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ON THE BERNSTEIN-v. MISES APPROXIMATION
OF POSTERIOR DISTRIBUTIONS

By C. Hirp AND R. MICHEL
University of Cologne

It is shown that under certain regularity conditions the Bernstein-v.
Mises approximation of the posterior distributions is of order O(n%) with
high probability.

1. Introduction. Let (X, %) be a measurable space and P,|.57, ¢ 0, a
family of probability measures, where © is an open subset of IR*.

Let 6 be a random variable with prior distribution 1| <#* n © and let R, , be
the posterior distribution of ¢ for the sample size n, given x ¢ X*.

Le Cam [3] shows that under certain regularity conditions on the family
P,| .57, 6 € ©, and on the prior distribution 2|<2* n © the posterior distribu-
tions R, . can be approximated by normal distributions which do not depend
on 2. To be precise, let Q, . be the normal distribution centered at the maxi-
mum likelihood estimator ¢,(x) with covariance matrix n='I'(d,(x)), where
L'(0)~ = (—E,(9°/90,30,) og p(-, 0)), ;_1,...,, and p(-, 6) is a density of P,| o
with respect to a dominating measure.

Then for all 0O, ¢ > 0,

lim, .y Py"{xe X": dR, ,, Q,,) > =0.
Here d is the variational distance between the measures R, , and Q, , defined by
d(R, 5 Qu,x) = SUP {|R, (B) — Q, .(B)|: Be "} .

Johnson [2] gives asymptotic expansions of arbitrary order for the distribution
functions of R, ,, x € X”, including results on the accuracy of these approxima-
tions. For the special case of first order approximations by normal distributions
one obtains from his Theorem 2.1 (page 853) that for the Kolmogorov-metric d,,

Pr{xe X":d(R,,, Q,,) = Dnt}

converges to zero for all ¢ € © and some real D > 0 possibly depending on 6.

A similar result concerning the accuracy of a normal approximation of the
posterior distributions measured with the stronger distance d has recently been
given by Strasser [8] for the case k = 1. He shows that under relatively strong
regularity conditions for every compact subset K of © there exists a constant
¢x > 0 such that

SUpgex Po"{Xx € X*: d(R, ., Q0 ) = cxni(logn)t} = o(n¥),
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where his approximating normal distributions Qf , depend on the unknown pa-
rameter ¢ through their covariance matrix n=I'(6).

We remark that Strasser’s regularity conditions are strong enough to imply
that a Berry-Esseen theorem holds true for the distribution of the maximum
likelihood estimator, i.e., for every compact subset K of © there exists a con-
stant ¢, > 0 such that for all ne N,

n& 0”(X) — 40
B(9)

Supﬂe K Supte R

1
P"{xeX”: t}— t o exp[—4rfdr
0 2n)t pl 1
< cpnt
(see Pfanzagl [6]).

Johnson’s method of proof (in particular, the use of the dispersion matrix
given a few lines below instead of the reciprocal of the information matrix)
enables us to weaken Strasser’s regularity conditions substantially and to im-
prove the order of normal approximation of the posterior distributions. The
essential difference between our and Strasser’s proof is that we only need “con-
sistency” of the maximum likelihood estimator, i.e.,

SUPyex P {X € X1 [0,(X) — 0] = ex} = O(n™?)
instead of
SUpjex Py {x e X*: |0,(x) — 0| = syn~t(log n)t} = o(n~t).

We prove that under certain regularity conditions depending on an integer
s = 2 for every compact subset K of © there exists a constant ¢, > 0 such that

SUppex Py{xe X" d(R, ,, Q,,) = cgn~t} = O(n~*%) .
Here Q, , is a normal distribution with the covariance matrix n~'I'(6,(x)) re-
placed by the matrix
-1
6= 0n(x)>i,j=1,---,k:| .

9
— ” R |
[( 196,00, °F (x., )

Hence, our result improves previous results in two respects: First, with regard
to the order of approximation of the posterior distributions by normal distri-
butions; and secondly, concerning the bound for the P,"-probabilities of the ex-
ceptional set.

The authors expect that the results of this paper may be carried over to the
dependent case by using the methods of Borwanker, Kallianpur and Prakasa
Rao [1] and Prakasa Rao [7].

2. The result. Let (X, %) be a measurable space and P,| %7, 6 € O, a family
of probability measures, where © is an open subset of R*.

A family of .%-measurable functions f(+,0): X >R, 0¢0, is a family of
contrast functions for {P,: 6 € O} if E, f(, 7) exists for all # ¢ ®, r ¢ ©, and if

E,f(+,0) < E,f(,7) forall 6e0®, te0, 6+r.

A minimum contrast estimator for the sample size n is an .%"-measurable
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function 4,: X* — © satisfying
Z?:lf(xi’ 0n(x)) = infdeé Z?:lf(xi’ 0) l} XxeX".

