The Annals of Statistics
1975, Vol. 3, No. 6, 1189-1242

DEFINING THE CURVATURE OF A STATISTICAL PROBLEM
(WITH APPLICATIONS TO SECOND ORDER EFFICIENCY)

By BRADLEY EFRON
Stanford University

Statisticians know that one-parameter exponential families have very
nice properties for estimation, testing, and other inference problems. Fun-
damentally this is because they can be considered to be “‘straight lines’
through the space of all possible probability distributions on the sample
space. We consider arbitrary one-parameter families & and try to quantify
how nearly ‘‘exponential” they are. A quantity called “‘the statistical cur-
vature of &’ is introduced. Statistical curvature is identically zero for ex-
ponential families, positive for nonexponential families. Our purpose is to
show that families with small curvature enjoy the good properties of ex-
ponential families. Large curvature indicates a breakdown of these prop-
erties. Statistical curvature turns out to be closely related to Fisher and
Rao’s theory of second order efficiency.

1. Introduction. Suppose we have a statistical problem involving a one-pa-
rameter family of probability density functions &~ = {f,(x)}. Statisticians know
that if & is an exponential family then standard linear methods will usually
solve the problem in neat fashion. For example, the locally most powerful test
of ¢ = 6, versus 6 > 6, is uniformly most powerful in an exponential family.
The maximum likelihood estimator for @ is a sufficient statistic in an exponential
family, and achieves the Cramér-Rao lower bound if we have chosen the right
function of 6 to estimate.

In this paper we consider arbitrary one-parameter families . and try to quan-
tify how nearly “exponential” they are. A quantity y, called “the statistical
curvature of Z at §” is introduced such that 7, is identically zero if & is ex-
ponential and greater than zero, for at least some 6 values, otherwise.

Our purpose is to show that families with small curvature enjoy, nearly, the
good statistical properties of exponential families. Large curvature indicates a
breakdown of this favorable situation. For example, if 7s, is large, the locally
most powerful test of § = 6, versus § > 6, can be expected to have poor operat-
ing characteristics. Similarly the variance of the maximum likelihood estimator
(MLE) exceeds the Cramér-Rao lower bound in approximate proportion to r,?.
(See Sections 8 and 10.)

For nonexponential families the MLE is not, in general, a sufficient statistic.
How much information does it lose, compared with all the data x? The answer
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can be expressed in terms of y,*. This theory goes back to Fisher (1925) and
Rao (1961, 1962,.1963). They attempted to show that if & is a one-parameter
subset of the k-category multinomial distributions, indexed say by the vector of
probabilities fy(x) = P,(X € category x), x = 1,2, ..., k, the following result
holds: let i, be the Fisher information in an independent sample of size n from
fo» i, the Fisher information in the maximum likelihood estimator 6(xy, Xgy - - -5 X,)
based on that sample, and i, the Fisher information in a sample of size one (so
i, = niy). Then

. s ihy g [P — 2+ p M+ Ha — 2p 1
(1.1) lim,_, (i, — ,00)__,0{ 02 u 0 1 _ Fn % 1 30

3

where | o “ )

the dot indicating differentiation with respect to §. Moreover, for any other
consistent, efficient estimator T(x,, x,, - - -, x,) the asymptotic loss of information
lim,_, (i, — i,7) is equal or greater than the right side of (1.1). Rao has coined
the term “second order efficiency” for this property of the MLE which gives it a
preferred place in the class of “first order efficient” estimators T, those which
satisfy the weaker condition lim,_, i,7/i, = 1.

It turns out that the unpleasant looking bracketed term in (1.1) equals 7,
This leads to a straightforward geometrical “proof” of (1.1). The quotes are
necessary here since, as the counter-example of Section 9 shows, the result is
actually not true for multinomial families. However, the difficulty arises only
because of the discrete nature of the multinomial, and can be overcome by deal-
ing with less lumpy distributions. More importantly, a similar result of Rao’s
for squared error estimation risk holds even for the multinomial, as discussed
in Section 10.

Under our definition an exponential family has zero curvature everywhere
so in some sense it is a “straight line through the space of possible probability
distributions.” (This is intuitively plausible since linear methods, that is, meth-
ods based on linear approximations to the log likelihood function, tend to work
perfectly in exponential families. The fact that locally most powerful tests are
uniformly most powerful is an example of this.) We will make this notion precise
by considering families &~ which are subsets of multi-parameter exponential
families. If the subset is a straight line in the natural parameter space of the
bigger family then & is a dne-parameter exponential family.- If the subset is a
curved line through the natural parameter space then & is not exponential, and
it turns out that the statistical curvature exactly equals the ordinary geometric
curvature of the line, the rate of change of direction with respect to arc-length.
For the sake of exposition we actually start with this latter definition in Section
3 and show in Section 5 how it leads to a sensible definition of statistical curva-
ture in the general case.
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There are really two halves to this paper. Sections 3-7 introduce the notion
of statistical curvature, Sections 8-10 apply curvature to hypothesis testing,
partial sufficiency, and estimation. Section 2 consists of a brief review of the
notion of the geometrical curvature of a line.

2. Curvature. If Y = Y(X) defines a curved line 2" in the (X, Y) plane then

_ (Yn)z 4
D e =)
is defined to be the curvature of & at X, where Y’ = dY/dX, Y" = d*Y[dX?
are assumed to exist continuously in a neighborhood of the value X where the
curvature is being evaluated. In particular if Y’ = 0 then y, = |Y”|. An exer-
cise in differential calculus shows that y, is the rate of change of direction of
- with respect to arc-length along the curve. The “radius of curvature”, p, =
1/r, is the radius of the circle tangent to .27 at (X, Y) whose Taylor expansion
about (X, Y) agrees up to the quadratic term with that of . Struik (1950) is
a good elementary reference for curvature and related concepts.

The concept of curvature extends to curved lines in Euclidean k-space, E*,
say & = {,, 0 € ©}, where O is an interval of the real line. For each 6, 5, is
a vector in E* whose componentwise derivatives with respect to ¢ we denote
Ny = (0/00)n,, %, = (0°/06%)n,. These derivatives are assumed to exist continu-
ously in a neighborhood of a value of # where we wish to define the curvature.
Suppose also that a k X k symmetric nonnegative definite matrix X, is defined
continuously in §. Let M, be the 2 X 2 matrix, with entries denoted v,,(6), v,,(6),

V() as shown, defined by
2.9 M. = vao(0)  vu(9) = 7' %e00 N6’ Ee g
-2) (vu(ﬁ) ”02(0)> <%,zo Mg ﬁolxo '7.0>

and let

2.3) 1o = (IMy|/v3(6))* -

Then y, is “the curvature of £ at 0 with respect to the inner product £,”. (If we

take k = 2, 0 = X, 7, = (X, Y(X)), and X, = I, then (2.3) reduces to (2.1).)
Again it can be shown that 7, is the rate of change of direction of 7, with

respect to arc-length along .. The relevant quantities are illustrated in Figure

1, where the arc-length from a given point 7, to 5, is called “s,” and the angle

Fic. 1. The curvature ot <~ at 6 is dag/dss|9=s,.
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between 7, and 7, called “a,”. Then

, d
(2.4) Top = =2

T ds,

bo
or equivalently 7, = dsin a,/dsy|,,. Both s, and a, are defined relative to the
inner product X,,

dsy _ (2 rp
(2.5) a0 (o zo 70)}
- G Togiof P
2.6 o =|1— 0_"0 .
@9 sina, = <77;.,xoor>oo><m%m]

(%5, can be replaced by X, anywhere in (2.6).) As Figure 1 indicates, for the
purpose of evaluating 7, the k-dimensional curve & can be considered locally
as a two-dimensional curve in the plane through 7, spanned by 7, and 7, .

3. Curved exponential families. In this section we define statistical curvature
for one parameter families %~ which are curved subsets of a larger k-parameter
exponential family, “curved exponential families” for short. Denote the multi-
parameter family by

3.1 g,(x) = g(x)er=-¢

a family of densities with respect to some given measure m(.), possibly dis-
crete, on Euclidean k-space E*. Here ne .47 the subset of E* for which
gk 9(x)e7* dm(x) < oco. The convex set .4 is called the natural parameter space
of the exponential family. If we define

(3.2) A(p) = E,x

the components of 1 can be obtained by differentiation of ¢, 2,() = (9/97,)¢(7)-
Moreover the covariance matrix X(7) of x under g, has ijth element equal to
0*)(n)/0n,0m,;. We denote by A the set of all mean vectors 4,

(3.3) A={in):ne "}

The mapping (3.2) from .#" to A is one-to-one, and we will often write 2 instead

of A(y), recognizing that 2 indexes the exponential family as well as 5 does. X(z)

has the same rank r for all 5, and we will assume rank r = 2 to avoid trivialities.
Now suppose that

3.4) &= {n,: 006}

is a one-parameter subset in the interior of .47 where 7, is a continuously twice
differentiable function of # € ©, an interval of the real line. Define the density
fo to be

[}

(3-5) fo(x) = g,,(x) = g(x)ene’*=v0,
where ¢, = ¢(,). (Likewise 2, = A(y,), £, = X(n,).) It is easy to verify that
(3.6) ER TN bo = 15’29 = Eg7g'x .
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& will stand for the family of densities { fy(x): 6 € ©}, our curved exponential
family.
DEFINITION. 7,, the statistical curvature of % at 0, is the geometrical curva-

ture of & = {5,: 6 € ©} at # with respect to the covariance inner product X,,
as defined in (2.2) and (2.3).

ExAMPLE 1. Bivariate normal. x is a bivariate normal random vector with
covariance matrix I and mean vector 7, = (8, (7,/2)6%), 6 € ® = (— o0, ),

3.7 X ~ A5 1) .
Then %, = (1, 1,0)’, 3, = (0, 1)’, and
L i 100)

3.8 M :( o To
(3-5) ! 700 7o
SO

2
(3.9) T02 To

= (1 * 7,0202)3 :

In particular y = r/%, justifying the notation. This artificial but very simple
curved exponential family will be used for illustrative purposes in Section 8.

EXAMPLE 2. Poisson regression. x,, x,, - - -, X; are independent Poisson random
variables, x, having mean a + 6b,, b,, b,, - - -, b, and a > 0 being known param-
eters. O is the interval of ¢ values such that @ 4+ b, > 0 for i = 1,2, ..., k.
Since x = (x;, - - -, x;)’ has a k parameter exponential family of distributions if
the k means are unconstrained, we apply definition (2.2) to get the elements of
M,,

b} b3
3.10 0) = BTt s 0) = — i.‘z Tt
( ) vyo(0) =1 T 65, vu(9) 1 @ + 0b)
0 k b’l:4
)Joa( ) - i=1 ———-(a + 0bi)3 .

The formula (2.3) for 7,* simplifies at § = 0 to

=l -

That the entries of M, are summations follows from the independence of x,,
Xy - -+, X3, as mentioned in Section 6. A very similar formula holds for the
analogous binomial regression model.

