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INADMISSIBILITY RESULTS FOR GENERALIZED BAYES
ESTIMATORS OF COORDINATES OF A
LOCATION VECTOR!

By JAMES O. BERGER
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Let X = (X, - -+, Xy,) be an n-dimensional random vector with density
fix — 6). Assume the loss incurred in estimating 6 by d is L(d — @) and is
convex. Let F be a generalized prior density. The question of inadmissi-
bility of generalized Bayes estimators of ¢ is considered.

As in Brown (1974 ¢), the crucial role played by the ‘“moment structure”
in determining inadmissibility results is indicated (moments defined as the
quantities 7,50 = § [The1 Xjk) + [(0/0x:)L(X)] f(x) dx).

Detailed inadmissibility results are given for a particular moment
structure, one which arises most naturally in trying to estimate a single
coordinate or a linear combination of coordinates of §. For example, sup-
pose 6: is to be estimated by the generalized Bayes estimator ¢r. (Thus
@, - -, 0, are nuisance parameters.) Under certain conditions, the most
important being that the moment structure be of a certain form, it is shown
that if there exist constants 2 > 0 and 7 > 0 such that

SR = x1— (n—3— Q) / [le i (-ai—; L(x)) fix) dx] for x> T,

then dr is inadmissible. Thus, for example, under certain quite general
assumptions, the best invariant estimator, do(x) = xi, of the first coordinate
of a location vector is inadmissible if n = 4.
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1. Introduction.

1.1. Summary of results. The question of admissibility of estimators of loca-
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tion vectors has been important for many years in mathematical statistics. This
paper is written with two important objectives. The first is to partially answer
a long outstanding question in location parameter theory—namely, when is an
estimator of a single coordinate of a location vector inadmissible? (This question
was posed by James and Stein (1960), whose conjectured answer for the best
invariant estimator turns out to be essentially correct.)

The second objective of this paper has to do with methodology. Recently,
Brown (1974c¢) has developed a powerful new method of solving inadmissibility
problems. Its essential idea is to reduce the study of inadmissibility in a given
situation to the analysis of an associated nonlinear partial differential inequality.
This paper is based on an extensive application of Brown’s method. As it is
one of the first to use this method, an attempt has been made to clearly outline
the needed steps, and to discuss the various techniques needed.

An exact statement of the problem discussed in this paper, along with its
relationship to known admissibility results, is given in Section 1.2, after the
necessary notation has been developed. Section 1.3 gives a heuristic development
of the methods used in this paper. Chapters 2 and 3 present the formal results.
Summaries of assumptions and results are given in Section 2.1 and the beginning
of Chapter 3. The assumptions, though numerous, are usually trivial to verify,
with the exception of the “moment structure” assumption. Section 2.4 gives
relatively simple situations in which this assumption is satisfied, along with ap-
plications of the theory. It should be mentioned that the theory will not apply
to estimating a normal mean. It can, however, be applied in certain situations
of estimating normal variances, and to estimating location parameters of densities
such as the multivariate lognormal. For details, see Section 2.4.

1.2. Preliminaries. Let X = (X, X,, ..., X,) be an n dimensional random
variable with density f(x — ¢) with respect to Lebesgue measure (¢ € R*). Let
F be a bounded generalized prior density w.r.t. Lebesgue measure (i.e. 0 <
F(0) < B < oo, while possibly { F(f)df = oo). Assume the loss incurred in
estimating ¢ by d is of the form L(d — 6), where L is a nonnegative convex
function and L(0) = 0.

In much of this paper (Chapter 2), the special situation of estimating ¢, (with
0,, - - -, 0, being nuisance parameters) will be considered. The loss will then be
assumed to be of the form L(d, — #,). (Note that here L is a function only of
one coordinate, while above it is a function of » coordinates. Though a slight
logical inconsistency is introduced, it seems worthwhile to keep the same symbol
for the loss throughout the paper. It will be clear from context which version
is being considered.)

For convenience, the notation A (x) = (9/0x,)h(x), h»9(x) = (3%/dx,0x;)h(x),
etc., will be adopted for any function & with the appropriate number of deriva-
tives. Let |§| denote the usual Euclidean norm of the vector £&. Denote the r X r
identity matrix by /,. Define for any vector y, the vector y* = (y,, ys, -+, V).
(Thus X=(X,, X*)and §=(6,, 6*).) For notational convenience let K be a generic
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constant. Finally, define a differential operator “<” on twice differentiable
functions G: R* — R, by

DG(x) = —[GV(X) —  B1a GHO()] -
The following conditions on L, f, and F will be needed throughout the paper:

(i) All third order partial derivatives of L and F exist.

(if) E,L(X + ¢) < o0, YceR"*, and E|L?(X 4 ¢)| < o0, Yce R" and i =
1, ..., n. (E,is, of course, the expectation under 6.)

(iii) E,LY(X)=0,i=1,..-,n.

@iv) § f(x — 0)F(0)dé > 0, Vx e R".
Assumption (iii) can really be made without loss of generality since using (i),
(ii), and the convexity of L, it is easy to see that there exists ¢ € R" for which
ELYX+¢)=0,i=1,...,n. A simple translation of the density f will now
ensure that (iii) is satisfied, while leaving admissibility considerations unchanged.

Denote the generalized Bayes estimator for #, w.r.t. the generalized prior
density F, by 0, = (05,15 0p 4 ---» 0p,). Under the above assumptions, it can
easily be checked that 4, satisfies §,. L®(0,(x) — 0)f(x — 8)F(0)d6 = 0, for
i=1,...,n

For given F and any estimator § = (4,, - - -, d,), define

7r(X) = (rra(X)s -+ 5 7p,a(X)) = 0p(x) — x,
1) = (1(x)> o5 7a(X)) = 9(x) — 9p(x) -

As usual, define the risk of an estimator 6 by R(d, 6) = z L(3(x) —0)f(x— 0) dx.
(Only estimators for which the risk is defined and finite for every ¢ will be
considered.) Also, define A,”(6) = R(d,, 8) — R(9, 6).

As usual, 6, is said to be admissible if A,”(#) = 0 for all ¢, implies that
A,7(6) = 0. Thus 9, is inadmissible if there exists an estimator ¢ such that
A,7(6) = 0 for all #, with strict inequality for some 4.

The following quantities play a crucial and relatively unheralded role in
questions of admissibility. Define b,; = E,L“?(X), and m, ;, je....j0) =
E[(TTk=1 X;)L?(X)]forl = 1. Theabove quantities will be called the “moment
structure” of the problem. Of particular interest will be the n X n matrix M,
with elements m, ;. Denote the rank of M, by r,.

The notation has now been developed far enough to take a brief digression
into what is already known about admissibility in location parameter problems.
Only the latest, most inclusive results will be mentioned. References to earlier
works are contained in papers cited below and in the bibliography.

For n = 1, the major result known is from Brown (1966), that for general
loss and general density f (subject mainly to a moment condition), the best in-
variant estimator is admissible. Farrell (1964) proved admissibility of generalized
Bayes estimators satisfying certain conditions, but mainly for squared error loss.
No general result has been obtained for generalized Bayes estimators, general
density, and general loss.
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For n = 2, the major result known is from Brown and Fox (1974a), which
shows that for general loss and density, the best invariant estimator is admissible.

For n = 3, the major result is by Brown (1966), showing that for general loss
and density, the best invariant estimator is inadmissible if r, = n. A little more
work would prove the result for r, > 3.

There are two major gaps in the above theory. First, general results exist
mainly for the best invariant estimator. It will become clear that similar general
results can be obtained for generalized Bayes estimators using the methods of
Brown (1974c¢) and of this paper.

The second and perhaps more important gap in the theory is that results are
essentially known only for the case n < 2 and the case r, > 3. The two essen-
tially unsolved situations are (i) r, = 1, n = 3, and (ii) r, = 2, n = 3. Inadmis-
sibility results for Case (i) will be the subject of this paper. Subsequent papers
will deal with admissibility in Case (i) and with Case (ii).

It should be noted that the above classification of problems by n and r, is only
a first order classification in that the rest of the moment structure can play a
crucial role.

Two further comments about “history”” are needed before we proceed. First
is a comment about Brown (1971). This paper considers the question of admis-
sibility of generalized Bayes estimators for the mean of an » dimensional normal
random variable, using quadratic loss. It contains a very complete analysis of
the problem, with F, n, and the moment structure all having evident roles.
(Though this was the first paper to make extensive use of reducing admissibility
to the study of an associated partial differential inequality, the idea itself goes
back in part to Stein (1965).)

Secondly, it should be noted that the problem r, = 1, n > 3 has been partially
solved by Portnoy (1975). He has obtained results for the best invariant esti-
mator, using squared error loss, and for a class of distributions with mass on
the (n — 1) planes determined by x;, = +m (m an integer).

The remainder of this paper will be devoted to consideration of the problem
defined by r, = 1. (The case n > 4 will be of primary interest, but the assump-
tion will not be explicitly made as new results will be obtained for smaller n
also.) The most obvious situation in which r, = 1 is when we are interested in
estimating only one coordinate of §, or some linear combination }; ¢,0,. It is
straightforward to see that through linear transformations this could be trans-
formed into the problem of estimating 6,. This indeed will be the situation
considered in Chapter 2.

Unfortunately, the assumption r, = 1 does not completely specify the problem.
One needs to make additional assumptions on the moment structure to isolate
a particular problem. The exact moment structure that will be considered in
this paper is given in the following lines. Assume

(1.2.1) m,=1, m, ; = 0 otherwise,
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(1.2.2) m,;=—1 if 2<i=j<n

=0 if i), iz2, j=2.

The m;; ;, k = 2, turn out to be unimportant for our purposes and hence need
not be specified. Indeed, note that in the special situation of estimating only
6,, where L is a function only of the first coordinate, L**’ = 0 for k = 2. By
definition, it is then clear that m, ;, ; = 0 for k = 2.

A large number of problems with r, = 1 can be reduced to a problem with
the above “canonical form” of the moment structure. Indeed we will now prove
the following two lemmas.

LemMma 1.2.1. If M, has rank 1 and a positive characteristic root, then the original
problem can be transformed into an equivalent admissibility problem with a moment
structure having the canonical form (1.2.1).