The reader might keep in mind the family of contrast functions f(x, §) =
—log p(x, 0), where p(-, 0) is a density of P, | o7 with respect to some dominating
measure. Then the corresponding minimum contrast estimators are maximum
likelihood estimators. (For a theory of minimum contrast estimation see the
paper of Pfanzagl [5].)

Assuming that 2 has a finite density p with respect to the Lebesgue measure,
which is positive on © and zero on ©°, we define for those x € X* for which it
is possible the probability measure

(1) R, (B) = §5 eXp[— 2371 f(xi5 9)]e(0) da, Be B .
’ § exp[— 237 f(xis 0)]0(0) do

For the family of contrast functions f(x, #) = —log p(x, 6) the probability meas-

ure R, , reduces to the posterior distribution of # for the sample size n, given

xXe X"
For those x € X*, for which

5
F,n X) = ( [ ——— Ly 0 \ )
*) Y 00, fx., 0) 0=0,(x) /4,5 =1,k

is positive definite, let Q, , be the normal distribution centered at the minimum
contrast estimator #,(x) with covariance matrix I',(x)~".

It will be proved below that R, , and Q, , are defined for all x ina set 4, , €
7", ne N, with sup,. x P,"(45 ) = O(n~*?), K C O being compact.

The result of this paper may now be stated as follows:

THEOREM. Assume that the regularity conditions listed in Section 4 are fulfilled.
Then for every compact subset K of © there exists a constant ¢, > 0 with

SUPye x Pr{X € X7 SUPge b Ry o(B) — 0 u(B)| > cxn i} = O(n") .
Proor. Since for arbitrary k the method of proof is essentially the same we
shall confine ourselves for notational convenience to the case k = 1. Through-
out the proof we fix a compact subset K of ©.
(i) Let f'(x, 8) = (3/00)f(x, 0) and f"'(x, ) = (0*/06*)f(x, §). The following
notations will be used:

2) by = (2 f" (x5 07»(")))&1(!‘62(":Z;"’=1f"(a:i,0n(xn>0}
(3) rox(0) = (27)74b,  exp[— 221y flxi, 0) + 2l flxis 0,(X))
+ log p(s) — log p(6,(x))]
and
4) H, (B) =R, (b; B+ 0,x))§r, . (0)ds, Be#.

Finally, ¢ denotes the density of the standard normal distribution N.
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(i) We shall prove that there exist sets 4, , € %™, ne N, with
supye Py (A5 ) = O(n=*?)
and a constant ¢, > Osuch that R, , and Q, , are defined for x € 4, ,, n € N, and
() SUPge 5 |Hax(B) — N(B)| < jexnt.
Using R, (675 B + 0,(x))H, ,(R) = H, (B) we obtain
SupBeg |Rn,x(B) - Qn,X(B)l
(6) = SUPge 5 |R, (075 B + 0,(X)(1 — H, «(R)) + H, (B) — N(B)|
< 2sUpge, |H, (B) — N(B)| .
Hence, (5) and (6) imply the desired result
SUPge 5 [Rpx(B) — Qu (B)| < cxnt.

(iii) Tosimplify our notations we shall use theshorthand writing “Forallx € 4”
instead of “For all n e N, there exists a set 4, , € " with sup,. , P,"(A4: ;) =
O(n=**) such that for all xe 4, ,.”

(iv) By Lemma 1(a) for all x € 4, R, , is defined.

Let
@) a, = Yinf, . E, f"(+, 0) and by = ax + supgex E; f"'(+, 0) .

By conditions (vi) (a), (b), 0 < ay < by < oo.

Let, furthermore, d; > 0 be such that
®) K ={reR:0(r,K)ZSdg}C©O.
We remark that K’ is compact. By Lemma 2 for all x € 4,
®) | 201 [ (X5 0,(X)) — nEp f7(+, 0)] < nay .
Hence, for all x € A4,

(10) (nay)t < b, , < (nby)t,
ie., forall xe 4, Q, , is defined.

From condition (vii) we easily obtain that there exist constants #,’, d;’ > 0
such that for xe 4, for all ek, and all 7,50 with |- — 0] < 4,/ and
19— 0] < dy,

(1) = |7 (x0 T) — [7(x 0)] S mb|T — 4]
Furthermore, by condition (ix) there exist d.”, h,”” > 0 such that ¢ e K,
|t — 0| < dy”, and |0 — 0| < d”" imply

(12) llog o(s) — log p(d)| = |r — dlig" .
Let
(13) ex = (1 + 2a,74b,~4) "' min (d, d/, d”, La, 2o, ~th,/7Y) .