The Neyman-Davies model, x,, X, -+ -, X;, independent scaled y,® random vari-
ables, x;, & (1 + 06,)x., 0,, 6, - - -, 6, known constants, has the same structure.
(Davies (1969) uses this model, which originates in an application due to Neyman,
to investigate the power of the locally most powerful test of ¢ = 0 versus 6 > 0.
We compare our results with his in Section 8.) By direct calculation or by the

(3.11) 7o
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remark at the end of Section 6 we get that M, has elements

(3.12) v(0) = § 2¥. 077, vu(0) = — 3,638, ve(0) = 2 3%, 04
and so

(3.13) =8| Zmic (i 87
(Xt (i)

EXAMPLE 3. Autoregressive process. y,,y,, - -+, yr are observations of the auto-
regressive process y, = Uy, Vi = 0y, + (1 — 0y, t=1,2, ..., T. Here
u ¥ 40,1, t=0,1,...,T and ® = (—1, 1). Writing out the likelihood
function of (y,, ---, y,) shows that this is a curved exponential family with
k = 3, the » vector being 7,/ = (—(1 + 6%)/a, 8, —%)/(1 — 67, with correspond-
ing sufficient statistics x’ = (3377*»2, 2.7 VeVe1 Vo' + yo7). For 6§ = 0 the cal-
culations are easy, yielding

T 0 8T — 6
3.14 M=< ) - )
( ) 0 0 8T —6 To T

Much messier expressions are found for other values of 6. y,* is of the form
¢y/T 4+ O(1/T?) as T — oo, with ¢, = 8, ¢y = 6.25, ¢; = 3.07, ¢.,; = .96. (For
any T, y_, = 74, iy = i, since the mapping (¥, 1> Y2r == *) = (Yoo — 1> Ya» =)
takes 6 into —¢ while preserving the curvature and Fisher information.) This
family is least like a one-parameter exponential family at § = 0.

If &~ is a straight line through .47 5, = a 4 br(¢) where a and b are known
vectors and z(6) some real-valued twice differentiable function of ¢, then y, = 0
for all @ since the curvature of a straight line is zero. In this case f,(x) =
(9(x)e*®) exp[7(0)b’x — ¢,] is a one-parameter exponential family with natural
parameter 7(f) and sufficient statistic #’x. Under our definition all one-parameter
exponential families .57, and only such families, have statistical curvature every-
where equal to zero. This desirable property would still hold if we defined the
curvature with respect to an inner product other than X,, say £, or I. The
following discussion and Section 4 add support to the choice X,

Let /,(x) denote the logarithm of fy(x),

(3.15) ly(x) = log fy(x)

and denote the first and second partial derivations with respect to 6 by
(3.16) =250, ie=2 .
o6 e
The moment relationships
(3.17) E)d, =0, EJl?= —E)J,=i,,

where i, is Fisher’s information, hold because the exponential family structure
(3.1)—(3.5) allows us to differentiate under integral signs with impunity. (We
will suppress the random element “x” in much of the subsequent notation.)
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* Notice that [,(x) = 7,/x — ¢, + log g(x) so that
(3.18) If(x) = 95'(x — 2) s 1p(x) = 5'(x — ) — 7'Fo7y ,

where we have made use of (3.6) in taking the derivatives. Remembering that
X, is the covariance matrix of x, we see that (3.17) holds with

(3.19) iy = 770,10 7o -
As a matter of fact the covariance matrix of (f, I;) is
/ Y AT, X
(3.20) Ey (i 10 )by + iy = (207 Toke)
VAR VA o' Re0s 7o' Eo 7

which is just the matrix M, defined at (2.2). Therefore
(3.21) voo(0) = iy = Eyly,  vy(0) = Ezlyl, = Cov, (I, ) ,

voa(0) = E,l* — i, = Var, .
These definitions make no explicit reference to the geometrical structure of the
curved exponential family. We will use them in Section 5 to provide the curva-
ture definition for an arbitrary one-parameter family.

4. Invariance properties of the curvature. The two definitions of M,, the
geometrical one following (3.6) and the statistical one (3.21) give two useful
invariance properties of the curvature 7,.

i) Statistical curvature is an intrinsic property of the family .% and does not
depend on the particular parameterization used to index 5. If we let 6 = g(0),
where g is any strictly monotone twice differentiable function, and fj(x) =
fo-13)(x), then 73 = 7,-1.5 for every 6 e © = ¢(0). This follows from the same
property of the geometrical curvature (2.3). [Note: this is not true for the Fisher
information: 1; = i,-..5,(d6/df).]

ii) If t = T(x), is sufficient for ¢ then /,7(¢r) = 9/ log f,7(¢t) = I,(x), where
fo" indicates the density of T, implying by (3.18) that M,” = M, and 7,” = 7,.
The statistical curvature is invariant under any mapping to a sufficient statistic,
including of course all one-to-one mappings of the sample space. This property
would not hold if we had chosen an inner product other than X, in the definition
of statistical curvature.

We can use property (ii) to transform an arbitrary curved exponential family
into a form particularly convenient for theoretical calculations. Let 6, be some
value of 6 at which we wish to investigate the local behavior of 5. Write
%), = A’'DA, D an r X r diagonal matrix with positive diagonal elements and
A an r X k matrix with orthonormal rows, AA’ = I, (rank £, = r, I, ther X r
identity matrix). LetX = I'D~*A(x — 4, ) where T is an as yet unspecified r X r
orthogonal matrix. % is an r-dimensional sufficient statistic for the family (3.1).
For # €0 it has a curved exponential family of densities where we can take
775 = TD*A(n, — 71,,). (These statements are easily shown in the full rank case
r = k and are not difficult for r < k.)
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Notice that 7, = 0, Z,,o = 0, and i,o = I,. Proper choice of the rotation ma-
trix I' makes 75,,0 ‘proportional to e, = (1,0, - - -, 0)" and 7, a linear combination
of e, and e, = (0, 1,0, - - -, 0). By (3.6), 4, is then also proportional to e,.

DEFINITION. The family & is in standard form at § = 6, if k = r, the dimen-
sion of &,

(4.1 Ny =49, =0, X, =1,
and
s ) o .
(4.2) Doy = Aoy = inter, g, = ’ili—(%) e + iy, g, €2 -
b9

(The constants in (4.2) are necessary to satisfy (2.2).) We will use standard form
to simplify proofs in Sections 9 and 10. If % is not in standard form at 6, the
above transformation makes it so, and by property (ii) M, and hence all informa-
tion and curvature properties remain unchanged. We could use property (i) to
further standardize the situation so that i, = 1, v,(6,) = 0, but that does not
simplify any of the theoretical calculations which follow. Property (i) is useful
for calculating curvatures, as will be shown in Section 7.

5. General definition of statistical curvature. Leaving exponential families,
let

(5.1) = (%), 0 €6)
be an arbitrary family of density functions indexed by the single parameter
6 €0, a possibly infinite interval of the real line. The sample space 2”7 and

carrier measure for the densities can be anything at all so we have not excluded
the possibility that % consists of discrete distributions. Let

(52) W= lghx), kX200, L= T

as in (3.15), (3.16). We assume the derivatives exist continuously and can be
uniformly dominated by integrable functions in a neighborhood of the given 6,
so that E,l, = 0, E,[,* = —E,l, = i, as in (3.17). Finally, as in (3.20)—(3.21)
we let M, be the covariance matrix of (I, [,),

(5.3) M, = (”20(0) vu(ﬂ)) — (E,z,nl,f E, Lyl )
wl0) veal0)) — \E,Iyl, E,i} — i
and define the statistical curvature of # at 6 to be
. ] 2 (6)7T
(-4 70 = (IMy|/is°)t = \:"f 0?0(2 ) _ ”lilo(a ):I .

In making this definition we assume 0 < i; < oo and vy,(f) < co. Properties (i)
and (ii) of Section 4 are verified to hold for 7, as defined in (5.4). Substituting
Iy = folfos Iy = folfs — (folfs)? into (5.3), (5.4) shows that 7, equals the bracketed
term in (1.1), the crucial quantity in the Fisher-Rao theory.
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What does 7, measure in this general situation? It is a measure of how quickly
Fisher’s score statistic is changing (more precisely, “turning”) as § changes. An
argument along those lines is given next, further support coming in the calcula-
tions of Section 8.

Comparing (5.3) with (2.2), we can connect the two definitions by thinking
of & = {l,, 6 € ©} as a curve through the space of random variables on 22". The
inner product {u, vy, = u'E,v of (2.2) is taken to be the covariance inner product
in (5.3). (Section 3 makes the analogy precise in the exponential family case.)
All of the quantities in Figure 1 can now be given a statistical interpretation.

The element of arc length along &, by analogy with (2.5), is ds,/df =
(Eslp*)t = ipt. Define
(5.5) Uy(x) = “Io}(_X) +0.

2
U,, is the version of Fisher’s score statistic lr‘,0 that is the best locally unbiased
estimator for 6 near 6,: Var, U, = 1/i,, the Cramér-Rao lower bound, and
E,, U(,0 = 6,, dE, U‘,o/aﬂ9|,,=,,0 = 1. Therefore
(d|dO)E,U, | ds,
(Var, U, )} lo=4, T de
(The quantity on the left of (5.6) is called the “efficacy” of the statistic U, .)
We see that

(5.6)

6=0,

(5.7) ©—0). 2

= EoUsy = E4, Uy, + O(0 — 6,)*.
=0, (Var, U,)?

Therefore s, of Figure 1 can be interpreted locally as the number of (6,) standard
deviations from E, U, to E, U,
By analogy with (2.6)

(5.8) sin a, = [1 — L%(l"o_’”]_z]’ = [1 — corr}, (I, )]

Var, [, Var, [,
so sin’ a, is interpreted as the unexplained fraction of the variance in Uj(x) after
linear regression on U, (x), under density f, .

From (2.4) we get the following interpretation of the statistical curvature:
7o, IS the derivative at § = 0, of the unexplained fraction of the standard deviation
of U, given U, , the derivative being taken with respect to the efficacy distance
(E,Ug, — E4 U, )/(Var, U, )t along 2. If this quantity is large then the locally
best estimator (also the locally best test statistic) is changing quickly as ¢ changes
and & is highly curved in a statistical sense. At the opposite extreme are one-
parameter exponential families for which a, = 0, so U, is statistically equivalgnt
to U,, for all § and ¢,. We pursue this interpretation of y, in Section 8 to decide
what constitutes a seriously large value of the curvature.