LeMMA 1.2.2. Assume M, is in the canonical form (1.2.1). Let M, be the (n—1) x
(n — 1) matrix with elements m, ; ;,2 < i <nand2 < j < n. If M, is positive or
negative definite, then the original problem can be transformed into an equivalent
admissibility problem with a moment structure having the form (1.2.1) and (1.2.2).

The following lemma provides the key to the proofs of the above lemmas, name-
ly that linear transformations of the problem preserve admissibility properties.

LemMma 1.2.3. If Q is a nonsingular n X n matrix, admissibility of 6,(x) for es-
timating 6 is equivalent to admissibility of 0,.(y) for estimating 0 in the transformed
problem (Y, n, L*, f*, F*), where Y = XQ~', =007, L*(y) = L(yQ), f*(y — n) =
Q1 f(yQ — nQ), and F*(n) = |Q|F(9Q). (Here |Q| denotes the determinant of Q.)

Proor. Straightforward. ]

Fortunately, while linear transformations leave admissibility properties un-
changed, they do change the moment structure. Thus we can now prove Lemmas
1.2.1 and 1.2.2.

Proor oF LEMMa 1.2.1. The first step is to note that since M, hasrank 1 and
a positive characteristic root, the Jordan canonical form theorem states that for
some nonsingular n X n matrix Q, the matrix QM, Q" has all zero elements
except for a constant C > 0 in the (1,1) position. Consider the transformed *
problem defined by ¥ = XQ~' (see Lemma 1.2.3). Noting that M, can be written
as M, = E[(VL(X))'X] (where V denotes the gradient and the expectation is
taken componentwise), calculation gives

M* = E[(VLX(Y))'Y] = E[(VL(YQ))'Y]
= E[(VL(X)Q")'XQ™'] = QE[(VL(X))'X]0™' = OM,Q7".
Finally, consider the above transformed problem with loss multiplied by C-.

Admissibility considerations are clearly unchanged, but now M,* = C'QM, 0,
which by construction is of the form (1.2.1). []



INADMISSIBILITY OF GENERALIZED BAYES ESTIMATORS 307

ProoF ofF LEMMA 1.2.2. Recalling that m, , ; = E[L®(X)X,X,], it is clear
that M, is symmetric. If M, is negative definite, it is well known that there

exists a nonsingular matrix P for which PM,P* = —I,_,. Let Q be the matrix
with elements ¢,, = 1,¢,, =¢,,=0for i=2,...,n, and ¢, ;, = p;_,,_, for
2<i<n 2<j<n. Inthe transformed * problem defined by ¥ = XQ, it is
easy to check that M,* = M, and M,* = PM,P* = —I,_,. But M* and M,*

thus have the canonical form given by (1.2.1) and (1.2.2).

If the original M, is instead positive definite, first consider the transformed *
problem determined by Y = (—X,, X;, -+, X,). Clearly L*"(Y) = —L"(X).
Calculation gives

mf, = E[L*Y(V)Y ] = E[LY(X)X ] =m, =1,
m¥, ;= E[L*(Y)Y,Y,] = —my, ; for 2<i<n, 2Zj<n.

Thus M;* = M,, and M,* = — M, which is negative definite. The analysis then
continues as before. []

In determining whether or not a problem with , = 1 has a moment structure
which can be reduced to the proper canonical form, verification of the condition
of Lemma 1.2.1 usually presents no difficulty. As mentioned earlier, the com-
mon situation in which r, = 1 is when only 6, is to be estimated. The loss in-
curred in estimating 6, by d, is then L(d, — 6¢,), a function of only the first
coordinate. It isthus clear that m, ; = 0for i > 1 (since L®(x,) = 0 for i > 1).
If L is also strictly convex, then m, , = E[L®(X))X;] > 0. M, is thus upper
diagonal of rank 1 with a positive characteristic root, so Lemma 1.2.1 can be
applied.

The condition of Lemma 1.2.2 is, however, much more restrictive and must
be checked with care. For example, an easy calculation shows that if f is the
multivariate normal density, the reduction to canonical form results in a moment
structure where M, is the (n — 1) X (n — 1) zero matrix. Hence (1.2.2) will
be violated and the theory will not apply to estimating a normal mean. (This
difficulty is due to the unusual property of the multivariate normal distribution
that a linear transformation ¥ = XQ can be made for which Y, is independent
of Y,, ..., Y,.) For situations in which the conditions of Lemma 1.2.2 (or line
(1.2.2)) can be verified, see Section 2.4.

It should be emphasized that the restriction on M,, while unpleasant, is nec-
essary to completely define the problem. If M, is assumed to be of a different
form, the admissibility results will be different. A rough indication of this is
given in the next section.

Finally, it is worthwhile noting that a slight weakening of the condition on
M, is sometimes possible. For example, consider the special situation where
only 6, is to be estimated and the loss is only a function of the first coordinate.
It is often possible that an inadmissibility result can be proven for a subproblem
(a problem where only some of the nuisance coordinates are considered). It is
then clear that the inadmissibility conclusion follows for the original problem.
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Thus, if for a subproblem the matrix M, is positive or negative definite, inadmis-
sibility results can often be obtained.

1.3, Heuristic approach to results. As the technical aspects of the theoretical
development are somewhat intimidating, it seems desirable to briefly sketch the
important arguments. The main ideas are patterned after Brown (1974c¢), to
which the reader is referred for further discussion.

It is desired to obtain an approximation for

A,7(0) = R(95, 0) — R(3, 0)
(13.0) = §an[LGe(x) — 0) — L) — 0)]f(x — 0) dx
= Ve [LOp(¥) + x = 0) — L(z(x) + 7(x) + x — 0)]f(x — O) dx.
To do this, first expand L(yz(x) 4+ x — 0) and L(yz(x) + 7(x) + x — 6) in Taylor
expansions about (x — #), and then expand the y,(x) and 7, ,(x) in Taylor expan-

sions about 6. Inserting these expansions into the last integral of (1.3.1) and
wading through considerable calculation, gives

(1.3.2) AF(0) = — X, =m0 (0) — & X D=1 D=1 My 7:97(0)
= L1 251055101 e,5(0) + 74(0)2] + 2.

Here &2 consists of all the higher order terms resulting from the Taylor expan-
sions, while the m, ;, m, ; ,, and b,; are elements of the moment structure. It
is obviously desirable to make .2 small in some sense. .22 can be thought of
as consisting of higher order derivatives and higher powers of the y, and T
If the 7,(0) and r; ,(9) are smooth enough and small for large 6, it can be shown
that their higher order derivatives and powers go to zero faster than their lower
order derivatives and powers. Thus for large enough 6, &% can be ignored.
(Attempting to justify such statements is often quite difficult as we shall see in
Chapters 2 and 3.)

The general formula (1.3.2) encompasses a broad range of location vector
problems. At this point the moment structure assumptions (1.2.1) and (1.2.2)
will be employed to specify the problem. Also, the choice of the estimator &
will be up to us. (4 is the competitor to d,.) The situation is considerably
simplified if 9 is chosen so that 7, = 0 for i > 1. Using this choice, together
with (1.2.1) and (1.2.2) gives

BFO) = =120) + § Bius 1 99(0) — 4my 1172 (0)
(1.3.3) — 2k=a My MR (0) — 71(0)b1,/2
— 251 by (07 5(0) + 2.
The sense in which .52 can be made small in this setting is that as §, — co, A
will go to zero faster than the other terms. Since y, will be chosen to be smooth
and flat, it will also follow that as 6, — oo, ,%*(6) (k = 1) will go to zero faster

than y,(f). This, together with the definition of the differential operator &,
finally gives

(1.3.4) ABF(H) =~ D7(0) — 7°(0)6y,/2 — 25=1by; 71(0)75,5(0)
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for large 6,. (Here ~ is to be understood as approximate equality, where the
error goes to zero faster than the right hand side, as 6, — co.)

In demonstrating, heuristically, the use to which the differential approxima-
tion (1.3.4) will be put, the case y, = 0 will be considered for simplicity. The
problem is then one of determining when the best invariant estimator is inadmis-
sible. (1.3.4) thus implies that for large 6,

(1.3.5) A7) =~ Z7(0) — 1,(0)by)2 .

To prove that the best invariant estimator is inadmissible, a solution 7, to
A,” > 0 must be found. We look first for a solution for large 4,, and hence can
use (1.3.5). Note that Zy,(f) = 0 is the (n — 1) dimensional heat equation,
which has as a solution for 6, > 0, y(6) = —60,~""V"2exp[—|6*%/26,]. This
suggests looking at estimators of the form

(1.3.6) 1:(0) = —0,7* exp [—|0%*/20,] .

Inserting this estimator into (1.3.5) and going through some calculation, gives
that for large 6,

(1.3.7) AF(60) ~ (" = I_ a) 6,-1) exp [— |0%[%/20,]
- ‘91_% exXp [‘ |0*|2/01]b11/2 .

For this to be positive for large 6, one needs a < (n — 1)/2 and (a + 1) < 2a.
In conclusion, if y, is defined by (1.3.6) and 1 < a < (n — 1)/2, it should be
possible to conclude that A,”(6) > 0 for large enough 6,. If n > 4, such a choice
of “a” is possible, and it is then reasonable to expect that the best invariant
estimator is inadmissible. An estimator which would appear to be better is

(1.3.8) 0(x) = (x, — x;7*exp [—|x*|*/2x,], x*) for x, > 4
=X otherwise,

where 1 < a < (n — 1)/2 and A is appropriately large. Unfortunately, this es-
timator does not work in our analysis, since the error terms involved in the
approximation (1.3.5) are not small enough. The reason for this is that the
estimator is not appropriately smooth, as the terms y,“? are too big. One can
smooth it out, however, by defining

(1.3.9)  7r(x) = —Spnrxy7%exp[— |6 — x*2x,](1 + |€|")1dé  for x, > 4
=0 otherwise.

The estimator d(x) = (x, + 7y(x), x*) is actually shown in Chapter 2 to be better
than the best invariant estimator (for appropriate choices of 4 and a). It would
be interesting to know if the simpler estimator (1.3.8) leads to an improvement
itself.

