Pr{Ne, (Zisa)n (Z; = B))
— (= HPr{N (Z; = o)},

a result that is easily verified from first principles.

(3) Ifonesetss, = 1,5, =n+ 1, and @« < §, then (3.3) yields:

Pr {a é Z(l)’ Z('n) < ﬁ}
(3.6) =Pr{a £ Z, < B, forall i}
= Nt (= 1) X PVt (Z, Z B) N i1 (Z, = @}

where 3’ denotes summation over all () partitions of (1, 2, - - -, n) into (m,,
my, «--,m)and (M, ., M, -, m,).

4. Dirichlet D,(1, 1, -.-, 1) order statistics and related problems. From
Wilks (1962), page 179, one learns that if X, - - -, X, are independent and iden-
tically distributed with an exponential probability density function

f(x; 0) — @-le-%/0 , x>0,60>0,
then the transformation
Zi:Xi/Z?=1Xj’ i:'ls"‘ana

yields variables whose joint distribution is Dirichlet D,(1,1, ---, 1). These
random variables are exchangeable and singular with density

@1 fiZy s Z) == DHI(ZD Zo=1) 0 M (Z: > 0)],
where I[S] denotes an indicator function for set S. The corresponding order
statistics {Z ,,}_, then have a joint distribution

(4.2) f(Zm’ s Ziw)

=nl(n—DWIEZy,=)n 0 Z,, < -+ < Z)]-
David and Johnson (1948) observed that the distributions in (4.1) and (4.2) are
independent of the unknown 6.

The Dirichlet D,(1, 1, ..., 1) distribution and its corresponding order sta-
tistics arise in many contexts. David (1970), on pages 79-81, discusses the
following related problems.

(2) Random divisions of a unit interval: Here {Z,};_, are distances between
successive points that have been dropped at random in the interval [0, 1].

(b) Elementary coverages of the order statistics: Here, for X,, = oo,

Z,=F(X,;)— F(X4q), i=2,--+,n, Z, = F(X,,),

where {X;)7-} are order statistics from a random sample of size n — 1 from a
population with continuous distribution function F(x).

(c) Harmonic analysis: Here Z, is the percentage of the total variation ac-
counted for by the ith harmonic, i =1, ---, n.

(d) Coverage of a circular perimeter: Here {Z,}7_, are distances between the
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midpoints of successive arcs of equal length that have been randomly placed on
the perimeter of a circle of unit circumference.

In all five problems, interest frequently centers on the ordered values {Z; }1_,.
For example, using the easily verified fact that ford, > 0,i=1, ..., n

(4.3) Pri{fi= (Z: > d)} = {max (0, 1 — X7, d)}*™
= = X d) [ d, = 1],
Stevens (1939) proved via (1.2) that
@44 Pr{Z,, >y} = Zheasrn (=D)"EIENA — my) [y < m7']}

and applied the result to problems in (d).

One can now apply the result in (3.1), in conjunc‘tion with (4.3), to obtain
joint behavior of subsets of K of the order statistics from a set of random vari-
ables whose joint distribution is D,(1,1,..-,1). For 1 <5, <5< - <

sg=mea << <cgandt,=n+1—s.,,i=1,...,K, one obtains
the result
. Aa;) — 1
4.5)  Pr{Z(s)> ¢} = (—1)+ y'*, _1a+<”) K_(( i )
( ) {()>} ( ) —( ) A*a i=1 a; — t;

X (I = X g Ba) [ 1K cxyyiBa; < 17
For K =2, s > rand 8 > a, (4.5) reduces to
Pr {Z(s) > ﬂ’ Z(‘r) > a}
!
4.6 = (= 1) Ty T (— 1) v
(4.6) (=1 Dienmrs Tewcans (~ 0 o

X (2061 — af — (b — ayayt
X I[af + (b — a)a < 1].

Via (4.6) one can tie results in this paper to special cases that have appeared
in the literature.
(1) If, in (4.6), one sets r = 1, s = 2, then for a < § one obtains,

A7) Pr{Zy>a Zy>p =n(l—(n—1)f—ayU[(n— 1) + a < 1]
— (n— 1)(1 — np)*[np < 1].

This last expression corrects an error in exercise 5.4.3(b) in David (1970),
and extends the domain of («, B) to include {(a, f): (@ £ B) N (nf > 1) n ((n —
1)8 + a < 1)}. In this case, the second term in (4.7) is zero, but the first is not.

(2) If, in (4.6), one assumes a < B, and sets r = 1, s = n, one obtains

Pr{Z, > a Z,, > g}

= Li= (17O —JB — (0 — ey B + (n — a < 1]
It then follows that
(4.8) Pr{Zy, > a, Z, < p}
= Li=o (=11 —J8 — (n — pa)~I[jB + (n — jla < 1].
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The result in (4.8) appears as Theorem 8.4 in a paper on random divisions of an
interval by Darling (1953).

(3) If one differentiates the results in (4.5) or (4.6) to obtain density functions,
one recovers the results reported by Barton and David (1956); the reverse inte-
gration operation is not easily performed.

The general result in (4.5) is used extensively by Margolin and Maurer (1975)
to obtain exact expressions and bounds for cumulative distribution functions of
Kolmogorov-Smirnov type one-sample statistics used to test goodness of fit of
the exponential distribution with unknown scale. Margolin and Maurer also
indicate that result (3.6) of Durbin (1975) for the same goodness of fit problem
is equivalent to (4.5) when K = n. .

Consider, finally, an earlier application of the {Z,};_,. In problem (d), i.e.,
coverage of a circular perimeter by randomly placed arcs of equal length, if the
circle has unit perimeter and « is the common length of the arcs, then Stevens
(1939) showed that

Pr {at most r breaks in the coverage} = Pr{Z,_,, < a}.
Given (4.6), one can now evaluate: .
Pr {at least r breaks in the coverage and the largest break is
larger than 6 — a, for 6 > a}
=Pr{(Zprir,> @) N (L —az=0d— a))
=Pr{(Zi_riy > & Zsy > 0}.

From this expression one can compute, with the aid of (4.4), answers to con-
ditional questions such as

Pr {largest break is smaller than 0 — a

given that there are at most r breaks} .
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