In a certain sense any smooth one-parameter family .5 can be embedded in
a suitably large exponential family. Suppose at some point 6, in 0, /, is k times
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differentiable. Consider the k-parameter exponential family

(59)  9,(x) = expllp(x) + mIp(¥) + mby(x) + - + MIPE) — 4],

I (x) = (0%/36*))(x)|90,» ¢(n) being chosen to make (5.9) integrate to one over
& with respect to the carrying measure for & . Choosing

0 — 6,) 0 — 0,)¢
7]0=((0_00)’( . ) B ns 0) )

gives a one-parameter family of densities f; = [ approximating f, near 6 = 6,.
If the Taylor expansion for /, converges at @, this approximation becomes in-
creasingly accurate as k — co. For any value of k = 2 definitions (5.3) and
(3.21) show that ﬂ% = M,, 50 1, =i, and 7, = 7,. Itis reasonable to expect
results proved in the context of curved exponential families to hold for sufficiently
smooth nonexponential families, though no justifying theorem has been proved
to this effect. This is in the same spirit as approximating an arbitrary family
by a multinomial with a large number of categories, as in Fisher (1925) and
Barnett (1966), but seems to make the approximation in a smoother way.

6. Repeated sampling. Suppose we sample x;, X,, - - -, X, independently and
identically distributed with density f,. We will use boldface letters to indicate

quantities connected with the repeated sample, x = (x, X,, -+, X,)'» 1y(X) =
S (%), Ug(x) = 1o(x)/iy + 6, etc, In particular

(6.1) M, = nM,

since M, is the covariance matrix of (I,(x), I,(x)) = 7., (o(x.), [,(x,)). Besides

the familiar relationship i, = ni, this gives

(62) Td = 1_5. .

The curvature goes to zero at rate 1/n* under repeated sampling. This makes
sense since we know that linear methods work better in large samples.

In curved exponential families, (3.18)—(3.19) combine with 1,(x) = 317_, /4(X;)
to give

(6.3) Iy(x) = mpy/ (% — 25) 1y(x) = n{i)y'(X — 2,) — nig},

% = Y*_, x,/n being the sufficient statistic for the complete family (3.1).

If the x, are independent but not necessarily identically distributed we still
have 1,(x) = Y%, [,(x;), the superscript indicating the distribution for x,, and
so M, = Yi»., M,». This explains the simple form of M, in Example 2 of
Section 3.

7. Some examples. Before discussing the statistical properties of 7, we will
expand our catalog of examples to include several nonexponential families.
Those results illustrate some simple principles that make r, easy to calculate in
familiar statistical situations. In the first three examples we assume that the
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densities given are with respect to Lebesgue measure on the real line, i.e., that
we have just one observation of a continuous variable. For an independent,
identically distributed (i.i.d) sample of size n the curvature is obtained from
formula (6.2). This last remark applies also to Example 7, and to the examples
of Section 3.

EXAMPLE 4. Translation families. Let g(x) be a probability density function
and fy(x) = g(x — 6). Also let h(x) = logg(x). Then Iy(x) = —hM(x — 0),
Iy(x) = h®(x — ), where h9(x) = d'h(x)/dx!, so E,lii = (=, [—hM(x)] X
[A®(x))?g(x) dx. Obviously M, and y, do not depend on @ in a translation family.

For the ¢ translation family, f degrees of freedom,

r (f +1 )
2 x2\-F+02
(7.1) 9(x) = ____.._.._<1 + _)
f f
rrer (L)
we calculate
Y = | — f+ 1
(7.2) w(0) = i(0) = f+ 3
vl0) = LT 1[(f +2)(f*+8+19)  f+ 1]
f+3L AF 4+ +T) +3
and v,,(f) = 0 (by symmetry), giving
(7.3) it = 6[3f* + 18f + 19]

DS+

a monotone decreasing function of f. Some values are as follows:

1 2 5 10 20 — oo
76 2.5 1.063 .306 .107 .0334 ~ 18/f?

(7.4)

The case f = 1 is the Cauchy translation family, and the value § for y,* agrees
with a closely related calculation in Fisher (1925).
For the Gamma translation family

_ (x _ 0)a—1e—(z—ﬁ)

7.5 , =40
(7.5) filn) = E= xz
a > 4 a fixed constant, we calculate

1 ! (a . 3)
(7.6) Ma:a— 5 5 4a — 10 s
(@a—3) (a—2)a—3)a—4)
s _ 2 a-—1
To _(a—3)’a—4'

(For a < 4, v, is infinite.)
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EXAMPLE 5. Scale families. x ~ @ -z where z has a known density, 6 € © =
(0, c0). If zisa positive random variable then log x = log 6 + log z is a transla-
tion family. By Section 4 the curvature will be the same for this family as for
the original one, and by Example 4 it will not depend on 6: For scale families
7o does not depend on 6. (The argument above applied separately to the positive
and negative axes gives the result in general. It can also be derived directly
from (5.3).)

A particular example is the normal with known coefficient of variation, x ~
A0, c6?), cknown. Here x ~ 0z, z ~ #7(1,c). Wecalculatei, = 2(c + %)/(c0")
and
2 _ c
(7.7) Ty
(Notice that x ~ .76, cd)* is a curved exponential family, k = 2.) The curva-
ture is near O for all values of ¢, taking its maximum at ¢ = 1:

¢ % 3 1 2 4 oo

7.8
(7:5) 76 .0370  .0625 .0740 .0640 .0439 ~ 1/4c

EXAMPLE 6. Weibull shape parameter. f,(x) = 0x’~'e=*’ for x =0, 6@ =
(0, 00). That is x ~ 7/ where P{z < z,} =1 — e~*o for z, = 0. The transfor-
mation log x = 1/6 log z makes this a scale family in 1/6, so once again y,* does
not depend on ©. Taking § = 1 for convenience gives /;(x) = (1 — x)logx + 1,
I(x) = —(xlog’ x + 1), E,[il7 = §3 [L(x)][i,(x))’e~ dx. Numerical integration
gives

(1.9) st = 704 .

ExAMPLE 7. Mixture problems. fy(x) = (1 — 6)g(x) + 6h(x), g and & known
densities on an arbitrary space 2°. The parameter space © contains [0, 1]. We
see that :

h—g . .
7.10 ly=—_— "~ "9 l, = —I1}
(7.10) V= gy =
and for 6 = 0
(7.11) h=r—1, [=—(@—1)

where r(x) = h(x)/g(x). Defining a; = E(r — 1)7 gives
(1.12) Mo=( Qo ) B el A
—ay o, — ay a,’ a,’
If g and k are normal densities, say g(x) = ¢(x) = e~***/(27)}, h(x) = o(x — p),
we have r(x) = exp(ux'— #*/2) and

(7.13) M0=< ¢—1 —[& — 3¢ + 2] )
68— 384 2] £ — 48— & 486 — 4
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when ¢ = e*’. Therefore i, = £ — 1 and
(7.14) 70 =8¢+ 1).

The curvature approaches 2 for ¢ near 0 but becomes enormous as y increases,

7 .5 .832 1 1.048 1.180 — o

(715) 2 484 24 74.68 108 320 ~ett -
i,  .284 1 1.718 2 3 o~

8. Hypothesis testing. So far we have not tried to say what constitutes a
“large” curvature—a value of y, (or, in repeated sampling situations of y,, the
curvature based on all the data) of sufficient magnitude to undermine techniques
based on linear approximations to the log likelihood function. We can obtain
arough idea of this value by considering the problem of testing H,: § = 6, versus

A, 0> 0,
Define
(8.1) mzm+£;
100

so that i, ¥, — 6,) = 2. From the discussion (5.5)—(5.7) this means that,
approximately,

(82) EﬁlUdo - Eﬂo Udo

(Var, U, )t

=2

(where in (5.7) we have used ds,/df|,_, = i,}). The locally most powerful level
a test of H, versus 4,, LMP,, for short, rejects for large values of U,. From
(8.2) we would expect LMP, to have reasonable power at 6, for the customary
values of @. That is 6, should be a “statistically reasonable” alternative to 6,.

The discussion following (5.8) shows that the unexplained fraction of the
variance of U, after linear regression on U, , calculated under Jfs,» 1s approxi-
mately 4y . If this quantity is large, say 475 = 3}, then U, differs considerably
from U, , and the test of H, based on U, will substantially differ from that based
on U,. Under these circumstances it is reasonable to question the use of LMP,.
Based on those very rough calculations a value of 1} = } is “large”.

In the repeated sampling situation of Section 6 a sample of size n > n,,

(8.3) n, = 875, 5

makes 73 = rj /n < §, and therefore reduces the curvature below the worrisome
point. For the Cauchy translation family, Example 4, n, = 20. For the Weibull
shape parameter, Example 6, n, = 5.6. For the normal with known coefficient
of variation, Example 5, n, < 1 for all ¢c. At the opposite extreme we have the
normal mixture problem, Example 7, with # = 1, for which n, = 597.4. We
expect linear methods to work well in Example 5 for any sample size, and poorly
in the last example, even for large samples.
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Moving from the vague to the specific, consider Example 1, Section 3, a
bivariate normal vector x = (x,, x,)’ with mean (0, 7,6/2) and covariance matrix
I. Assume we wish to test Hy: § = 0 versus 4,: § > 0 on the basis of observing
x. The LMP,, which rejects for large values of x,, has power function (probability
of rejection) 1 — B,(¢) = ®(6 — z,), where z, and @ are the upper a point and
cdf of a standard normal variate.

The Neyman-Pearson lemma says that the most powerful level a test of 6 = 0
versus some specific positive alternative 6 = 6,, MP,(6,) for short, rejects for
large values of 7, x. It has power function

(8.4) 1 — B9 (6) = @O(1 + 7,'0°[4)t cos (45, — Ag) — 2.)

A, being the angle from the x, axis to 7, illustrated in Figure 2. As 6, approaches
0, B,(0) approaches fy(f) for all 6, justifying the notation 1 — By(6) for the
power function of LMP,.

For a given value of § > 0 the power is maximized by taking 6, = 6, giving
“power envelope”

(8.5) 1 — §4(0) = DO(1 + 7,6°4)t — z,) .

Figure 3 compares the power envelope function, for four values of y,, with the
power function of LMP,, @ = .05 (which does not depend on 7,). As predicted
the difference between 1 — §*(#) and 1 — B,(0) increases with the curvature 7,.
In this case we can actually see that y, measures how fast the locally optimum
test statistic U, (x) becomes nonoptimal as the alternative # increases from 0.
Also according to prediction the LMP, has reasonable power properties for
7o = 7 and poor properties for ! > 1.