Passing from estimators which improve upon the risk for large ¢,, to estimators
which improve upon the risk everywhere, requires additional arguments. Two
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different types of such arguments are given in Chapters 2 and 3. They both
use the basic idea that an estimator, J, such as (1.3.8) is better than the best
invariant estimator for 6, < 4 — 1. This is clear since if x, < A, then d4(x) is
the best invariant estimator x, while if x, > 4, then d(x) “corrects” the best
invariant estimator x by moving it closer to 6.

To deal with generalized Bayes estimators, one uses the approximation (1.3.4).
An extra term is involved in the calculations, but it is usually fairly easy to
compensate for it.

Before proceeding to the rigorous theory, one final observation is in order.
Hopefully, some feeling has been given of the importance of the moment struc-
ture. Had we started with a different moment structure, the differential approxi-
mation resulting from (1.3.2) would have been different and it is believable that
quite different results would have been obtained. To see that this is true, one
can look at examples of other moment structures in Brown (1974c).

The conclusion that can be drawn from this observation is that the question of
admissibility of generalized Bayes estimators of location parameters will probably
not admit nice elegant solutions. There can be no way to avoid bringing the
“messy” m; ;... ju» bi;» and perhaps even worse terms into the analysis, because
the ultimate answers depend upon them so profoundly. Hopefully, of course,
the problems of practical interest will have relatively simple moment structures
which can be handled.

2. Inadmissibility of generalized Bayes estimators. This chapter will deal
rigorously with the question of when a generalized Bayes estimator of 6, is in-
admissible. (Thus#é,, - - ., 6, are nuisance location parameters.) As mentioned
in Chapter 1, it will be assumed that the loss in estimating 6, by d, is L(d, — 6,).
Since the loss is then a function on R, the notation L'(y) = (d/dy)L(y), L"(y) =
(d*/dy*)L(y), etc., will be adopted for the derivatives of L. For convenience in
stating assumptions, the notation L%(y) = (d’/dy*)L(y) will also be used. A large
amount of notation will be saved later on by adopting the convention that
LO(y) = 1.

Since just 6, is to be estimated, only 0, ,, d;, 7, and 7, will be of interest.
Thus, for convenience, drop the subscripts “1” above. Likewise, for simplicity,
denote b = b,, = E,L"(X)).

2.1. Assumptions and results. It will be assumed that the assumptions of Sec-
tion 1.2 hold (the most important of which are the moment structure assumptions
(1.2.1) and (1.2.2)). In addition, the following assumptions are needed:

(1) If |y,| < D < oo, then there exist finite constants K,, and C,, for which
|LO(x, 4 yy)l = Kp|lLO(x)| 4 Cp i=2 or 3.

(2) EJ|X]*LX)|] < co fori=0,1,2,3and a = max (n + 6, 2n 4 3).
(3) There exist K > 0 and ¢ > 0 such that if |x,| < 7, then

Tt (1 4 J2])f(x,, ¥ dx* < K .
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4) lrel < B < co.
(5) There exist C > 0 and 0 < 4 < 4 such that if x, > C, then

rr(X) = —(n — 3 — 42)/(2bx)) .
Now define

Ta(X) = =Sy X700 exp [—|x* — EP/2x,](1 + [§]")" d€
2.1.1) if x>A4>C
=0 if X < A4.

This chapter is devoted to the proof of the following theorem:

THEOREM 1. Under the above assumptions, 0, is inadmissible for estimating ..
In fact, there exists a constant A such that 6, , = 0, -+ 7,., is better than 9.

Discussion of assumptions.

(I) Assumption 1 requires that L be in some sense smooth and increasing
slower than exponentially.

(2) Thus if n = 4 and L is squared error, we require 12 absolute moments
of our density. This is probably unnecessarily restrictive, but is needed for
technical reasons in the proof.

(3) This is another fairly weak technical assumption. It could actually be
eliminated, but the argument would become considerably more involved.

(4) Again this is more restrictive than absolutely necessary, but does admit
consideration of usual generalized Bayes estimators.

(5) This last assumption is the important one. Essentially, the dividing line
between admissibility and inadmissibility is y(x) = —(n — 3)/(2bx,). Indeed
in Berger (1974) it is shown that if y,(x) < —(n — 3 + ¢)/(2bx,) for some e > 0
and large x,, then d, is admissible.

Given a generalized prior F, it is necessary to estimate y, to verify Condition
(5). For this purpose, we refer to a result in Berger (1974). (See Theorem A
in Section 1.5 of that article.) Define &* as the “adjoint” operator to Z,
namely Z*G = —[G® + { 3., G*]. Theorem A essentially says that if F is
smooth, bounded, and nonzero, then for large x,,

rr(X) = —Z*F(x)[(bF(x)) 4 o(|Z*F(x)|/(bF(x))) -
(Here we are using the familiar “little oh” notation.)
As an example, suppose F is given by
Fo)y =1 for |6, <1
=10, for |60 >1.
Then Z*F(x) = —ax,~“*» for x, > 1. Hence by the theorem, if x, is large,

then y,(x) = —a/(bx,) + o(x,7"). Therefore if 0 < a < (n — 3)/2, Condition (5)
will be satisfied.
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It should be noted that Theorem 1 does not really depend upon the fact that
0y is generalized Bayes. As long as the estimator under consideration is meas-
urable and satisfies Assumptions (4) and (5), Theorem 1 can be applied to find
a better estimator.

2.2. Preliminary lemmas. As indicated in Section 2.1, the competitor to d,
will be 6, ; = 0, + 74, For notational convenience, we will henceforth just
write y for y, ; (or y, if the A4 is to be stressed).

We will be dealing with a Taylor expansion of y. Hence, information will
be needed about the partial derivatives of y and about the remainder term of
the Taylor expansion. This section gives a number of lemmas useful in this
regard.

When dealing with derivatives of y,, we will be working with expressions of
the form
[x* — §|™ exp [—|x* — £}/2x,] d€

X, 4 € '

By simple changes of variables, we get that the above expression is equal to

o lmexp[—lefaxgds _ (o [énexp[—eP2lds
R XA 4 x4 £ B X[ =DA(T o [x* 4 ExH)
All three expressions will be used in this section. For notational convenience
in the following lemma, define
exp [—[§[*/2x,]
, X) = .
gD(E ) x1(1+1)(1 + |x>!< + §|n)

LeMMA 2.2.1. There exist constants A and K, such that for x, > A and i =

2, ...,n,jzz, .., n,

(@) 7.00) = (1+ 0™ § o dé — (x,72) § [¢f dt,
(b) 70(x) = X1 § g df — %, § &2 dE,

(©) —Zr(x) = (n — 3 — 2)r()/(2x),

(@) o)) = Ko § [l ds,

(©) [ /() = Kx ™ § (1 4 x7 gy 2,

(1) (0] < K™ § (Do x el de,

(®) [ = Kot § (Dhey %, ¢ e a2

Proor. Straightforward calculation. 0

§ ot

For use in the following lemmas, define

Hyp i) = §pus — LS XD [ |C]/2x,] d€ if x, =4
) xl[m/2+(n—1)/2](1 4 |X* + E|n) =
=0 if x;, < 4.
The next three lemmas are of a highly technical nature Their proofs, though

involved, add little insight into the problem. Therefore, the proofs have been
put into an appendix.
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LEMMA 2.2.2. There exist constants A, and K, such that if A > A, then
Hm,A(x) é KXIZMHO,A(X)'

The next lemma will be used later on to handle the remainder term in a Taylor
expansion. Let ¢, i = 1,2, 3, be measurable functions from R* x R" — R}, satis-
fying 0 < ¢, < I. Define y(x, 0) = t,(x, O)x + [1 — 1,(x, 6)]0, o(x, 6) = t,x +
(I — 1,)0, and 7(x, 0) = t;x + (1 — t,)0. (Note v, w, and t are row vectors.
Hence v, is the first component of v, v* = (v,, - -+, v,), etc.) Define Q () as
the integral

€[" exp [ — |¢[/20,] dé
(2.2.9) S{a::z1>A)[SRn—l p,RAFDERA(] o l_'_ £[™)
X L0k, — 0))||x — 0J3f(x — 0) dx,

where 0 < j<3,0=<m <6,and 0 < i< 3. (More explicitly we could write
Q 4,1,5,1,m,t,,,,1,(0), Dut this would be a bit cumbersome.)

LeEMMA 2.2.3. Assume that either m = 0, or that m > 0 with t, = t, = t,. There
exist constants Ayand K such that if A> A,and 6, > A, then Q ,(0) < K|y ,(6)|0,~ %4,

LEMMA 2.2.4. For fixed ¢ >0, ¢’ > 0, and a > 0, there exist constants A, and
K such that if A > Ayand 44 — ¢/A < 0, < 44, then

[74((44 — ¢/ (44)7, 0%)| = Kl7.(0)] -
2.3. Proof of Theorem 1. To prove that there exists an 4 for which 6

better than d,, it is necessary to show that

A7, = R(0p, 0) — R(3,,;, 0)

54,2
(2'3'1) = [L(TF(X) + x, — 0)

- L(TF(x) + TA(x) + X — 01)]f(x — 0)dx
is greater than or equal to zero with strict inequality for some §. For notational
convenience, define A, = A7, ., and a« = —(n — 3 — 42)/2.

Expanding L(y; 4+ 7, + X, — 60,) in a Taylor expansion about (y, + x, — 6,)
gives

4,2 18

L(ypg 4+ 74 + % — 6,)
(2'3'2) = L(yp + x, — 0) 4+ 1L (rr + X, — 0,)
+ SRS L Oye + 7 + x, — 0, — p]dy.

Define

$40) = =\ 4L (r(x) + X, — O)f(x — 6) dx,

a(0) = = San STRELZY LD re + 1+ % — 6, — 7] dnf(x — ) dx.
Inserting (2.3.2) into (2.3.1) gives
(2.3.3) 8,(6) = S,(6) + <(0).