By Lemma 1(b),
(14) forall xed, [0,(x)—0|<eg.
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Since |0n(x)' — 0] < ey implies |0,(x) — 0] < d we obtain from (14) that for all
X € 4, 0,(x) € K’ and therefore log o(d,(x)) € R.

Hence, using (10) once more we obtain that for all x e 4, r, (o) is defined
for all 0 € ©.

(v) After these preliminaries we will prove (5).

Let
(15) e, = 2e, bt
where b, and e, are defined in (7) respectively (13).
With
(16) Vig = {oeR: Jo| < ex'nt}
we have

(17)  supge, |H, (B) — N(B)|
S SUPpe s [Hou(BNVyg) — NB OV, 1) 4+ H, (Vi) + NVig) .
We will show that for all x € A, each term on the r.h.s. of this inequality is
bounded by {c,nt.
(vi) We have
SUPge . |H, B0V, — NBNYV, )l
(18) = SUPge., |74 SBM,”’K I (0o + 0,(x))do — SB”Vn,K o(0) do|

g SV:,,,,K @(U)qn’x((f) dG' ’
where

(19) Gax(9) = |05 Ta x(b750 + 0,(X))p(0)™! — 1] .

From (10), (16),.(14) and (15) we obtain for all xe 4, for all0 e K, s e V, ,,
and r [0, 1],

[#(brxo + 0.(x)) + (1 — 1)0,(x) — 0]
(20) = b;’lxlal + |0n(x) - 0] < aK—ieK, + ek
= eK(l -+ 2aK‘5bKi) .
Hence, from (13) and (8),
{t(b;h o +0,(x) + (1 —00,(x): t€[0,1],0eV, K CO.

A Taylor expansion of 7, f(x,, b;% 0 + 6,(x)) around 0,(x) gives the existence
of #,€ [0, 1] such that with ,(c) = t,(b;%.0 + 0,(x)) + (1 — 1,)0,(x),
Q) X flxs bk + 0,(%) = Xin flxe 0u(X)) + §b7%0 D, f7(x;, 0,(0)) -

(Recall that 337, f'(x;, 0,(x)) = 0 for all xe 4.) From (2), (10), (14), (20),
(13) and (11) we have for all xe 4, forall s e V, 4,

(22) TS0 0,(0)) — B2 < X0 1S (%0 0,(0)) — f7(x;, 0,(X))]

< nhyb;1o] .
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Hence, using (3), (21), (22), (20) for t = 0 and ¢t = 1, (13), (14), (12) and (10)
we have
[log [6; %7 x(br k0 + 0,(x))] — log ¢(a)]

—1br g Y o 142 p(by o + 0.(x))
(23) < |—3b;%0° D1 [ (%0, 0,(0)) + 407 + |log oG.%)

< ntaHo|(doha ™t + By .
Furthermore, o € V,  implies by (16), (15) and (13),
(24) n~ta,~Ho|(§oh a4 k') < 2egapTibt(Sotha Tt + by
< 10 4 0, say.

Using the inequality |exp[s] — 1| < |s| exp[]s]] we therefore obtain from (19),
(23) and (24) forall xe A4, forall s e V, ,

(25) Gn.x(9) = n7ipy(0) exp[}o]
where

Px(0) = ax7Ho|(Jo%hy'ax™ + hy'") exp[dk] .
From (18) and (25),

(26) Suszg lHn,x(B n V’n,K) - N(B n K)i é % - ’
if
(27) cx = 6(2m)7t § px(o) exp[ —}o*] do .

(vii) We now give a bound for H, (V¢ ). We have (see (4), (3) and (1))
(28) Hy (Vi) = b7k Sye  Fu bk + 0,(x)) do

- S l(a:la—-ﬁn(xﬂbn,xZeK'nb.) n,x(a) dO' .

From (15) and (10) we obtain for all x e 4,
(29) e /ntbl — ey = ey .

Let
(30) rx = (infee o p(2)) 71,

where K’ is given by (8).
Then (28), (29), (14), (10) and (30) yield for all x € 4, for all § ¢ K,
H, (V.5
€ < 10t § Ligiomozegr ©XPL— Zies (f(xis 9) — flxi; 0,(X)))]o(0) do
S mbri § Lioiomoizeg) €XPL— 211 (fxis 0) — f(xi, 0))]o(0) do .
The last inequality follows from the basic property >ir, f(x;, 0,(x)) <

2, f(x;, ) of minimum contrast estimators. By Lemma 1(a) there exists
ex > 0 such that for all x € 4, for all § e K,

(32) infl,_pze, 2021 f(xi 0) > n(E f(+, 0) + ) -
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Using Chebyshev’s inequality we obtain furthermore for all x € 4,

(33) - Dafix 0) < Eof(-1 6) + ex

Hence, (31)—(33) yield for x € 4,

34 H, (Vi ) < ntbilyy exp[ —4ne]
= n2bgtyge™t < fognTh,

if

(39) Cx 2 126y, .
(viii) Obviously,

(36) N(Vix) < hexn

for a suitably chosen constant ¢, > 0.
(5) now follows from (17), (26), (34) and (36). By (6) the proof of the theorem
is therefore completed.