A %2 \ Rejection | Rejection
\ Region | Region
\\MP,, () | LMR
 ——
\/%' =
| £
\ |
\ |
\
\\ ' ™,
\ '
\l
Ag,
l\\ )
)
A, ¢ |
AN -
(0] }'Zc \ X,

FiG. 2. Bivariate Normal, Example 1, testing 6 = 0 versus ¢ > 0. The rejection re-
gion for the locally most powerful level a test, LMP,, is compared with that for the
most powerful level a test of § versus 61, MPa(6).
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1.00 —
= Power Envelope
0.80 |~
0.60
0.40 |~
0.20 —
o_” | | l l ! |
0 0.5 1.0 1.5 20 25 3.0
6
FiG. 3. Power of LMP,, a = .05, compared with power envelope function, Example 1.
TABLE 1

Power comparison, Example 1
a) Power envelope b) Power MP ¢5(2) c) Power LMP 5

/]
7o
0 .5 1.0 1.5 2.0 2.5 3.0 3.5

.25 .05e .126 .262 .453 .662 .835 .941 .985

.25 .0s® 125 .260 .452 .662 .834 .938 .983

.25 .05¢ .126 .260 .442 .639 .804 912 .968

5 .05 .127 .269 .483 .723 .904 .982 .999

5 .05 .121 .261 .479 .723 .901 .980 .998

5 .05 .126 .260 .442 .639 .804 912 .968
1.0 .05 .129 .300 .591 .882 .991 1.000 1.000
1.0 .05 115 .280 .583 .882 .990 1.000 1.000
1.0 .05 .126 .260 .442 .639 804 912 .968
2.0 .05 .139 .409 .855 .998 1.000 1.000 1.000
2.0 .05 115 .381 .850 .998 1.000 1.000 1.000
2.0 .05 .126 .260 .442 .639 804 912 .968

Of course no level a test can achieve the power envelope for more than one
value of § > 0. MP,(6,) achieves it for § = 6, while LMP, optimizes for 6 near
0 in the sense that d(6)/d0)|,-,, = dp*(0)/db),-,,. By following prescription (8.1)
in choosing 6, we get a test which matches the power envelope at what should
be a statistically interesting value of #, one where the power is reasonably but
not unreasonably high. In our example this means choosing 6, = 2, since i, = 1.
Table 1 shows that 1 — B,(f) stays remarkably close to 1 — 8*(6), and that
MP ,,(2) has better power characteristics than LMP,, especially for large values
of 7,.

Davies performs similar evaluations for the Neyman-Davies model of Example
2. The curvatures for the upper and lower cases graphed on page 532 of Davies
(1969) are y,* = .488 and y’ = .244 respectively, while the two on page 533 are
7.’ = .00629 and 7’ = .0364. Ignoring the “Wald’s test” curve, one sees that
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the magnitude of 7 is indeed a good predictor of the relative performance of
LMP, compared to MP,(@,). His results are quite similar to those for our Ex-
ample 1. (Davies chooses 6, so that 1 — g*(6,) = .8. This is a more precise
way of accomplishing what (8.1) is intended to do, but is computationally dif-
ficult in most situations.)

Section 10 shows that the Cramér-Rao lower bound for the variance of an
unbiased estimator errs roughly by a factor of 1 + 7,?, rejustifying the definition
of 7,* = & as a “large” curvature.

9. The Fisher-Rao theorem. We again assume an i.i.d. sample x, x,, - - -, X,,
as in Section 6. Result (1.1), originally stated by Fisher in his fundamental
paper on estimation theory (1925) can be restated as

9.1) lim, ., (i, — ia";) = ly74’
since 7, equals the bracketed term in (1.1). (9.1)is derived from (1.1) and (5.4)

by means of the relationships vy (0) = 11 = iy, vi(0) = pyy — g, and ve(0) =
tos — 2ty + tao — Ui these following from (1.2), (5.3) and

9-2) ly = folfo» ly = folfo — (Solfo)

To use Fisher’s evocative language, asymptotically the MLE (x,, x,, - - -, x,)
extracts all but i, 7, of the information in the sample x = (x,, - --, x,)’. Since
a single observation contains an amount i, of information this is equivalent to
a reduction in effective sample size from n to n — y,?, for example from n to
n — 5 in the Cauchy translation parameter problem. This is the price one pays
for a one-dimensional summary of the data and, also according to Fisher, any
summary statistic other than the MLE would pay a greater price. (Rao’s substan-
tial contributions to this argument are discussed toward the end of the section.)

The geometrical argument which follows shows clearly why the curvature 7,
plays the role that it does in (9.1). It also leads quickly to a counterexample
to (9.1) and shows that by working within multinomial families, Fisher and Rao
chose perhaps the least tractable curved exponential families. We will work
with a general curved exponential family in the standard form (4.1)—(4.2). For
notational convenience we let §,, a particular value of § where we wish to
evaluate lim,_,, (i, — i,,"A), equal 0. Then we have 7, =4, =0, % =1, 7, =
Ay = ide,, and 3, = (vu(0)/i})e, + ivroes.

Fisher’s argument depends on two useful results which we borrow:

1) If T(x) is any statistic, with density say f,"(s) and score function (log
derivative) I,7(f) = /36 log f,(t), then i,7(1) = Efiy(x)| T = i} (where we recall
from Section 6 that i,(x) is the score based on all the data). This implies that
the loss of information in going from x to T(x) is

(9.3) i, — i,7 = E, Var, {l,(x)| T}

since i, — i,7 = Var, i, — Var,1,7.
2) Let L, be the set of values of ¥ = 3,1, x,/n for which i,(x) = 0; L, consists
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A and the Sample Space of X

S~—~—__

Pa
/]
o

X0

FiG. 4. A curved exponential family of dimension r = 2. Lj is the set of X for which
6 is a solution to the maximum likelihood equations. Mg is the level curve for another
consistent efficient estimator.

of those values of the sufficient statistic ¥ for which @ is a solution to the like-
lihood equations I,(x) = 0. Then, since 1, = nj,'(x — 4,),

(9-4) Ly = {x: 9,/ (X — 45) = 0}

the r — 1-dimensional hyperplane through 2,, orthogonal to 7,.

Figure 4 illustrates the situation for the case r = 2. (Notice that the sample
space, the space of possible X values, has been superimposed on A, the space of
possible mean vectors 2.) Actually this two-dimensional picture is appropriate
for any dimension since curvature is locally a two-dimensional property, as
pointed out at the end of Section 2. A heuristic proof of (9.1) based on this
picture now follows in five easy steps:

(i) §(x) = n(i)%, (by (6.3)).

(ii) ntx — #7(0,I)asn — oo if @ = O (since 4, = 0, X, = I, and central limit
conditions are satisfied inside an exponential family).

(iii) Let 6 be the MLE and 4 the angle between 7; and %, = ie,. Then d =
itr,0 + 0(92’). (Since 9y = 497']0 + 0(92) = itfe, + 0(92), the element of arclength
in Figure 1 is sy = ||p|| + 0% = i} + o(6%. By (2.4) we have gy = d =
ioiToé + 0(@2)) . .

(iv) Var,{l(x)|0} = n*,tan* 4 - Var,{x,|6}. (In the case r = 2 this follows
immediately from (i) and the geometry of the situation. For r > 2, %, is replaced
by v'%/||v|| where v = 7, — ||53]| cos @ - 7, the part of 7, orthogonal to 7,.)

(v) Var,{%,|6}) = 1/n + o(1/n). (This is plausible because of (ii) and the fact
that near @ = § the partition of the sample space generated by the “lines” L,
looks like the partition generated by lines parallel to L;.)
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4Steps (iii) and (iv) together give Var, {i,| 0} = n*,}r26*(1 + 0(0)) Var, {#,| 6},
which, combined with (v), gives

(9.5) Var, {iy(x) |8} = ni2r20*(1 + 0(6))(1 + 0,(1))

0,(1) >0asn— oo, O(f) — O as 6 — 0. The heuristic proof of (9.1) is completed
by (9.3), giving

(9.6) lim, . i, — iy = lim,_, E, Var, {i,| 0} = iy7* -
Here we have used

(9.7) lim, . nE|f* =0,  lim,_,nE@ =i,

n—00

which one might hope for in view of ntd — 470, i,™).

All of the weak links in this chain of reasoning can be made solid except for
(v). Its fatal flaw is shown by a counterexample to (9.1) based on the trinomial
distribution

(9.8) P{observed object is in category j} =124;, j=1,2,3
(s0 ;20,4 +4+24=1).

The trinomial can be considered as an exponential family of form (3.1) with
k=r=2,2=2, ), 1= (1) n; =log[2;/(1 — 4 —4)], j=1,2, and
¢(n) = log (1 + en + em). The x vector takes on three possible values: (1, 0),
(0, 1), (0, 0), corresponding to the observed object being in the first, second, or
third categories respectively. The carrier measure m(+) puts mass one at each
of these three x values.

The counterexample is a one parameter family % with L, passing through
the fixed point ¢ = (—2%, —1) as illustrated in Figure 5, the parameter ¢ being

(0,11) /

1.70"‘ ¢9 =
= (-sin(8+Ag), cos (B+A)

c=(-v2,-1

FiG. 5. Counterexample to (9.1) based on trinomial. Each line Ly contains at most
one possible sample point .
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the angle between L, and L,. Such a family does exist, as the following con-
struction shows: let 4, = (3, §) and

(9.9) Agy = Ao + §30 1to(Zy B9) d6

where g, = ||, — ¢||/(||%,$4|| sin By), X, is the covariance matrix of x under f,
the vector ¢, and the angle B, being defined as in Figure 5. Definition (9.9)
gives 4, € L, and also that, by (3.6), 7, cc@,, the normal vector to L,, as neces-
sitated by (9.4).

& is a curved exponential family having the following property: if X, and
%, are two values of ¥ = Y7 x,/n giving the same MLE #, then both %, and
%, lie on Ly. But X, = (ny,/n, ny,/n), i = 1, 2 the n;,, being nonnegative in-
tegers. This implies either X,, = %, or

(9.10) Ny — My _ My +1.n '
Nygy — My Ny, +2t-n

Since (9.10) would make 2! a rational number, X, must equal X,. In short
there is at most one possible % value corresponding to any 4, and so the MLE
is a sufficient statistic in &, implying i — i’ = 0 for all n. But 7,* must be
positive for all 6 values since 7, is always changing direction. This completes
the counterexample.

REMARK 1. Let ¢(t) = E,e*’* be the characteristic function of f,. If |o(1)? is
integrable for some p > 1 then ntx has a density function converging uniformly to
(27)~** exp(—||x||*/2). See Efronand Truax (1968), Gnedenko and Kolmogorov
(1954). Under those conditions (9.1) can be verified. The technical details,
which depend on an exponential bound to the density of X, are indicated in the
Appendix.

REMARK 2. Instead of working with the MLE @ itself we can consider the
coarser statistic which only records which interval f lies in, among intervals of
the form (ie,, (i + 1)e,), i =0, 1, +2, .... The line L; in Figure 4 is now
replaced by a pair of lines L, , L;,.,,, and step (v) can be weakened to say only
that the conditional distribution of %,, given that % is between the two lines, has
variance 1/n + o(1/n). However in order for statement (iv) to still have meaning
we need to take ¢, = o(1/n) (so that the conditional variance of I, will still be
due mainly to the slope of the lines L;, , L,,,. , and not to the distance between
them). It turns out (Efron and Truax (1968)) to be possible to choose ¢, in this
way and to get the proper convergence of the conditional variance if f; is non-
lattice, |¢(f)] < 1 for all # + 0. (This excludes the multinomial.) In this case
it is possible to show that lim sup, ., (i, — ioa) < g1t

REMARK 3. If 67(2) is any other consistent efficient estimator of ¢, and M, is
the set of X values having 9(2) = ¢, then as in Figure 4, M; passes through
A; and is tangent to L; at that point. See Section 10. The increment of
[lim,_.. (i, — i,7) — i,7,"] above zero is due to the quadratic term in the expansion
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of Mj near 2;. The details are almost identical to those of Section 10 and will
not be given here. (See (10.25).)