LeEMMA 2.3.1. There exist A, and K such that if A> A, and 6, > A, then
lex(O)] < Ky ()]0, 0+,
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Proor. Using the fact that L” > 0 and assumptions (1) and (4), we get

|51(0)| =< (gn S|;7|<|r| L'(yp + x, — 6, + V)|7”| dﬁf(x - 0) dx
= (g Sml<lrl [Kpi L'(x, — 0,) + Cpully|fix — ) dydx
< K§ P[L"(x, — 0) + 1]f(x — 6)dx .
For x, > A, Jensen’s inequality gives
oy — (¢ SXP[—|EP/2x,]dE
T(x) - ( S x1(1+x)(1 + Ix;k + Eln))
<K} exp [—|&[*/x,] d¢
= x12(1+2)(1 + |x>k + Eln)

< K| exp [—[§]*/2x,] d§ .
= x12(1+1)(1 + Ix* + Eln)

Thus

exXp [—I{:lz/le] dg " _ _
[ex(O)] = K §pn (oot (1 x* £ 6 [L"(x, — 6,) + 1]f(x — 6) dx

< K|7.(0)|6,-9+* (by Lemma 2.2.3). []

The next lemma can be considered the heart of the proof, as it analyzes S ,(6),
the dominant term in the risk expansion.

LEMMA 2.3.2. There exists an A, such that if A > A, and 0, > 2A, then
S,(0) = —274(0)/(20)).
Proor. Note that (—7) = 0, rz(x) > a/(bx,) for x, > A, and L’ is nondecreas-
ing. Hence
Sa0) = § —r()L'(rp(x) + X, — O)f(x — 0) dx
= { —7(x)L(a/(bx)) + x, — 0)f(x — O) dx.
Expanding L'(a/(bx,) + x, — 6,) above, in a Taylor expansion about (x, — 6,),
yields
S4(0) = § —r(O[L (%, — 0)) + L"(x; — 0,)/(bxy)
(2.3.4) + ST L () a(bxy)

+ X, — 01 - 77)d77]f(x - 0) dx .
Define ‘

hO) = § —r(x)a(bx) L' (x; — 0,)f(x — 0) dx,
7(0) = § —r()L'(x, = 0)f(x = O) dx = §aa5ay =7 (X)L'(x, — O)f(x — 6) dx,
a(0) = § —r(x) §E50y T L (p)l(bxy) + % — 0, — ] dnf(x — ) dx.
Then (2.3.4) becomes
(2.3.5) S4(6) = 1(60) + h(B) + «(0) .
As in Lemma 2.3.1 we get the bound

(2.3.9) |ea(0)] = Kl7a(6)]6,7+
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Next, consider #(f). Note it is only necessary to integrate over {x: x; > A},
since 7,(x) = 0 for x, < 4. If x, > 4 and 6, > A4, we can expand x,~' in the
Taylor expansion
Tt =0,"" 4 (xl - 01)[’(x1’ 01))‘1 + {1 - t(xv ‘91)}01]_2 ’
where 0 < f(x,0,) < 1.
Thus, defining

&(0) = —§ ay(x)L"(x; — 0,)(x; — 0,)67[tx, + (1 — 6)0,]7*f(x — 0) dx,
9(0) = § —ay(x)(b60,)""L"(x, — 6,)f(x — 6) dx,

we get

(2.3.7) H(O) = 9(0) + () -
To bound ¢,(9), note that
Pl _exp[—lél/n]de
[ox + (U= 00 = %5550+ [x* + &)
i exp [—|§[*/2x,] d§ .
[1x; + (1 — 06, ]°P(1 4 |x* 4 §]")

Using Lemma 2.2.3, we thus see that there exists an A, such thatif 4 > 4,and
0, > A, then

(2:3.8) e40)] < Kira(@)0,-+0.

Next, consider the term g(¢). Since 6§, > 4 and x, > A, we can expand y(x)
in a Taylor expansion about @, getting
7(x) = 7(0) + Xt (6 — 0)r@(ex + (1 — 0)f),

where 0 <r< 1.
Hence

(2.3.9)  9(0) = —ar(6)/0,
+ § —a(00,) 7[5 (x — )7 ( )L (%, — 0,)f(x — ) dx .

Call the last integral above ¢,(¢). Recalling the bound for y®(tx + (1 — 1)f)
from Lemma 2.2.1, we can use an argument identical to that following (2.3.7)
to conclude

(2.3.10) 50 = Kiy (0)16,-0+ .

Combining (2.3.8), (2.3.9), and (2.3.10) shows that there exists an 4, such that
if A > A,and 6, > A, then

(2.3.11) h(O) = —ar(0)/0, + &0) + e(6),
where [e,(8)] < K|7(0)|0,-+, i = 3, 4.

Finally, consider the term r(f). Again, since , > A4 and x, > A4, we can
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expand y(x) in the Taylor expansion

1(x) = 7(0) + rVO)(xs — 0)) + Zia(xi — 0)r7(0)
+ 3 Dt (x = 0.)°79(0)
(2'3'12) + % Z Z?,i:miqtj( )z( )j T(i'j)(ﬁ)
+ i (X — 0)(x; — 6,)r™"0(0)
+ 3§ 20 25 26 ()i )i( ey P (@)
where w = tx + (1 — )0, 0 < #(x, 0) < 1.
Insert this expansion into the expression for r(¢) and expand it into a sum of
7 integrals (corresponding to the 7 terms in (2.3.12)). We consider these in-
tegrals in order.
(i) To deal with the first integral, note that by assumption, E,L'(X;) = 0.
Hence,

Wiata>ar —1OL (6, — O)f(x — 0) dx| = [7(0) §iasaycay L' (62 — O)f(x — 0) dx|
= 17(0) Sia2y<a-0p L'(2)f(2) d2] .
Since we are assuming that 6, > 24, it is clear that {z:z, < 4 — 6,} C {z:
z; < —6,/2}. A simple Chebyshev argument then gives that the last term above
is bounded by K|y()|6,~*+¥/4.
(ii) To deal with the second integral in the expansion of r(f), note that by
the moment structure assumptions, E[X, L'(X;)] = 1. Hence,

$ioiay>a) —rPO)L'(x, — 0,)(x; — 0,)f(x — 0) dx
= —7r(0) + r™(9) $iziay<a) (%, — G)L'( Hf( )dx.
Again the second term above can be bounded by K|y(6)|6,~"+** (using the
Chebyshev argument and Lemmas 2.2.1 and 2.2.2 to bound y*(6)).

(iii)—(vii) The integrals corresponding to terms (iii), (iv), (v), (vi), and (vii)
of (2.3.12) are analyzed analogously, using the particular form of the moment
structure and Lemmas 2.2.1 and 2.2.2 (Lemma 2.2.3 is also needed to deal with
the remainder term (vii)). The integral corresponding to term (iv) gives the
dominant term § Y 7_, y#¥(#). The other integrals can all be shown to be bounded
by K|y (6)|0,” .

Collecting everything together gives

r0) = —7¥(0) + } Tiea 710) + <(0)
Dr(0) + e(0)
= —(n— 3 = 27(6)/(20)) + &(9) ,
where |¢,(0)| < K|r(6)|0,-***». Combining (2.3.5), (2.3.6), (2.3.11), and (2.3.13)
gives
Su(0) 2 e(0) — ay(0)[6, + &(0) + e(0) — (n — 3 — 24)7(6)/(20,) + &,(9)
= —4(0)[0, + <(9) »
where |e(0)] < K|7(0)|0,-4*.

(2.3.13)
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Choosing 4, large enough (recall 6, > 24 > 2A4,) so |e,(0)] < 2|7(0)]/(26,), we
have that if 4 > A4, and 6, > 24, then S,(0) = — 27 ,(6)/(26,). U

Lemma 2.3.3. There exists an A, such that if A > A, and 6, > 2A, then
B,(0) = —2r4(0)/(46,) > 0.

Proor. Obvious, using (2.3.3) and Lemmas 2.3.1 and 2.3.2. (Recall y(0) is
negative.) [J

It has thus been established for large enough 4 and for 6, > 24, that g, , is
better than d,. The rest of this section is devoted to showing that this improve-
ment can be extended to included all #. The following slightly more explicit
version of Theorem 1 will show this.

THEOREM 1*. Assume A, is chosen so Lemmas 2.3.1, 2.3.2, and 2.3.3 hold.
Then there exists an A > A, such that A,,(0) = 0V 0, with strict inequality for
0, > 4A.

Proor. Denote ¢ = {1 (1 + [§]*)?dE. Consider first

Case 1. 0, < 44 + a(4A4b)™' — c¢(44)~"*», For convenience, denote § =
c(44)-@+», By definition, 7,,(x) = 0 for x; < 44. Hence,
(2.3.14) 034,2(X) = 0p(%) + 744(%) = 9p(x) if x, <44.

On the other hand, if x, > 44, an easy calculation shows that |r,,(x)] < 8.
Furthermore, since y,(x) = a/(44b), we can conclude

O44,2(X) = 0p(x) + 744(x) = 44 + a(4A4b) — B = 0,, if x,=44.

Since r,,(x) is negative for x, > 44, the estimate d,, ,(x) can only be closer to
¢, than d,(x). Combining this with (2.3.14), it is thus clear that A,,(f) = O for
0, < 44 + a(44b)' — B.

CASE 2. Assume 0, > 44 + «a(4A4b)~' — B. As in (2.3.3), consider

(2.3.15) A, (0) = &(0) + S.(0) .
By Lemma 2.3.1, it is clear that
(2.3.16) [e:(0)] = Klr4(0)]60,0+70 < K|y (0)]0,~ 44,

To deal with S,,(0), define Q(0) = {x.: a(x,0)" + x, < 0}.
Sa(0) = Szappaa) —T0a(OL (7p + %, — 0))f(x — 0) dx
= Vi) =1L (a(x, )™ + x, — 0)f(x — 0) dx
= S(a::z1>4A) —Taa() L (a(x,6)71 + x; — 0)f(x — 0)dx
+ S(z:A<z1<4A)nQ(0) —1a4(X)L (a(x,6)7 + x; — 0,)f(x — 0) dx .
The last step above follows since if x € Q(f), then L'(a(x,b)™' + x, — 6,) < 0.
Finally, noting that r,,(x) = r,(x) if x, = 44, we get
(2.3.17)  S.,(0) = S{x:xl>A) — 14X L (a(x,6)7 4 x; — 0,)f(x — ) dx
— Vimiacacanneoe = Ta(X) L (a(x,6) 7 +x,—0,) f(x—0) dx .
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The proof of Lemma 2.3.2 verifies that
(2.3.18) Siwiaysay —Ta(OL(@(x,0)7 + x; — 0)f(x — 0)dx = — 27 ,(0)/(20,) .