3. Lemmas.
LeMMA 1. Assume that the regularity conditions (i)—(iv) are fulfilled. Then:

(a) For every e > 0 and every compact subset K of © there exists d > 0 (depend-
ing on e and K) such that .

SUPyer Py{X € X™ 1 infl, gz, n™ iy f(X 0) < E, (-, 0) + d} = O(n~").
(b) For every e > 0 and every compact subset K of O,
SUpjex Po{x e X™: ||0,(x) — 0]| = e} = O(n~*?),
where 0,,, ne N, is a sequence of minimum contrast estimators.

Proor. The proof of (a) is a slight modification of the proof of Lemma 1 in
Strasser. (Concerning the basic idea see also Lemma 2.3 of Johnson [2], page
855.)

Part (b) of this lemma may be proved in the same way as Lemma 4 in Michel
and Pfanzagl [4], page 79. We shall show that (a) immediately implies (b):

Let e > 0 and K  © compact be given and choose d > 0 according to part
(a) of this lemma. Let, furthermore,

Ao ={xe X :inf,_ g5, n7t 20, fx;, 0) > E,f(+, 0) + d}
and

B,,={xeX":n '3 f(x;,0) > E,f(+, 0) + d} .
By Chebyshev’s inequality and condition (iii),
Supye x Py"(B,,5) = O(n™"?).

By definition of the minimum contrast estimator

1= f(x 0) 2 2o f(xe 04(X)) -
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Hence,
{(xex*:||0,x) —0||=enAd,,CB,,.
Since (a) implies
SUpge x Pp"(A5,9) = O(n™?),
the assertion follows.

LEMMA 2. Let the regularity conditions (vi)(b) and (vii) be fulfilled. Assume that
for every e > 0 and every compact subset K of O,

SUPjex P,,”{x ex": ||én(x’ 0) - 6“ > e} = 0('1_3/2) .
Then for every d > 0 and every compact subset K of O,
Supjex P € X* 1 |0t Dy f7(x,, 00X, 0)) — Eof"(+, 0)]| > d} = O(n=") .

Proor. It can be easily seen (using a uniform cover argument) that condition
(vii) implies the existence of constants e,, h, > 0 and a function k, such that

SUPge g Pp"{X € X" 217, kp(x;) > nhy} = O(n™"%)
and 0 e K, || — 0|| < ey imply

/7 (xs @) — f7(x, O)|| < |lo — O|kg(x), xeX.

Since .
7 220 [ (x5 O00(X, 0)) — E, f7'(+, 0)|| > d
and
2t kK(xi) =< nhy

imply

= 2ty f7(xi 0) — E, f7'(+, 0)|| > dJ2
or

10.(x, 6) — 6]| > dJ(2hy)
the assertion follows.

4. Regularity conditions. In the following s will denote an integer = 2.

(i) 0 — P, is continuous on O with respect to the supremum-metric on
{P,: 6 0B}.
(if) For each x e X, 6 — f(x, 0) is continuous on ©.
(iiiy For every 6 € ©, there exists an open neighborhood U, of 6 such that
sup {E,[f(+, 7)|*: 0, r € Up} < oo.
(iv) For every (¢,7)e®© x O, 6 + 7, there exist neighborhoods U, . of 6
and V, . of ¢ such that for all neighborhoods ¥ of ¢ with V' < V, _,

sup {E,|inf,., f(+, 0)]':0e U, .} < oo .
(v) For each xe X, ¢ — f{(x, 0) is twice differentiable in ©.
(vi) For every 6 ¢ O, there exists an open neighborhood U, of # such that
(a) inf{2(7): e U} > 0, where 2,(r) is the smallest eigenvalue of
E_f'(., 7).
(b) sup{E[|f"(s, 7)lI*: T e Uy} < oo.
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(vii) For every 6 c©, there exists an open neighborhood U, of ¢ and a
measurable function k,: X — R such that

(a) for every re© there exists an open neighborhood V¥, of r with
sup{E,ky: 0eV,} < oo.
(®) [1f"(x, 7) — f(x, 0)|| £ ||z — o||ky(x) for all ¢, ¢ € U,, xe X.

(viii) The probability measure 2| <Z* has a finite Lebesgue-density p, which
is positive on © and zero on ©°.
(ix) For every 6 € © there exists an open neighborhood U, of 6 and a con-
stant ¢, > 0 such that

[log p(e) — log p(7)| < |lo — |cy forall o¢,7ceU,.
[By (viii) this is fulfilled, if p’ is continuous on ©.]
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