REMARK 4. It is possible for two of the surfaces (9.4), say L, and Lj, to in-
tersect. If % € L, n L;then both 0 and 4 are solutions to the likelihood equation.
As 0 decreases to zero in Figure 4, L, n L; converges to a point (in general an
r — 2 dimensional flat) on L, = {ce,} a distance p, = 1/r, above 0. Values of %
on L, which lie above this point are local maxima of the likelihood function,
while those lying below are local minima.

REMARK 5. Rao (1961, 1962, 1963) uses a different definition of the informa-
tion which avoids the difficulty illustrated by the counterexample. (9.3) can be
written as i, — i,” = inf E,{l,(x) — A(T(x))}?, the infimum being over all choices
of the function A(+). Rao redefines i,” by restricting the function # to be quad-
ratic. Rao states that he believes the two definitions to be equivalent, but the
counterexample can be used to show that they are not.

REMARK 6. Is (9.1) a useful fact, assuming it is true? Fisher seemed to think
of Fisher information as a perfect measure of the amount of information available
to the statistician. For ordinary “first order efficiency” calculations in large
samples this is true enough, in the following sense: let 7(x) be a statistic having
Fisher information i,”. Then in a neighborhood of any given value 6, of 6 we
can construct, under suitable regularity conditions, a function 7(T), that is ap-
proximately .47, 1/i,"), as compared with 476, 1/i,/) for the MLE. If
i, /iy’ = .8 for example, then any statistic #(T) will have almost the same dis-
tribution as 4(f) with 4 based on a sample 809, as large.

This argument breaks down for information discrepancies as small as those
contemplated in (9.1), since the central limit theorem is in general not capable
of supporting such fine distinctions. To give substance to Fisher and Rao’s
theorem we must demonstrate that in specific statistical problems the Fisher in-
formation determines relative performance at the level of accuracy suggested
by (9.1). Rao (1963) showed that this indeed was the case for the problem of
estimating ¢ with squared error loss. We review his results from the point of
view of this paper in Section 10.

10. Estimation with squared error loss. Suppose we wish to estimate the
parameter ¢ in a curved exponential family on the basis of an i.i.d. sample x,,
Xy, - -+, X,, Using a squared error loss function to evaluate possible estimators.
We will only consider estimators that are smooth functions of the sufficient
statistic X and are consistent and efficient in the usual sense (see (10.5)—(10.7)
below). The following result will be discussed: let §(%) be such an estimator,
the form of § not depending on n, and let ¢(d) = E, U, () where as before
U, (%) = i, o/is, + 0, is the best locally unbiased estimator of 0 near 6,. Also let
b, = E,,ﬂ(x) — 0 be the bias of 4, a quantity which will turn out to be of order
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O(1/n) in the theory below. Then

(10.1) Varoﬁ___—l— {r00+4F00+A0}+2 +o<1>

niy, n?i g, iy, ni, n
where Ago > 0 and for the MLE 4, AZO = 0. The quantity I’f,0 is the ordinary
curvature at § = 6, of the two-dimensional curve (¢, ¢(0)) as defined at (2.1).

Before verifying (10.1) several remarks are pertinent.

1) The term 1/ni, is the Cramér-Rao lower bound for the variance of an
unbiased estimator. The bracketed quantity in (10.1) expresses the coefficient
of the 1/n%, term as the sum of three nonnegative quantities: y3, the statistical
curvature, which is invariant under transformations of 6; 4F§,o/i,,0, the “naming
curvature”, which depends on how % is parametrized (however, notice that
4T /ig, is invariant under linear reparametrizations § — « + p6); and AZ'O, which
can be made zero by using the MLE. Taken literally (10.1) says that the MLE
is superior to other efficient estimations with the same bias structure.

2) The estimators § will generally be biased by an amount of order 1/n. This
affects mean square error to order 1/n*. A simple adjustment, noted below at
Remark 11, produces estimators biased only to order 1/n* (10.1), with the bias
term ley,o/nz',,0 removed, is valid for such estimators. Among such bias corrected
estimators, (10.1) says that the MLE has asymptotically smallest variance.

3) The Fisher information is essentially invariant under reparametrizations
of &, in the sense that if 4 = p(@) is a differentiable monotonic function then
i,” = i,"(df/dp)* for every statistic T(x). The squared error estimation problem
is not invariant under reparametrization and this accounts for the presence of
the 4T} term in (10.1). For a given @, the “best” parametrization is in terms
of ¢(f), the expectation of the best locally unbiased estimator of #. (Notice that
¢ will be the same, except for scale and translation constants, no matter what
“§” we begin with.) It will turn out that if the MLE @ is unbiased for 6 then
¢ = 0 for all choices of ,, so we are automatically using the best parametrization.

4) (10.1) is not a special case of the Bhattacharyya lower bounds. The second
Bhattacharyya bound, applying to estimators biased by amount O(1/n?) or less,
is of the form
: 2
(10.2) Var, 0> + 1 {4F00} + O(i) s

27 7 3
ni, g \ iy n

and the higher Bhattacharyya bounds are identical until order O(1/n%), so these
bounds relate only to the naming part of the estimation problem. It is possible
for an estimator to achieve equality in (10.2), but then it cannot be efficient in
a neighborhood of 6, so (10.1) is not contradicted.

5) Even if & is not a curved exponential family we can use (10.1) to get an
improved approximation to Var, 0, compared with the Cramér—Rao lower bound
1/ni,. The Cauchy translation family discussed at (7.4) has i, = %, 75 = §-
The MLE 4 is unbiased in this case, so I';, = 0and (10.1) is of the form Var, 6 =
1/niy + 7§ /n%,, + O(1/n%). Numerical comparisons of this formula w1th the
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FiG. 6. Variance of MLE minus Cramér-Rao lower bound, for estimating the Cauchy
translation parameter. Theoretical value from (10.1) compared with Monte Carlo
results.

Monte Carlo studies of Barnett (1966) and also of Andrews et al. (1972) are
shown in Figure 6. The theoretical values are obviously too small for n < 11,
but seem to be more accurate than the Monte Carlo results for n > 13. For
n = 40 Andrews et al. estimate Var, 6—1 [nig, = .0025 + .0017 while (10.1)
gives .0031.

6) For estimating a translation parameter Pitman’s estimator is known to
have smaller variance than the MLE. However, (10.1) suggests that this effect
must be of magnitude at most O(1/n?).

7) Nothing in (10.1), except the application to general curved exponential
families, is new. Rao (1963) states the result for curved multinomial families,
and notes that for the MLE it was previously derived by Haldane and Smith
(1956). The identification of the bracketed terms with curvatures is new, as
well as the line of proof which leads to a rigorous verification.

8) The similarity of (9.1) and (10.1) can be viewed as a vindication of the
belief that Fisher information is an accurate measure of the information con-
tained in a given statistic. This conclusion is premature; the squared error es-
timation problem is very closely related to the information calculation, a fact
which would be more obvious if we had presented a geometric argument below,
as in Section 9, instead of using analytic methods. It is more reasonable to say
that the curvature 7, is the leading term defining the nonliﬁearity of a family
", and must play a central role in all calculations like (9.1) and (10.1). On
the other hand in the absence of evidence to the contrary it seems difficult to
dispute Fisher and Rao’s assertion that the MLE provides the most informative
one-dimensional summary statistic even when there is no one-dimensional suf-
ficient statistic.

Our derivation of (10.1) will be done with the curved exponential family &



CURVATURE OF A STATISTICAL PROBLEM 1211

in standard form, and assuming 6, = 0. Neither of these assumptions affects the
generality of the result. (The transformation to standard form maps any esti-
mator into an estimator having the same variance, and leaves the quantities zo s
7s,» and I’y unchanged.) We assume that the estimator 6(%) has continuous third
partlal derlvatlves with respect to the components of %, so that around ¥ = 0 it
has the Taylor’s series expansion

(10.3) 0(%) = a, + a'% + (FA%)/2 + O(F),

where q, is a scalar, a is a r X 1 vector, and A an r X r matrix, r being the
dimension of the full exponential family containing .&".
Here O(x°) indicates a term that near the origin is bounded in absolute value
by some polynomial in the components of % containing only terms of order 3.
Differentiating (10.3) with respect to the components of % gives the gradient
vector

(10.4) VO(x) = a + A% + O(%) .

In order for 6 to be consistent and efficient, (10.3) must have the special form
shown in the lemma:

LEMMA. A consistent, efficient estimator 6(%), having continuous third partial de-
rivatives near X = 0, has the Taylor series expansion

2N s = Xy, A, X -
10.5 (%) = fl —Pu X, Togx *olwX*a 4 oz
(10.5) (x) = i0,2+ioi”+ > + O(%%)
assuming & is in standard form at 6 = 0. Here X, indicates the ith component of

Xy Xy = (%yy Xy, - -+, X,), and A, is the matrix A with its first row and column
removed. For the MLE 6(%), A, = 0. Asin (1.1), p, = E, f,fo/f:2.

The proof of the lemma is based on two simple facts: in order for a continuous
estimator (%) to be consistent it must have “Fisher consistency”,

(10.6) 6(2,) =6,

since ¥ —, 4, under repeated independent sampling from f,. Moreover, letting
V, = VO(%)oy, »

(10.7) lim, .t = (1% Vo)’

“iyVar,0  (2'Zs7) (V4L V)
so 0 will be first order efficient at 4, (lim,_,, i, Var, d = 1),.if and only if
(10.8) Vy = VO(E) 522, = o

for some scalar ¢,. Taken together (10.6) and (10.8) say that the level surface
M, = {%: §(%) = 6} of an efficient consistent estimator § must cross {4,, § € 8}
at 1,, and at that point must be parallel to the level surface (9.4) of the MLE,
as shown in Figure 4. (10.7) merely says that the linear term in the expansion
of (%) about 2,, 6 = 0 + V,/(% — 4,) + O((%¥ — 2,)*), must be proportional to
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the score statistic 1, = ny,'(X* — 2,) in order to get first order efficiency. A proof
follows from a greatly simplified version of the argument below, but the result
is well known and will not be derived here.