Thus it is only necessary to deal with the second integral of (2.3.17). Denote
this term ¢,(9).

By the definition of Q(6), if er(ﬁ) and 0, = 44 + «/(44b), then x, +
al(4A4x)) = 44 + «a/(4Ad). Since a < 0, this 1mp11es that x, = 44. But then {x:
AL x;, < 44}n Q)Y = @. In conclusion,

(2.3.19) q(0) =0  if 6,>= 44 + aj(44b).

Finally, consider the region P = {#: 44 — 5 + a/(4A4b) < 0, < 44 4 «a[(4A4b)}.
Note first that if 6, = 44 — 3 + a/(4A4b), then

{x: 4 < x;, <44} n QO
={x: A< x;, <44} n {x: x; + a/(bx)) = 6,}
C{x: A< x, <44} n {x: x; + a/(bx)) = 44 — B + a/(4A4b)}
C{x:44 — B < x, < 44} .
To see the last step above, note that if x;, > 4 (large), then x, + a/(bx)) is in-
creasing in x;. But x; = 44 — 8 doesn’t satisfy the inequality x; + a/(bx,) =
44 — B + af(44b) (recall « < 0). Hence we must have x; = 44 — 3, and the

result follows.
Using the above result, it is clear that

(2.3.20) [e2(O)] = §iziaapsayzany T4 L (a(x, )7 + x; — 0))[ flx — 0) dx.

Note next that |a(x, 5)* + x, — 8,| < K for x, in the above region of integration
and ¢ in P. Hence |L'(a(x,0)™" + x; — 6,)] < K. Also, since x, > 44 — 8 and

Ais large, then |y, (x)| = |7.((44 — B), x*))|. (It can easily be checked by Lemma
2.2.1 (a) and Lemma 2.2.2 that y,™(x) is increasing in x, if A4 is large enough.)
Thus (2.3.20) implies
(2.3.21)  [el0)] = K §iiop Srnn [74((44 — B, x))| f(x — 6) dx* dx, .

As a step in the proof of Lemma 2.2.3 (namely, the analysis following line

(2.2.10) in the appendix), arguments were given showing that for a fixed constant
d, there exists a K for which

Von- [74((ds ) f(z — 0) dz* = §pa-s K74((d, 0%))I(1 + |z — O")f(z — 6) dz* .
Applying this result to (2.3.21) gives
2:3.22)  Jo(0)] S Kly (44 = B 0] iy Scs (1 5 b — O)f0x = 0)de
= K|y ) Vidz5o, Vo1 (1 4 |x|")f(x) dx* dx, .

NotethatiffisinPand44 — § — 0, < x; < 44— 6,, then |x;| < —a/(44D) + 8.
Choose A large enough so —a/(44b) + B < = (where r comes from assumption
3). Thus in the above region of integration, |x,| < r, and hence by assumption
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3 and (2.3.22)
(2:3.23)  [e0)] = KIru((44 — B, 0%)] Vil K" dx, = K|7,((44 — 6, 0)|5 .

Note that if § isin P, then §,/44 < 2. Hence 8 = ¢(4A4)~"*+" < K§,-%*?. Finally,
by Lemma 2.2.4, |7,((44 — B, 6%))] < K|r.(6)|. Hence (2.3.23) implies

(2.3.24)  [ef0)] < Kl (0)]6,70+7 < K|p(0))0,-0+  if 0 isin P.

Combining (2.3.15), (2.3.16), (2.3.17), (2.3.18), (2.3.19), and (2.3.24) it is
clear that for 0, = 44 — B 4 a/(44b),

(2.3.25) Ai(0) = —27,4(0)/(26,) + €,(0) + e(0)

where |¢,(0)] < K|y ,(0)6,”***¥*. Choosing A large enough so that KA-** < /8,
we can conclude that A,,(6) = —A7,(0)/(46,) > 0. [

2.4. Applications. In attempting to apply Theorem 1, it is usually straight-
forward to check that the assumptions of Section 2.1 are satisfied. Verifying
the moment structure assumption (1.2.2), however, can be fairly difficult. (Note
that the moment structure assumption (1.2.1) can virtually always be satisfied
for the situation of this chapter. See the discussion following Lemma 1.2.3.)
The following theorem gives certain useful conditions under which (1.2.2) can
be satisfied, and under which we can conclude that 4, is inadmissible. The
theorem is used for several applications.

THEOREM 2. Assume E,L'(X)) = 0, E[L'(X)X,] =1, E[L'(X)X;]=k 2 <
i < n), and
E[L'(X)X;X;]=a if i=j=1
=r if i=1 o j=1, i#]
c if 25i=j<n

=d otherwise.

I

Assume, also, that assumptions (i) through (iv) of Section 1.2 and assumptions (1)
through (5) of Section 2.1 hold.

(a) If (¢ — d) and [(c — d) + (n — 1)(d — 2kr + k*a)] are nonzero and have
the same sign, then the problem can be reduced to one with the correct moment struc-
ture, and 0, is inadmissible.

(b) Assume (¢ — d) is nonzero, and that there exist K > 0 and 2 > 0 such that
if x, > K, then yy(x) = —(n — 4 — 42)/(2bx,). Then 0, is inadmissible.

Proor. It is necessary to show only that the problem can be reduced to the
canonical form given by (1.2.1) and (1.2.2).

Define Y, = X, and Y; = X; — kX, for 2 < i < n. In the transformed prob-
lem, E[L'(Y,)Y,] =1, while E[L(Y,)Y,] = E[L(X)(X, — kX))] =0 for 2 <
i < n. Thus (1.2.1) is satisfied.
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Next, note that for 2 < i< nand 2 < j < n,
my ;= E[L'(Y)Y,Y;]
:C——2kr+k20 lf i:]
=d — 2kr 4 k*a if i,

It is well known that an (n — 1) X (n — 1) matrix with diagonal elements « and
off diagonal elements 8, has characteristic roots [@ + (n — 2)B]and (@ — f) (the
latter with multiplicity n — 2). Hence M, (the matrix with elements m, , ; above)
has characteristic roots [(¢ — d) + (n — 1)(d — 2kr + k*a)] and (c — d) (the
latter with multiplicity n — 2). If these roots are nonzero and have the same
sign, Lemma 1.2.3 can be applied to conclude that the problem can be reduced
to one with the canonical form (1.2.2). Hence d, is inadmissible and part (a)
of the theorem is verified.

To prove part (b), consider the subproblem consisting of Y, and the (n — 2)
random variables corresponding to the (n — 2) eigenvectors of (¢ — d). Since
(¢ — d) is nonzero, one can again apply Lemma 1.2.3 to conclude that the sub-
problem has a moment structure which can be reduced to (1.2.2). Note that
the effective dimension has been lowered by 1. Hence Condition (5) of Section
2.1 becomes the condition given in (b). Again, it can be concluded that d, is
inadmissible. []

Theorem 2 is useful in situations where enough symmetry is present. Two
such cases will now be presented.

ExaMpPLE 1. Suppose YV, =In(X; — 6,), 1 i< n, where Y = (Y, -+, Y),)
has a multivariate normal density with mean 0 and covariance matrix Y. Assume
J; has elements 0, = aj, 0, =, 2 < i< n),0;, =0;;, = a,(2<i<n),and
0,; = @, otherwise. X = (X, -+, X,) thus has a density f(x — #) which is a
version of a multivariate lognormal density.

To apply Theorem 2, the problem must first be properly centered. Thus
find ¢’ so that E L'(X, + ¢’) = 0. Consider, then, the reparameterized problem
of estimating » = (¢, — ¢/, #*) with the induced density and generalized prior.
Clearly admissibility considerations are unchanged in the new problem, while
E o L'(X)) = § L'(x)f(x, — ¢, x*) dx = 0.

Next, normalize L so that E[L/(X;)X;] = 1. Finally, due to the form of },
it is clear that EJL'(X))X,] and EJL'(X,)X,X;] will be of the form given in
Theorem 2. Hence to apply the theorem it is only necessary to calculate
(¢ — d)and [(c — d) + (n — 1)(d — 2kr + ka)].

As a specific example, suppose n = 4, F = 1, L is squared error, o, = 1
(1=ign),o;,=0,=.8(i<2<n),andg,; = .64 otherwise. It is straight-
forward to verify that assumptions (i) through (iv) of Section 1.2 and assump-
tions (1) through (5) of Section 2.1 are satisfied. Numerical calculation gave
¢/ = —1.67 (to the nearest hundredth). Note that the generalized Bayes esti-
mator of 6, is thus (approximately) d,(x) = x, — 1.67. Numerical calculation
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likewise showed that (¢c—d) =2.32 and [(c — d) + (n — 1)(d — 2kr + k*a)] = 3.19.
Since both characteristic roots are positive, part (a) of Theorem 2 implies that
0, is inadmissible.

It has already been mentioned that the theory will not apply to estimating a
normal mean. It can be applied, however, in many situations of estimating a
normal variance. Example 2 develops this idea through consideration of a more
general multiplicative model.

EXAMPLE 2. Suppose X = (c,¢;, €45, - - -5 C,6,), Where ¢;, - .-, ¢, are positive
random variables with a known joint density f, and ¢, - - -, ¢, are unknown
positive constants. This is a model where the errors ¢; are multiplicative. Note
that X has density (T]7., ¢,™)f(x,/¢;s - - -5 X,/c,). Assume it is desired to estimate
¢;, and that the loss incurred in estimating ¢, by 4, is L(In (d,/c,)) (where L(+)
satisfies our usual properties). Finally, assume the generalized prior density is
of the form G(c, ---,¢,) = F(lnc, Ing, ---, Inc,) [T, ¢,

The above problem can be transformed into a location parameter problem
by the transformation Y; = In X; and 6, = In¢c,. It is easy to see that Yisa
random variable with density g(y — 6) = exp (2] (y; — 0.)f(exp(y, — 61), - - -,
exp (y, — 0,)). The loss incurred in estimating ¢, by a, is L(a, — ¢,), and the
generalized prior becomes F(6,, 0,, ---, 0,). It is easy to check that d,(y) =
In d4(x), and hence that admissibility of d, in the original problem is equivalent
to admissibility of d, in the transformed problem. The transformed problem
can now be handled by the theory of Chapter 2.