The proof of (10.5) is obtained by seeing what form of (10.3) is necessary in
order that (10.6) and (10.8) hold.for 4, near 0. We will need the Taylor series
expansions

(10.9) N = ote; + |::J—l; e + ioToe2:|0 + o(0),
0
Ay = ijte,0 + O(6%)
and a more accurate expansion for the first component of 2,,
2
(10.10) e/dy = il + f‘_;l% +o(6").
)

(10.9) follows from the standard form relationships (4.1)—(4.2). To prove
(10.10) notice that e,’2, = E,x, = (1/i})E,I(x) (see (3.18)). Formally

10.11)  Eh=1, f,’— () [A(X) + 07i%) + T + o(@?) | dm(x)

=i6 + fu’ /Ju _|_ 0(02)

a result which is easy to verify rigorously in an exponential family.
(10.4), (10.9), and (10.8) combine to give (writing ¢, = ¢, + ¢,0 + o(8))

(10.12)  a + A(ite,0) + O(6?)
= ¢oite, + [c‘ot},*e1 + f"VLi(O) e, + coioroe,] 0+ o(0)

I
implying
(10.13) a = ¢yile,
and
(10.14) ioiAel — (Coti + Covlu(o)>e1 + CoioToen .
0

Notice that (10.14) shows that
(10.15) : Ay=A, = -+ =A4,=0.
(10.9), (10.10), (10.13), (10.6), and (10.3) combine to give

(10.16) 0 = a, + cyiy [1050 4 M 2] + %02 + o6,

implying

(10.17) a=0,

¢, = 1/i,, and ¢, py, + iy A;; = 0. Therefore

(10.18) a=le, A,=-tu 4 =T,
it i iyt
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the first of these following from (10.13), the last from (10.14). Taken together,
(10.15), (10.17) and (10.18) are equivalent to (10.5). Finally, for the MLE,
6((0, %,,)') = 0, implying A, = 0. This completes the proof of (10.5).

Two more simple results give (10.1) from (10.5). First of all, the Cramér-Rao
lower bound for the variance of a possibly biased estimator T(X) can be rewritten
as an equality in the following useful form:

(10.19) E,T :L+E0(T ) y2b
ni, i} m0

((10.19) follows from Cov, (T, i;) = 1 + b,.) Notice that I,/i, = %/i,} by (6.3)
so this statistic is just the best locally unbiased estimator of 8, U,, introduced
at (5.5). For an unbiased estimator, (10.19) says that Var, T exceeds the Cramér—
Rao lower bound by the expected squared error of T in predicting U,. In a
curved exponential family the regularity conditions necessary for (10.19) are
satisfied if E,7? < oo for 6 in a neighborhood of 0. The second fact needed is
that if z is standard multivariate normal, z ~ .#7,(0, I), and A is an r X r sym-
metric matrix, then E(z’Az)/2 = tr A/2 and

Z’Az

(10.20) Var = JtrA?,

Asn — oo, z, = ntx — 4,(0, I), and because f; is inside an exponential family
the moments of z, converge to the moments of z ~ _#7(0, I). Ignoring the O(%*)
term, an omission justified (under an additional restriction on 5) in Remark 12
below, (10.3) and (10.5) give

(10.21) Eoé —E, )?'A)-C 1 trA 1 <_2ﬁ% + tr;m> )
1y

n 2 n

Moreover (10.5) combines with (10.19) and (10.20) to give

(10.22) Eoéz — _1_ + é(Toz n flu + tr A(l) + tr2 A) + &_ + 0(_1_) )

nip, n 20t ni, n’
Therefore,
(10.23) Var, 6 = i3 4= 1 (To + P 4 U Afn) + 206y + o(i),
niy, n 2i ni, n’

Finally, (10.11) gives ¢(0) = 0 + (1,/2i)0" + o(6"), where ¢() = E, I/i, =
E,I(x)/iy, and then (2.1) gives the curvature squared of (6, ¢()) equal to /3 /8i,*
at § = 0. This completes the proof of (10.1). We see that the term Ag'o is

(10'24) Aoi = io tr A?u/z

and so equals 0 for the MLE.

Several more remarks can now be made about (10.1).
i 9) The bias of the MLE up to O(1/n) is, by (10.21), equal to — y,,/(2i,n). If
0 is unbiased to O(1/n), as it is for example in any translation parameter estima-
tion problem involving a symmetric density, then we must have y,, = 0. By
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(10.23) we then have Var,0 = 1/ni, + 7,}/n%, + o(1/n*). The naming curvature
term disappears from (10.1) in this case, so 6 must be equivalent to the best
name, ¢, at every point in & .

10) The expression (10.24) for the excess variance of 6 over the MLE also
occurs in the theory of Section 9,

(10.25) lim, . i, — i = iore? + AL,
see Rao (1963).

11) Let A(6,) be the matrix A in the Taylor expansion (10.3) when we have
put & into standard form at 6 = 6,, and define B,7 = tr A(6)/2. Then up to
O(1/n), BS ,/n is the bias of 6 when 6 = 6,. It is easy to show, by calculations
similar to those in Remark 12 below, that §, = § — B‘Z_ //n has bias of order
O(1/n*) and variance as glven in (10.23) but with the term 2b o/ni, removed. See
Rao (1963). For the MLE 4, B = —(¢4(0)/2i,"). The estimator § — Bf S+
Bi’ _ /n has variance as given in (10.1) but with the term A” removed. The pomt
is that by modifying the MLE we can obtain an estlmator with the same bias
structure and smaller variance than any other consistent, efficient estimator 6.

12) We have ignored the O(%*) term in (10.3) in the derivation of (10.23)
and (10.1). To justify this requires the following result: let =, be the cube
{z:|z) €% i=1,2,...,r},0 < a < }, and [,(z) the indicator function of 2.
Define z, = nix (so z, —, .4,(0, I)) and let p(z,) be a polynomial of degree /
in the coordinates of z,. Then
(10.26) Ep(z,)[1 — 1(z,)] = O(n'* exp{—4n*)
as discussed in the Appendix.

Now write (10.5) as § — %,/i} = Q + R where Q is the quadratic term #'A¥%,
A having the special form indicated in the lemma, and R is the remainder term
O(%%). Also define S(%) = Q(X)I,(ntx), T(%) = Q(X)[1 — I, (nt%)],and V¥ =T + R
(s0Q=8+T,0 —x/i}} =S + V). Notice that
(10.27) V| = |0F)| < Kn=3¢-= for nixe<&,

for some positive constant K. (We use below the same symbol K to represent
any bounding constant.) To the assumptions of the lemma we now add that
|0 — %, /i}| is uniformly bounded, giving

(10.28) V< K, nie<s,.

(With only slightly greater effort below, the boundedness condition can be re-

laxed to |0 < K(n}||%||)* for ni% ¢ &, for some positive constants K, k.) By
(10.26) and (10.27),

(10.29) E|V|' = O(n-3ti-o)
for any I > 0, while
(10.30) EOITII — O(nﬁule—nz"/ﬂ) .
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* Formulas (10.21) and (10.23) were derived assuming § — %,/i* = Q. But

|E,Q — E,S| £ E|T| = O(nue_nZa/Z)
and
|E(0 — Rfit) — E,S| < EfV| = O(n=*==).
Since @ < } this shows that Eoﬁ = E,Q + o(1/n), so (10.21) is valid. Likewise

|E(0 — %,/i)* — E,Q%| = |E(S + V)* — E(S + T
= |E[2SV + V' — T
(since ST = 0), which is < 2E,|SV| + E|V|* + E,|T|*. The last two terms are

“o(n~?) by (10.29) and (10.30). Notice that S¥ = O(x*) and SV = 0 for nix ¢ &,
so

(10.31) |SV| < Kn-st-

Taking a < {4 makes Ej|SV| = o(n~?), completing the proof that (10.28) is valid.
We remark that a more careful proof, assuming 6 four times continuously dif-
ferentiable, allows one to replace o(1/n*) bs O(1/n®) in (10.1).

Acknowledgment. Much of this work was done while I was visiting Imperial
College, London, Department of Mathematics. I appreciate the assistance of
Margaret Ansell in carrying out the more difficult numerical computations. The
Associate Editor provided extensive help, especially with the Appendix.

APPENDIX

Complete proofs of the statements made in Sections 9 and 10 require large
deviation results of the type discussed in Chernoff (1952) and the references
therein. Suppose x;, x,, - - -, X,, - - - are independent, identically distributed real
valued random variables such that Ex, = 0, Var x, = 1, and ¢(s) = Ee* exists
for |s| < s, 5, some positive constant. Then ¢(s) = 1 + s2/2 4+ O(s?) for s near
0, so
(A1) log ¢(s) = /2 + O(s") .
Define I, .,(z) = 1 or 0 for z > y or z < y, respectively. Because e™*a-¥1 >
I, «(%,) for all values of X, = X7, x,/n we have, for |s| < s,
(A2) P(%, 2 y} < EemGat) = [g(s)e]" .

LEMMA. For c, a sequence of numbers going to infinity, c, = o(n?), and I a non-
negative integer,
(A3) E{(n&jn)ll[cwm)(nain)} < cnle—cn2/2+o”(l) .

Proor. Let F,(y) = P{%, = y}, so F,(y) < [¢(s)e=*]" for |s] < s, by (A2). We
have

E{(n*in)ll[c,.m)(niin)} = —n" S::,/ni xt an(X)
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and integration by parts gives
_ -
:o/'ni xl dF”(X) = (ﬁ) F (_ﬁ’i) + l Sc /nt xl lF (X) dx
n na ng n

(f’i)’ |:¢ (f_> e—*n /ni:| + 1 S%/“ x Y (s)e**]* dx .

nt nt

IA

Taking s = c,/n? gives

(A8)  E(n) (w5} < 97 (S) et e+ LE (e, + )7,
n cn
where G has density e~ for g > 0, 0 otherwise. Finally
(AS) ¢n (%) — enlog‘p(c”/ni) — '80”2/2+0(cn3/n§)
by (Al). Combining (A4) and (AS5) gives (A3) with
(AS6) o,(1) = O([e,/n']) + log {1 + le,”*E(1 + G[c,?)'"},
where we now use ¢, = o(n!), ¢, — .
Now let x;, x,, - - -, X, - - - be independent identically distributed random vec-

tors, dimension k, Ex; = 0, Cov x, = I, such that ¢(f) = Ee"i exists for ||t|| < 1,
some positive constant. For any unit vector v define x,” = v’'x,. Then (A3) holds
with %, replaced by %,°. The term o,(1) is defined as in (A6), with the big O
term being the one in the expression log ¢(f) = ||7||*/2 + O(¢®). (Notice that
0,(1) does not depend on v.) (10.26) now follows easily.

LemMMA. If |E,e*'*|? is integrable as a function of t for some p =1 then g,(z),
the density of z = n%,, exists and satisﬁes

- / i s
(A7) g”( ) < = (2 )k/2 e—Ulzll/4)ymin{e,,l1z]l}+o, (1) s
¢, = o(nt), ¢, — oo.
Proor. Consider the univariate case, with n even. Define

(A8)  h(2) = 12w Gu(W)Gn(z — W) dw
= $2 9upf(W)n sz — W) AW + (3 Guo(W)Gn /(2 — w)dw .
Here g, ,(2), the density of (n/2)!%,,, is known to exist and to converge uniformly

to (27)~* exp(—z%/2), see page 244 of Gnedenko and Kolmogorov (1954). Then
M, = sup, |9,(2)] = 2r)t + 0,(1),s0for0 <z < ¢,

Hz) < Myl§22 Gulz — W) dw 4 (5 0,,w) d)
< 2M, e (#/Bminitoy 2l +oyd)

where we have used the bound P{n!%, > z} < exp[—z/2 min{c,, z} + o,(1)] ob-
tained by setting y = z/ntand s = min{z,/n, c,/nt}in (A2). But g,(z) = 2th(2%z),
giving (A7). The same proof with trivial modifications works for n odd. For
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the multivariate case the integrals in (A8) are over the regions R, = {w: z/'w <
I211/2) and R, = {w: z'w > ||2[|*/2}.