As an example, suppose X = (X, - - -, X,) has a multivariate normal distribu-
tion with mean 0 and a known correlation matrix with elements p,;, =1 (1 <
i< n), py=p;=0a(2=iZn), and p;; = B otherwise. Assume the standard
deviations, g;, of the X, are unknown, and that it is desired to estimate a,.

Usual estimates of ¢, would be based solely on |X|. Hence, consider the
reduced problem of observing |X,|, |X,|, - - -, |X,| and estimating ¢,. If the usual
estimator is inadmissible in this subproblem, it is clearly inadmissible in the
original problem.

It is clear that we now have a multiplicative model with ¢; = ¢, and ¢, =
|Xi|/o;. Hence, making the transformations Y; = In|X;| and ¢, = Ino;, we get
a location parameter problem. One can now go through an argument similar
to that in Example 1, leading to application of the inadmissibility results.

As a specific example, suppose the loss is (In (d,/s,))?, the generalized prior is
G(oy -+, 0,) = [[}-,0,7", and n = 4. In the transformed problem, the loss is
squared error and the generalized prior is F = 1. Asin Example 1, the relevant
constants were numerically calculated for « = .8 and 3 = .64. The centering
constant was ¢’ = .63, while (¢ — d) = —.20and [(¢c — d) + (n — 1)(d — 2kr +
k’a)] = —.24. Again, the characteristic roots have the same sign. Hence by
Theorem 2, part (a), it can be concluded that the generalized Bayes estimator
Y, + .63 is inadmissible for estimating #,. In terms of the original problem,
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this says that the generalized Bayes estimator exp[Y, + .63] = 1.88|X]] is in-
admissible for estimating o,.

3. Inadmissibility of the best invariant estimator. In this chapter we revert
to the general setting of Chapter 1. Thus L need no longer be a function of
just one coordinate. Of course, it is still assumed that the problem satisfies
the moment structure assumptions (1.2.1) and (1.2.2). We are interested in
the question of admissibility of the best invariant estimator for 4. It is easy to
check that under the assumptions of Section 1.2, d,(x) = x is the best invariant
estimator.

A word is in order as to how this chapter relates to Chapter 2. The fact that
the moment structure assumptions, (1.2.1) and (1.2.2), are the same in both
chapters, means that essentially the same problem is being considered. The
difference is in the generality with which the problem is treated. To deal with
generalized Bayes estimators in Chapter 2, it was technically necessary to assume
that the loss was a function of only one coordinate. In this chapter this addi-
tional restriction will be dropped, though the price to be paid is that only the
best invariant estimator will be discussed.

As indicated in Chapter 1, the common situation in which the moment struc-
ture assumptions (1.2.1) and (1.2.2) are satisfied, is when the loss is a function
of only one coordinate. Thus Theorem 1 of Chapter 2 is really a more important
result than the theorem of this chapter. The major purpose of this chapter is
more related to the stated objective of describing a methodology. The particular
technique of interest is the method by which one passes from conclusions about
“large 6” (obtained by the differential approximation argument) to conclusions
about all 4.

In Chapter 2, Lemma 2.3.3 established that the generalized Bayes estimator
could be improved upon for large ¢,. Extending this result to all # was done
by a trick that was very dependent on the fact that the loss was a function of
only one coordinate. As a general tool in dealing with other location vector
problems, the trick seems to be of limited usefulness.

When dealing specifically with the best invariant estimator, however, a more
general and elegant technique can be used to pass from risk improvement for
large 6 to risk improvement for all #. This is the “randomization-of-the-origin”
argument used in other contexts by Brown. (See Brown (1974c).) The basic
idea of the technique is as follows. First, an estimator ¢’ is found which im-
proves upon the best invariant estimator for #, > A. Defining A(6) = R(d,, 0) —
R(d', 0), it can be shown that § A(f) df = oo. Intuitively, this leads one to hope
that the good effects of ¢’ (where A(f) > 0) could be made to overpower the
bad effects of ¢’ (where A(f) < 0). Indeed, a properly randomized version of
¢’ is shown to do this. The details, as usual, get fairly involved.

While “randomizing-the-origin” appears to work only for the best invariant
estimator, it is useful in a wide variety of location parameter problems. Because
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of the generality and attractiveness of the technique, it seems desirable to exhibit
its use in a situation considerably more complicated than ones in which it has
been previously used. Of course, the theorem obtained for the best invariant
estimator will be more general than the corresponding result of Chapter 2.

It will be shown that if n = 4, then the best invariant estimator, d,, is in-
admissible. The assumptions needed, in addition to those of Chapter 1, are

(1) If |y,| < D, then there exist K, and C,, such that

|[LEY(x; + pp, x¥)] £ K| LBV (X)| + Cp and
LD, 4y, x4 S Kol LE()] 4 €, -
) ElX]" < oo, E[IX|LYX)] < oo, E[IX]TLEP(X)]] < o, and
E[| X5 L D(X)|] < o0, where « = max (n + 6, 2n + 3).
These assumptions are familiar and relatively weak.
Define the estimator d'(x) = (x, + 7,,;(X), X*). (74, is defined in (2.1.1).)

Also denote A,(f) = R(d,, @) — R(¢’, §). We begin by proving an analogue of
Lemma 2.3.3.

LemMa 3.1. Assumen = 4. There exists an Ay such that if A > Ayand 0, > 24,
then A ,(0) = —7.4,,(6)/(80,) > 0.

Proor. Denote y(x) = y, ,(x) for convenience. An expansion of L(y(x) 4+
x, — 0, x* — 0%) about (x; — 0)) gives
A,0) = S [L(x — 0) — L(y(x) + x, — 0,, x* — 0%)]f(x — 0) dx
= —§ r(x)LP(x — O)f(x — ) dx
= VIS L0, x* — 07 + X, — 0, — 7] dy]fix — 0) dx
= 85,(0) + ¢(0) (definition).
The rest of the proof is analogous to the corresponding proof in Section 2.3.

The dominant term in the analysis will be —(n — 3 — 1)7(6)/(26,) = —r(6)/(44,)
since n = 4. ]

We now proceed with the “randomization-of-the-origin” argument. Lety =
(71> - - +»7,) bean n-dimensional random variable, where 7, has a Cauchy density
et/[x(1 + o)), and * = (i, - - -, 1,) has a uniform density on |p*| < D (in-
dependent of 7,). Define 9, ,(x) = E? ,[0"(x + n) — ]. (The 5 in E} , is to
emphasize the variable with respect to which the expectation is to be taken.)

THEOREM 3. If n = 4 and the previous assumptions are satisfied, then the best
invariant estimator, 0, is inadmissible. Indeed, there exist constants A, p, and D
such that R(dy, 6) — R(0, 5, 0) > O for every 6.

ProoF. Define A’ = R(3,, 0) — R(3,, p, 0) = E,[L(X — 0) — L(3, ,(X) — 0)]-
Clearly E, L(X — 0) = E,E} , L([X + 7] — [0 + 7]), while
Ey L(3,,p(X) — 0) = E, L(E} ,[6"(X + 1) — (0 + 7)])
S BB} L(0"(X + ) — (0 + 7))
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(The last step follows from Jensen’s inequality since L is convex.) Hence,

A(0) =z E,E} p[L(X + 7] — [0 + 7]) — L(O"(X + 1) — (6 + 7))]
= E] pEgyp[L(0(X) — (6 + 7)) — L("(X) — (0 + 7))]
= EZ,DAA(ﬁ +7) = ED”*EpﬂlAA(o + 7).

Breaking up the inner expectation above, gives

: e A0 + 9ot diy,
3.1 A'(6) = E,» [ A-1-6, 247 0 )T
(1) L

S ()l Sanay (), .

It is desired to find 4, D, and p such that the expression in (3.1) is positive for
every ¢. First note that if 4, < 4 — 1, then A () > 0. This is because &' = 4,
for x, < A, while for x, = A4, ' moves the estimate d,(x) = x closer to . (Recall

74(0) < 0 and |7,(0)| < 1). Hence,
(3.2) jazi-0 a0 + Mot dny o
z(1 + o1,%)
By Lemma 3.1, A,(@ + ) > 0 for 24 — 6, < n, < co. Using this together

with (3.1) and (3.2), it is clear that to show that A’(9) > 0, we need only find
A, p, and D for which

. A(0+>7)Ip*‘d77} [ A(0+>7)p*d>7]

E.7 sa—s; |B4 W< Err | (e, Z4a\" T 7 L.

o | v, e g R s

Defining V = {p*: |p* — 6*| < D}, itis clear that the above expression is equiv-
alent to

24 ]AA(77)| dy, dn*
3.3 v Vd-n
(3:3) b ¥ 5 o — 6

0§ Dal)) dnydn
[1 + p(7, — 62)°]

IA

Define
Hy(0) = §y Sty [Ba(n)| dyy dp*
G,"(0) = §y 14 A, () dy, dn* .
It is clear that (3.3) will be verified if we find T, p, D, and 4 for which

inf, o oacran [T+ 007 — 6.)7]
3.4 Hy(60) 5 —netai G0
( ) ’ ) SUD, e 24,1) [1 + 10(771 - 01)2] ’

At this point, the following lemma is needed:

LEMMA 3.2. There exists a T > 4A such that if D = T*, then Hy,(0) < G,"(0)/6
for every 6.

ProoF oF LEMMA. Using the notation of Lemma 3.1, it is clear that |A ,(7)| <
|S.(7)| + |ex(n)]. An easy modification of Lemma 2.2.3 gives that if , > 4 — 1,
then |S,(7)| < K9,™|7(»)|. The same bound can be obtained for |¢,(7)|. Recalling



INADMISSIBILITY OF GENERALIZED BAYES ESTIMATORS 325

the definition of y(7), it is thus clear that

2 expl—|& — 7*/20,]dé d d*
Hy(0) = A A dnydy* < §y §Hiy Senea (1 +1|5|n) 1

exp [ —[£[}/2) & dy dy*
nl[”x"("‘—l)/z](l + |5”1% + 77*!”)