Remark 1 of Section 9 follows because (A7) makes step (v) of the heuristic
proof valid. All the other approximations involved in the proof are handled by
power series expansions and the bounding arguments of Remark 12, Section 10.
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DISCUSSION ON PROFESSOR EFRON’S PAPER

Professor Efron’s paper was presented at the 1974 Annual Meeting of the In-
stitute of Mathematical Statistics at Edmonton, Alberta. Professors D. R. Cox,
A.P.Dawid, J. K. Ghosh, N. Keiding, L. M. Le Cam, D. V. Lindley, J. Pfanzagl,
D. A. Pierce, C. R. Rao and J. Reeds were invited discussants. The Editor
greatly appreciates the willing assistance of Professor Efron as well as the dis-
cussants in arranging this discussion paper. Professor Rao’s remarks arrived
after the author’s reply to the discussion was received and are not referred to
for that reason.
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C. R. Rao
Indian Statistical Institute, New Delhi

I'am delighted to see the paper by Bradley Efron and also the paper by J. K.
Ghosh and K. Subrahmaniam (Sankhya A, 1975 36 325-358) on the subject of
second order efficiency. Having worked for some time on second order efficiency
of estimators, I was aware of the importance of measures of how closely a given
model can be approximated by an exponential family { f, = C(6) exp [K(6)T(X)]}-
Measures of this sort are of course closely related to what Professor Efron calls
the curvature of a statistical problem. What is quite new about Professor Efron’s
measure is its invariance under smooth 1 — 1 transformations and the elegant
geometric interpretation which makes the term so apt and illuminating and pro-
vides new tools and insights into the subject.

My endeavour in this area was motivated by two results in the literature on
estimation which seemed to contradict Fisher’s claims about MLE’s. (maximum
likelihood estimators). One is the concept of super efficiency, according to which
MLE is not efficient in the sense defined by Fisher. Another is the concept of
BANE (best asymptotically normal estimator), according to which ML is only
one out of a very wide class of estimation procedures.

The first task was to redefine the concept of efficiency of an estimator since
its asymptotic variance is a poor indicator of its performance in statistical in-
ference. To do this it is necessary to see how well an optimum inference pro-
cedure based on a given estimator T, alone compares with that based on all the
observations. Following Fisher’s ideas, I thought it is relevant, at least in large
samples, to consider the score function /() (see Efron’s paper for notations) as
basic to all inference problems. Then the problem reduces to examining how
closely i(6) and T, are related. Under the additional condition that T, is con-
sistent for #, T, was defined to be first order efficient if

(1) plim,_., |n~4i(0) — a — n¥(T, — 6)] > 0.
There are a large number of estimators which are first order efficient. To dis-

tinguish among them, it is natural to examine the rapidity of convergence in
(1), which led to the consideration of the random variable (rv)

@) |(6) — nte — np(T, — 6)|

which is n times the rv in (1). The asymptotic variance of (2) was defined as
the second order efficiency. Instead of (2) we may as well consider the rv

3) |i(6) — nta — nB(T, — 6) — An(T, — 6)|-

and define its minimum asymptotic variance for a proper choice of 1 as the
second order efficiency. Fisher suggested the use of

4) lim,_, n(i — iT”) »

to distinguish between alternate estimators, but the computation of (4) is ex-
tremely difficult.
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" The definition arising out of (3) was criticised as not being directly related
to an inference problem, although it attempts to examine how close T, is to
i(6). This led to another definition of second order efficiency based on the ex-
pansion (under some conditions) of the variance of T, after correcting for bias

The quantity ¢(#) was considered as a measure of second order efficiency. A
major component of ¢(f) was the measure based on (3).
With this background, the work of Efron is valuable in many ways.

(i) The results due to Fisher and me were confined to multinomial distribu-
tions. Efron, and also Ghosh and Subrahmaniam extend the results to a wider
class of distributions.

(ii) Efron relates second order efficiency to what he calls curvature of a
statistical problem, which appears to be natural and throws further light on
problems of inference (providing, for instance, an intimate connection between
curvature and properties of test criteria).

(iii) Efron provides a decomposition of ¢(f) in (5), which is extremely
interesting.

(iv) Efron suggests the use of a most powerful test at a suitably chosen al-
ternative in preference to a locally most powerful test, which seems to be an
attractive idea worth pursuing.

No doubt Efron’s work has led to considerable clarification of second order
efficiency and its relevance in problems of inference. However, there are many
problems which require deeper investigation.

(i) Efron shows by an example that measures of second order efficiency
based on (3) and (4) can be different. In fact, as he observes, it may be shown
(from definition) that the measure based on (4) is smaller than that on (3). But
the question remains: under what conditions are the two measures the same,
and is the MLE efficient under the measure (4)?

(ii) I have considered Fisher’s score function /(#) as a basic in problems of
inference. Perhaps, following Barnard and Sprott, one should consider 1(6)
itself. How should efficiency of T, be defined in such a case?

(iii) How can the result based on quadratic loss function as in (5) be extended
to more general loss functions?

Don A. PIERCE
Oregon State University

I think that I am not alone in having had great difficulty with the reasoning
of Fisher’s 1925 paper. Professor Efron’s elegant contribution to clarifying
these ideas is very helpful.
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‘The part of Fisher’s paper which has intrigued and puzzled me most is the
final section in which he suggests the use of 'i;,(x), in Efron’s notation, as an
ancillary statistic. I would like to indicate here how the geometry of this paper
helps clarify this, although there are many details yet unclear to me.

It is characteristic of “curvature” that —Ij(x) # ij. In fact, one can always
parameterize so that Cov,, (l'(,o, i;,o) =0, and then 7j = Var, (f,,o)/igo. Fisher
seems to suggest using —I;(x), rather than i;, as a post-data measure of precision
of §. This is also suggested by standard asymptotic Bayesian arguments, but the
sampling theory justification has never been clear to me. Such use of 1, would
be significant relative to the order of n=? of approximation to Var (6) considered
in this paper, for —1I; = iy + O,(n*) and thus —1/I; = 1/i; + O,(n~).

The geometrical structure exposed in this paper is indeed very helpful in un-
derstanding the role of I; as an ancillary statistic. For a curved exponential
family of dimension k think of the projection from the sample point x € E* to the
MLE 2;, where 2, = E(x) as an orthogonal projection (relative to ;") first to 4 in
the local osculating plane of the curve 4, and then a projection from 4 to 2;. The
argument below suggests that (—15(x) — i5)/i; is a useful measure of the signed
distance from 1 to the curve 4,, positive when A is on the outside of the curve.
This is useful ancillary information because the projection from 4 to 2; is a
contraction (resp. expansion) mapping when 4 is on the outside (resp. inside) of
the curve 1,. The extent of this contraction is a function of the distance from
A to the curve 1,, as measured by the above statistic. Thus the conditional
precision of 2, given I5(x) is either greater or less than the unconditional precision.
Furthermore, it appears plausible that the component of 1 orthogonal to the
curve 4, at 4; is itself uninformative regarding the value of 1,.

More precisely, consider the situation of Figure 4 with the additional assump-
tion that @ is a choice of parameter such that Cov, (I, Iy = 0. The point (x,, x,)
corresponds to the 2 of the above discussion. It follows directly from (6.3) and
the relations given in the second paragraph after (9.2) that

%, = lon(i)t, % = —[—1, — nig)/niyy, .
Near the origin the curve 2, is approximately a segment of a circle with center

at e,/7,, and the arc distance of 1, from the origin is to first order i. Propor-
tionality of arc lengths to radii gives

i20)%, = (1/15)/(1/1o — %5)

= (1= o8,
SO .
0 = (7_‘1/’.04)(1 — ro%) 7!
(1) = (®/i)[1 + (=1, — nig)/nig]*

= (%/igh)[miof(—1,)] -
Equation (1) can be seen to agree with the rigorously established (10.5) of the
paper, where g, = 0 since v, = 0.
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‘"Thus we have

) Var (0]1,) = (1/niy)[nio/(— o)

= [nigf(—1)I1/(—1o)]
Since —1, = ni, + O,(nt) this expression can be either greater or less than 1 [niy
by an amount O,(n~#).

I do not know the effect of conditioning on I rather than I, nor can I see yet
whether 1/(—1;) as suggested by Fisher is a good approximation to Var (4 |15).
Note that the expression in (2) differs by O,(n~%) from 1/(—I;). I also do not
know the effect of relaxing the assumption that one has parameterized so that
Cov, (I, Iy = 0.

It appears, then, that the curvature 7, is essentially the standard deviation of
an approximately ancillary statistic. This interpretation might have a number
of advantages over that furnished by relations such as (1.1) and (10.1). Loosely
put, the degree of curvature relates to the amount of information in the sample
which is not captured by the MLE; information in a sense regarding not 6 but
rather the precision of 4. Moreover, this information can be largely recovered
through appropriate use of I;.

D. R. Cox
Imperial College, London

Dr. Efron’s impressive paper throws much light on a longstanding problem.
I will confine my comments to one aspect that he has not treated. For an ap-
proach to statistical inference in which evidence in unique sets of data is inter-
preted via frequencies in hypothetical repetitions, appropriate conditioning is
important, at least theoretically, in making the hypothetical repetitions relevant
to the data under study. Thus for the translation family, Example 4, Fisher
(1934) provided a simple definitive solution to inference about § by conditioning
on the ancillary statistic, the set of differences among order statistics. This leads
to the use of normalized likelihood as giving confidence limits. Curvature here
measures the variation among the different kinds of likelihood functions that
can arise. It would be useful to make this more specific and to draw any im-
plications about the comparison of conditional and unconditional inference.

More importantly, what are the implications of conditional inference for some
of the other problems, for instance Example 1? Here, if x = (x, x,), x, —
47ri(x; — 1) is approximately ancillary in some sense, at least for small y,6.
Existence of an approximate ancillary must be connected with the approximate
constancy of y, as a function of #; it would be good to have the connexions
explored.
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D. V. LINDLEY
The University of Iowa

My first comment is to repeat the point made in discussing C. R. Rao’s (1962)
paper, namely that it is doubtful whether any general measure of second-order
efficiency is possible. The reason for suggesting this is that an admissible estimate
is typically, to order n~*, equivalent to the maximum likelihood estimate, for a
wide class of loss functions: but to order n~? its asymptotic form depends on
some features of the loss structure. Consequently the second-order “correction”
to the maximum likelihood estimate typically depends on the loss structure, as
does its efficiency. The point is discussed more fully in Lindley (1961).