For convenience, denote the above integral ﬁp(a). By Lemma 3.1, A,(y) =
—7(n)[(8,) if 7, > 24. Thus

_ . exp [—|€[*/2] d dy, dy*
GDT(ﬁ) = {, % AA(p) dp, dn* = 313 1Y% SzTA § rn-1 771['37—(7»..1)/2](1 + |§771% 1_|_ 77*|”) )

Denote the last integral above by G,(6). Clearly, to complete the proof of the
lemma, it is only necessary to show that H,(0) < G,(6)/6. There are two cases
to consider.

Case 1. |0*| < TtInInT. Clearly

=y S%ﬁ—l) SR”‘I

exp [—|E[/2] dy* dE dy
(3.5) D(o) = (Hon Srnet Sne 17][{,‘_(” Dl + (€ +17 | ) K, < oo.

Defining Q = {§: |Ep,} + 9*| < 1} = {§: |6 + n*p, 7% < 9,74}, it is clear that
since T > 44,

- : exp [ —|€]%/2] d€ dy, dy*

(3.6) Gu(0) = § 3y §52 50 m[,ﬂ,_g [WI](II/ +] |em%m+ 7; 3

The measure of Q is Ky,~*~" 2 (the volume of the (n — 1) sphere of radius 7,7%),
which is greater than K7-~"/* over the given region of integration. Further-
more, since 7, = T/2 and |[p*| < |0* + T* < T¥(Inln T + 1), it is clear that
SUP:eq [§] < (I7*| + 1)yt < K’ InIn T. This last fact implies that over the re-
gion of integration in (3.6), exp[—|§[>/2] = (In T')~%*'. Hence, recalling the
definition of V, it is clear that if n = 4, then

i} KT-™-v7(In T)=¥'"* dy, dp*
(3.7) Go(0) = § §y §7e 2n(w L

> K"Ti(In T)=%'"".

Combining (3.5) and (3.7), it is clear that if T is large enough, then H,(0) <
G,(0)/6, as was to be shown.
Finally, we need to consider

Case2. |0* = TtInlnT.

We first obtain an upper bound for H,(0). Break H,(6) up into two integrals,
H, (6) and H, ,(0), consisting of the integrals over || < T* and |§| > T* respec-
tively. Thus

exp [—|€[*/2] d€ dy, dy*
) Ho0) = S 8liow Strart CamZim 1 1 e )

Note that over the above region of integration, », is bounded, || < T*, and
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|p*| = 6% — T* = T¥InInT — 1) = (T*InInT)/2. Hence, if T is large
enough, then |67} 4 »*|* = KT™. Using this bound in (3.8) and integrating
gives H,,(0) < KT-*. A simple calculation also shows that Hj,(6) <
KTb2exp [—T*%/2]. Thus for large enough T, we can conclude that

3.9) H,0) < KT+

To obtain a lower bound for G,(8), restrict the region of integration to |§] < 1.
Then, since », < T and |p*| = (T*InlnT)/2, it is clear that |En,t + p*|* < KT~
Using this bound in the expression for G,(¢) and integrating, gives for n > 4,

(3.10) Gp(0) = KT v 2T-"2T% = KT-4,
Combining (3.9) and (3.10), it is thus clear that if T is large enough, then
Hy(0) < Gp(0)/6. [

The final step of the proof of Theorem 3 is to prove

LemMaA 3.3. If p = T2, then

infvlem—l,u) [1 + 9(771 - ‘91)2] > % .
SUpP, ca,m [1 + 007 — 61)"] —

Proofr oF LEMMa. Three cases must be considered.

Casel. 0, < 0. Clearlyinf, . ,_,24[1 + p(n, — 0,)'] =1 + p(4 — 1 — 6,)%,
while sup, ¢ o4,r [1 + 007 — 0] =1 + o(T — 6,)". Hence,
wslt+teAd—1—0) 1+4+p4—1)7 1

= 14+ T -0y — 1+ pT* — 1 4+ 7777

Case 2. 0< 0, <44. Clearly inf, 100 [1 + o(n, — 6,)'] = 1, while

SUP, e24,m) (14— 011+ o(T —0,)) <1 + pT? = 2. Hence W = 3.

CasE 3. 6, = 44. Clearly inf, ¢ 104 [1 + o(0, — 0,)'] = 1 + p0,’/4, while

SUpP, e4,m) [14+ 00 —0)Y1=1 4007+ o9 =1 4 p0,> + T7T* < 2 + p0)"

Hence, W = (1 + p0,*/4)](2 + p0) = . O

In conclusion, Lemmas 3.2 and 3.3 establish that if T"is large enough, D = T#,
and p = T-?, then

— 1
=3.

H,(0) < G,"(0)/6 < WG,7(0).
This establishes line (3.4) and hence proves the theorem. []

4. Generalizations and conclusions.

1. The obvious generalization of interest is the generalization to the multi-
observational situation. It should be possible to do this by the usual method
of conditioning on the maximal invariant. (See Farrell (1964) or Brown (1966).)
One proves inadmissibility in the conditional problems, and hence inadmissi-
bility in the full problem (modulo the not too difficult task of showing that the
conditional “improved estimators” can be combined in a measurable way).
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2. Most of the results should carry over to the case where the distribution
of X does not have a density w.r.t. Lebesgue measure.

3. Generalizations to nonconvex loss are harder than the above generaliza-
tions. For the best invariant estimator, we believe nonconvex loss could be
handled along the lines of Chapter 3, using a somewhat more involved ‘“‘ran-
domization-of-the-origin” argument. For generalized Bayes estimators, however,
it is not clear how to deal with convex loss.

4. The need for so many moments (12 in the squared error loss, best invariant
estimator case) is unattractive. Most of these moments were needed for the
proofs of the technical lemmas in Section 2.2. One would hope to be able to
significantly reduce the number of moments needed by using more delicate argu-
ments in the proofs of these lemmas.

5. From a practical point of view, the estimators we found which improve
upon 4, are not very significant, since they are complicated and yield such a
small level of improvement. Hopefully, however, they will provide insight in
the search for significantly better estimators.

APPENDIX
Proor oF LEMMA 2.2.2. The inequality is obvious for x, < 4. Hence assume

that x, > 4. Note first that if x, > 0 and » > 0, then
(2.2.1) rmexp[—r*2x,] isincreasingin r for r < (mx)?
is decreasing in r for r > (mx)},

and hence is maximized at r = (mx,)! with a maximum value of (mx,)™?e~™"2,
For notational convenience, define (for fixed 0 < 2, < %)

0, = {x: |x¥ < 3[(m + )x]*},
Q, = {x: [x* = [(1 4+ 4)(x, — 1) In xl]%} >
Q, = {x: 2[(m + )x ]} < [x*| < [(1 + A)(x; + 1) In x,]%},
Pu(€s X) = [§™ exp[—|&[*/2x,] [yt A V(L 4 |x* 4 €]")} .
STEP 1. We first show that there exist 4, and K > 0 such that if 4 > A4,, then

H, ,(x) = Kx,~(»=b72 if xeQ,

(2.2.2) H, ,(x) = K|x*|- if xeQ,
H, ,(x) = Kx,~""P72 exp [ —|x*[*/2x,] if xeQ,.

To verify this, note that

Hy y(x) = § @5 X) d€ Z (iugranan Pol€5 X) d€
2 2 exp[— (Jx*] + 425 ]5 "

The bounds in (2.2.2) for the regions Q, and Q, follow immediately from this.
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For the region Q,, note that
Hy 4(X) Z ieagraizmn Pol€5 X) d€
= [1+ @)1 Sinercion eXPL— [61/25 0770 a8
> K|x*|™" § ee1<iana, -1 ©XP[—[6]7/2] d€
= KIX*|™ §ieneicansyn eXP[—[€/2] 48 = K'x*|™.
Clearly K and K’ above can be chosen positive. Thus step 1 is verified.

STeP 2. Let 0 < 4, < 4 be fixed. We show that there exist A4, and K >0
such that if 4 > 4,, then

H, «(x) < Kx,~"07 if xeQ,
(2.2.3) H, (x) < K|x*|™ if xeQ,
K K|x*|™ exp [ —|x*|(1 — 4;)/2x,] .
Hm,A(x) = X, + x, [/ (n=1)/2] : ' if xeQ,.

To verify this, consider first the region Q,. From (2.2.1) it is clear that
(mxl)m/Ze‘"‘—/z S df S le—('n—l)/2 .
xl[m/2+(n—1>/2] (1 + Ix* + Sln) =

Consider next the region Q,. Break up H,, ,(x) into the integrals over the
regions P = {£: |§] < (1 — 4)!x*|} and P°. Consider first the integral over P.
If & is in P, there clearly exists K > 0 such that |x* ++ &| = K|x*|. Hence,

1  Jel” exp[—|¢l/2x,] d€

1+ (le*l)n xl[m/2+(n—1>/2]

< K| § &) exp[—[€/2] dé < K7x,™,

H, ,(x) =

(2.2.4)  {pald x)dE <

Next, consider the integral over P°. If £eP° and xeQ,, then [§| > (1 —
A)R2[(m + D)x,]t > [mx,]t. Hence, |&|™exp[—|§[*/2x,] is decreasing in || (by
2.2.1). Therefore,

(2.2.5)  Speoullr X) dE

(L= Al expl—lx*f( = A)2x] (_ dE
= xl[m/2+(n—1)/2] 1 + Ix* _|_ glﬂ

Notice that the last integral above is a finite constant. Hence (2.2.4) and (2.2.5)
establish that (2.2.3) is true if x e Q,.

Finally, consider the region Q,. Break up H,, ,(x) into the integrals over the
regions T = {£: || < (1 — 2,/2)}|x*|} and T°. As in line (2.2.4), one obtains

(2.2.6) Vr om(§, X) d§ < K|x*[™.
A calculation similar to (2.2.5) gives

Klx*|™ exp[—|x*['(1 — 2,/2)2%]

xl[m/2+(n—l)/2]

(2.2.7) $re 0u(6, x)dE <
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Note next that if x ¢ Q, and if A, is chosen large enough (recall x; > 4 > A4),
then |x*| = [(x, — 1) In x,]¢ = [(m + n)x,]t. Hence, by line (2.2.1) it is clear
that
x| exp[— | x* (1 — 4,/2)[2x,]
< K[(In x)x, ™ exp[ —(Inx,)(1 + 4)(1 — 4,/2)/2] .
Using this together with (2.2.7) gives

K(ln xl)<m+m/2xl—[<1+11)(1—11/2)/21

e,

(2.2.8) §re 0m(€, x) dE < = K|x*|=.

(The last step follows since (1 + 4,)(1 — 4,/2) > 1.) Combining (2.2.6) and
(2.2.8) completes the verification of Step 2.

Step 3. From (2.2.2) and (2.2.3), it is clear that H,, ,(x) < KH, ,(x) for x in
Q, or Q,. For xin Q,, (2.2.2) and (2.2.3) give

Ho a(X) - Kx7"2 + Kx*|™ exp [— [x*[(1 — 4,)/2x,]x,"tm/20 -0/
Hy (x) — X,V exp [ —|x*(?/2x,]
= Kx;~texp[|x*|*/2x,] + K|x*|™x,;~™"2 exp[|x*|*4,/2x,]
< K'x~texp[(In x,)x, (1 + 4))/2x]
4+ K'x,=™2[(1 4+ 2))x; In x,]™* exp[(1 + 4,)4,x,(In x;)/2x,]
< K'[x4? 4 x,%] .

Choosing 2, = 4/2 and 4, = /4, the proof of the lemma is complete. []

Proor oF LEMMA 2.2.3. If m > 0, then ¢, = 1, = t,, and hence v = w = .
Note also that if §, > 4 and x, > A, then v = ,x, + (1 — 1,)0, > A. Under
these conditions, and using Lemma 2.2.2, it is clear that

[E]" exp [—|[}/20,] dE I
SRn-l y1[2(1+2)+m/2](1 + |T* 1_1_ éln) - m,A(a))w1 [2(14+2)—( )/2]
< Kow,'*H, ()w,~B0tH-m=1/]
exp[—|[6[*/2w,] d& .
wl[2+71/4](1 + I‘”* _l_ E|n)
Letting @ = 2 + 74/4, it is thus clear that under both situations of the lemma,

=K SR"‘l

A0 S K S Sgns § s SPLILRONE o g grsge — oy dxvd, .
0.(0) % K 57 S Snn SRIZVLZOLE 110, — g1 — o106 — 0) e

Changing orders of integration and making the change of variables z = x — ¢
gives
RO ) | LD (2| | 2|f(2) dz* dz, dE

2.2.10 0) < K §net §2m0y) St © (s 15
( ) 040) = K, 1T 0y § n-1 [0, + tlzl]“(l T Iﬂ* + 1,2% + fl")

Consider first the inner integral above. Break this up into integrals over U
and U, where U = {z*: t)|z%| < (1 4 |6* + £])/2}. Call these integrals 7, and
I, respectively.
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To deal with 7,, we first show

(2.2.11) (I 4+ |0* + t;z% + &M < K(1 + |0% 4 &™) if zxeU.
To see this, note that if |§* 4 §| < 2, then
(2.2.12) (14 (0% + 1,25 + &7 < 1< (14 299(1 4 (0% + &)
On the other hand, if |§* 4 §| = 2 and z* e U, then t|z*| < |6* + &|. Hence

0% + t32* + " = (10* + &[] — #fz*])"
(2.2.13) = (10 + & — (1 + 6% + &2

= [(16* + & — D2]" = |0* + &["/4" .

Combining (2.2.12) and (2.2.13) verifies (2.2.11). Using (2.2.11) gives

< K s SPLIER20, + 62O |2 2) dz*

[0, + t,z,]*(1 + |6* + &|")

For 1,, a Chebyshev argument gives the above bound with |z|#** in the inte-
grand in place of |z|. Using this bound in (2.2.10) and interchanging orders
of integration gives that Q,(¢) is bounded by

o exp[— |§|2/2(‘91 + t221)] j j+n 23 *

KS S S(A—aﬂ (01 + 1121)a(1 + |0* + §|”)(IZI] + lZl’ )]L< (Zl)lf(z) ledE dz* .

Break the above integral up into Q,, + Q,,, where Q,, is the integral over
the region V = {z: 4 — 0, < z, < 0}, and Q,, is the integral over the region
{z:2z, > 0}.

Consider first Q,,(0). If z; < 0, then 0, + 1,2z, < 6,. Hence for zeV, it is
clear that exp[—|£|%/2(0, + 1,2,)] < exp[—|§[*/26,]. This implies that

. < ttpo  expl—IEP20,]|L2)|(|2) + |27 ")f(2) dz, dE dz*

(2.2.14) 0,(0) = | (4—0p @, + t,2)(1 + [0 + &)
Break this last integral up further into two integrals over the regions V, =
Vniz:t)z) < 6,2}, and V, =V n {z:t|z] = 6,/2}. A similar argument to
that following (2.2.10) gives that these integrals, and hence Q,,(¢), are bounded

by

KS .. exp[—|€[*/20,] d€ Lzl 1zl 4 (2] L6z Az) dz .
St ol e g ey b (41 4+ L@
The integral over R", above, is finite by assumption (2) of Section 2.1. Hence,
recalling the definition of y, ,(6), it is clear that
(2.2.15) 0.1(0) = K7, 1(0)|0:7 1+ < Kl 4, 1(0)]0,7 0+

Finally, we must consider Q,,(¢). By definition, the region of integration
w.r.t. z, is {z; > 0}. Hence (0, + ,z,)™ < 6,7* and exp[—[§|*/2(0, + %.2))] =
exp[—|[*/2(6, + z,)]. Thus Q (@) is bounded by

K et San §5 SPLZ L0 & 201 peoay () 4 |219+m)f(2) dz, e d

6, (L4 0% + €")
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Making the change of variables y = £(6, + z,)7%, it is clear that the above in-
tegral equals

» EXp[—[7[*/2](0, + z,)"~ L j itn dz dz* d
g S S S5 GRS RO B 0 12 1 ooyt di i e
Break this up into Q,; + Q,,, Where Q,; is the integral over the region W, =
{z,: 0 <zt < (1 + |90, + 0%])/2|9]}, and Q,, is the integral over W, = {z;:
2t > (1 + [0:F + 0%))/2[9]}.
Consider Q,, first. A simple Chebyshev argument shows that

2.2.16 A0) < K Vit (s 2 SXPL=[22) (1172 [ 3>
( ) Q) = S Spt lr (1+Iﬂ*+m9%l)( + 2,) VA LO(2)))|

[|z|(.7+n/2) + |Z|(J+3n/2)]f(z) dzl dz* .

Note that a change of variables and Lemma 2.2.2 verify that

(. Lol expl—lpy2) dy
(1 10+ 707])

(2.2.17) = | o 1" eXP[—|€[7/20,] dE
ol — )R® 0(7&{)(1_'_'0*_'_5])
< K (pu exp[—[§]°/26,] 4§ = K|y(0)|6,"Ln-9r2-03/s1

01[(7&—1)/2—2/4](1 + |0* _l'_ gln)
Also, since 6, > A, it is clear that
(2.2.18) (0, + z)0g mh2 < K(1 -z 02

Applying the bounds (2.2.17) and (2.2.18) to the expression (2.2.16), it is clear
that

Q.u(0) = K[p(0)[0,7tr=/a=0red § (1 4 2, D2) LEXz,)|
X [lzl(j+n/2) + |Zl(j+3n/2)]f(z) dZ .
Recalling that @ = 2 4 72/4, and again using assumption (2) of Section 2.1 to
bound the integral over R* above, it is clear that Q ,,(0) < K|y(0)|0,*+%*.

We finally have to consider Q (). To do so, it is necessary to prove that
(2219) (14 |0% + (0, + z)4[) 7 < K(L + 0% + 0g")  if z,e W,
Note that
(2.2.20) |6% + (0, + 2t = |(0% + 0,3n) + [(1 + 0,/2))% — (6,/2,)F]z,t7)| .
Since (1 4 ¢)} — ¢t < 1if ¢ > 0, and since z, ¢ W,, it is clear that
(2.2.21) (1 + 6,/2)F — (0)f2)}]zdy] < 2y < (1 + |02 + 6%))/2.

Using (2.2.20) and (2.2.21), an argument exactly analogous to that following
(2.2.11) verifies (2.2.19).

Using (2.2.19) to bound Q ,4(¢) and proceeding with by now familiar argu-
ments, gives Q 4(0) < K|r(0)|0,"+*4.
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In conclusion,

04(0) = Qu(0) + Qu(0) + Quu(0) = Klr(ﬂ)lﬁf‘l”“’ . 0

ProoOF OF LEMMA 2.2.4. Note that |7 (0)] = H, ,(6)0,l"V-@*+P] Defining
B = c'(4A4)~°, it is clear that if 4, is large enough, then

2.2.22 ) — [7a((44 — B, 6%))]
@220 720

_ HO,A((4A —_ ‘8, 0*)) [414 — ‘B][('n.—l)/z—(u-z)]
- H, .(0) 0,
2H, ,((44 — B, 6*))

H,, 4(0) '

=

Case 1. Assume |0*| < 54% Then |[0* < 3(44 — B)} and |0% < 36t
(Recall 6, = 44 — c¢/A.) Hence (2.2.2) and (2.2.3) can be applied to H, ,(6)
and H, ,((44 — B, 0%)) in (2.2.22) to get p(f) < K[0,/(4A — )]~V The result
follows.

CASE 2. Assume 54 < |0%] < [(1 + 4,)441In(44)]t. (Here 4, is from Lemma
2.2.2.) Again, it is easy to check that (2.2.2) and (2.2.3) can be applied to
(2.2.22). The result is

(2.2.23)  p(0) < K[0,/(44 — B)] "V exp [—|0*((44 — B)™ — 0,7)/2] .
Note next that (44— p)~! = (44)7[1 + (B/4A) +(B/4A)*+ - - - 1= 1/4A4+ /(16 4%).
Similarly, if A, (and hence A) is large enough, 6,7 < (44 — ¢/A)™ < 1/44 +
c/(84°%. Hence,

(2.2.24) (44 — )™ — 0,7 = 84)H(B/2 — ¢/A).

Note also, that for ¢* in the given region,

(2.2.25) |60*|?/(4A4%) < [K1n (44)]/(44) — O as Ay— oo .
Combining (2.2.23), (2.2.24), and (2.2.25), the result follows.

Cast 3. Assume |0*| = [(1 4 4,)441n(4A4)]:. Again (2.2.2)and (2.2.3)apply,
and yield the desired conclusion directly. []
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