Efron’s thought-provoking paper does not introduce curvature solely for
second-order efficiency properties; nevertheless the definition of curvature he
proposes suffers from a defect in some statistical problems. The defect arises
from the fact that it involves an integration over sample space and thereby vio- .
lates the likelihood principle. Put it this way: suppose we have some data x
and its associated likelihood function, /,(x), then, according to Efron, we have
to consider what other data we might have had, but did not, before any inference
can be made. These data are needed before the integrations, symbolized by E,
in the paper, can be performed. That such data are needed is puzzling and any
reasonable axiomatization of inference seems to deny their relevance. The author
tacitly assumes that the other data are samples of the same size, but many prac-
tical problems do not naturally fit into this framework. Even the notation helps
to reinforce this view. Likelihood is a function of # for fixed x and yet Efron
lowers the status of the variable to that of a subscript and the constant appears
in the place customarily reserved for the argument. The notation /(¢ | x) is surely
to be preferred.

An example of the misuse of the integration is provided by the discussion of
the ¢-translation family [Example 4 of Section 7: see also the remark after (8.3)].
If samples are taken from a ¢-distribution with low degrees of freedom, then it
will be found that a substantial majority of them look very like samples from a
normal distribution—the comparison being made through the ¢- and normal
likelihoods. It is only rarely (how rarely depends on f and n) that a sample
arises which is clearly nonnormal and its log-likelihood is markedly not quadratic.
But because of the integration, or averaging, over all samples, these “peculiar”
samples get put in with the “normal” ones and nonstandard estimates proposed.
Looked at without prejudice, I think you will find this is a surprising thing to
do. The argument can be extended to query whether it is reasonable to look for
a point estimate in the “peculiar” cases: for example, when the likelihood is
bimodal. I would go further and suggest that point estimation is not a good
model for any inference procedure, though it does occasionally occur in a decision
context. Estimation is solved by describing the likelihood function or the pos-
terior distribution.
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These criticisms have less force before the data, x, are to hand. If it is a
question of experimental design, or choice of a survey sample, then naturally
one has to consider what data might be obtained, and integration becomes natural
and necessary. Hence curvature could have a place in these fields and it would
be interesting to see whether, in some sense, linear designs were better than
“curved” ones. However, the argument of my first paragraph would show that
if a terminal (as distinct from design) decision problem is contemplated after the
experimentation, then the choice of design would again involve a loss function,
so that no general measure seems possible. Some experiments are not associated
with terminal decisions and are genuinely inferential in character. In these one
is collecting information about parameters and Shannon’s measure is essentially
the only one to use. I have tried to see whether some second-order expansion
of it might lead to anything analogous to Efron’s curvature, but without success.
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Lucien L Cam
University of California, Berkeley

Professor Bradley Efron is to be congratulated for a clear and informative
discussion of the differential properties of families of measures. The paper is
certainly a step in the right direction. However, as I shall try to explain below,
much remains to be done.

The paper tends to give the impression that the curvature measures the loss
of information sustained by using a one dimensional summary of the data. This
is perhaps so if “information” is measured by Fisher’s number. However, one
can define other measures of loss of information more directly in terms of per-
formance in testing or other decision problems. See for instance E. N. Torgersen
(1970). These definitions are usable for arbitrary families, whether or not they
are smoothly differentiable.

It can probably be shown that these other measures of loss of information are
related to Fisher’s numbers in certain special situations, but not in general. One
could roughly say that Torgersen’s formula for testing deficiencies relies on finite
differences instead of relying on the first and second derivatives used to compute
curvatures. Efron’s curvature has the merit of being easily computable, but one
should not take it for granted that computations with differences, which may
be difficult, should not be attempted.

The part of the paper which relates to the presumed excellency of maximum
likelihood estimates should be taken with a great deal of caution. It is easy to
modify Bahadur’s example (1958) to construct one parameter families of densities
which are infinitely differentiable, satisfy all kinds of reasonable conditions
locally but are such that, when the number of observations tends to infinity,
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the maximum likelihood estimate always converges to infinity, no matter what
the true value of 6 is.

It is also easy to find exponential families where, for reasonable numbers of
observations, maximum likelihood estimates are difficult to compute and defi-
nitely worse (in the sense of expected square deviations) than some readily
available alternatives. Anexample occurs in bioassay using the logit method (see
Berkson (1951)). Another example with an interesting discussion is given by
T. S. Ferguson (1958).

Finally, it seems that the entire asymptotic argument relies essentially on a
replacement of the actual logarithm of likelihood ratio by a suitable approxima-
tion which is quadratic in 6.

If this is indeed the case, the technique of using a preliminary estimate, fitting
a quadratic around the estimated value and then maximizing the quadratic should
give the same asymptotic results. Preliminary considerations suggest that this
technique may well work better than straight maximum likelihood estimation
in the finite sample situation.
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J. K. GHosH
Indian Statistical Institute, Calcutta

Thanks to my work on second order efficiency, I was aware of the significance
of the quantity which Professor Efron calls the curvature of a statistical problem.
What enhances the importance of it is the elegant geometric interpretation of it,
which affords new techniques and deeper insight into the problem.

It is natural to expect that this quantity also plays an important role in as-
ymptotic problems of testing hypotheses. By considering a number of examples
of curved exponential families, Professor Efron has shown that this is indeed
the case and unless curvature is small such commonly used methods as maximis-
ing the local power perform rather poorly for moderate sample sizes. Pfanzagl
(1974) has arrived at the same conclusion. (Pfanzagl’s D = (curvature)®/4.)

Probably even more interesting than this is the suggestion by both Pfanzagl
and Efron to use a suitable most powerful test instead of a locally most power-
ful test when the curvature is appreciable. Following Davies, Professor Efron
suggests the use of a most powerful test against an alternative 6, such that its
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power at 6, is about .8 and recommends the thumb rule of taking 6, = 6, 4 2/, }.
These suggestions must be tried out in lots of problems involving nonexponential
families to see if one does get reasonable tests this way even for moderate sam-
ples. (Pfanzagl (1974) provides some criteria for comparing two tests.) I report
below some calculations for a curved nonexponential family, namely, the Cauchy
with unknown location parameter. To make matters worse, I take sample size
N=1.

Suppose then that I have a random variable X with density fy(x) = 1/x -
1/(1 + (x — 6%)) and want to test Hy(@ = 0) vs. H(6 > 0). Let ¢, be the most
powerful test of Davies and ¢, the test: reject H, iff X > C. The second test has
its greatest power against # = 2C and seems to me a reasonable one. For a =
.05, ¢, is most powerful against § = 5 (approximately) and ¢, is most powerful
against § = 13 (approximately). The following table compares ¢, and ¢,.

=35 =13
b, .8 .06
b, 2 .95

If « = .2, ¢, and ¢, are nearly the same and are most powerful against § = 2(2)}
which is the alternative obtained by Efron’s thumb rule. I refrain from drawing
any conclusion.

It is not difficult to come up with analogues of curvature when one has more
parameters than one. Extension of the results due to Rao and Fisher to multi-
parameter families is provided in Ghosh and Subramanyam (1974). But it is
now necessary to study testing problems of composite hypotheses along the lines
of investigation carried out by Efron and Pfanzagl for simple hypotheses.

How relevant is curvature for a Bayesian? Ghosh and Subramanyam (1974)
have shown how one can construct a Bayesian proof of the second order efficiency
of the MLE. What is lacking and would be useful to have is a study of relevance
of curvature in Bayesian analysis. The difficulty here is that one cannot think
of any simple and convincing reason why a Bayesian would prefer the linear
exponential families to nonexponential ones. All is grist that comes to the mill
of the lucky man who not only has a prior but knows what it is.

It is a little disappointing, though not really surprising in retrospect, that
curvature has nothing to do with the geometrical curvature of the likelihood
curves. Curvature is, however, useful in the problems that Sprott (1973)discusses.
For it is easy to show that his two approaches of minimizing F,(¢) or F(¢) (in
his notations) coincide iff one has a linear exponential family. (This statement
is true provided the MLE satisfies the likelihood equation with probability one
for all §.) For example (2.3) of Sprott (1973), the curvature is fairly large for
x near .5 and so Sprott’s transformation which minimizes F(¢) may not be
efficient in normalising the likelihood for x near .5. Incidentally, I suspect that
for small curvature one can reparametrize in such a way that the approach of
a posterior to normality, guaranteed by the Bernstein—von Mises theorem, would
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be faster with the new parameter than with the original. (This may be an answer
to the question of relevance of curvature for a Bayesian.)

It may be worth pointing out here that the results of Pfanzagl (1973) and those
of Fisher and Rao (i.e. results like (10.1) of Efron) are not really comparable.
In fact for all the efficient estimators considered by Efron or Ghosh and
Subramanyam (1974), inequality (6.4) of Pfanzagl (1973, page 1005) reduces to
an equality. This result, which is not very hard to show, will appear in Ghosh
and Srinivasan (1975).

Finally, a question suggested by the beautiful counter example of Professor
Efron. Is there any example such that among the Fisher consistent efficient
estimators the MLE does not minimize the loss in Fisher’s information for all
values of §? It seems reasonable to expect that such examples do exist.
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J. PFANZAGL
University of Cologne

In hypothesis testing, one-parameter exponential families are distinguished by
the fact that for one-sided alternatives uniformly most powerful tests exist for
arbitrary sample sizes. For other families, the test has to be chosen with par-
ticular alternatives in mind. It is intuitively clear that the dependence of the
test on these particular alternatives will be weak if the family is close to an ex-
ponential one. Is it possible to measure “nonexponentiality’ (for this and other
purposes) by a single quantity? Mr. Efron’s suggestion to use the “curvature”
7o for this purpose is based on a geometric analogy. Therefore, its usefulness
for statistical theory is not obvious in advance. It is the purpose of this note
to draw attention to some results of asymptotic theory where the function 7,
has been in use already for some time. Whether curvature admits an easy statis-
tical interpretation in nonasymptotic theory seems doubtful.

‘“Nonexponentiality” implies in particular that a LMP (locally most powerful)
test will not be MP (most powerful) against the statistically reasonable alterna-
tives. The author uses a particular example to support his claim (see end of
Section 8) that y} is a good predictor for the relative performance of the LMP
test compared to the test which is MP against a specific alternative. In this
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connection he suggests that the difference in power can be neglected if T, = %
For the case of a sample of n i.i.d. variables this entails that the difference in
power can be neglected if the sample size exceeds 8y} (see 8.3).

Since this rule is rather arbitrary, the reader should be aware of other results
which make the role of y, more clear. These results concern the case of n i.i.d.
variables, the distribution of which is nonatomic and sufficiently regular (as a
function of #). To define for a given level a-test “deficiency at rejection level
B” we determine first the alternative closest to the hypothesis which can be
rejected with probability 8 by some level a-test. (The test for which this is
achieved is called S-optimal.) In order to reach rejection probability 8 for this
alternative with the given test, the sample size has to be increased. The additional
number of observations needed for this purpose is the “deficiency at rejection
level B.”

For the LMP a-test the deficiency at rejection level 8 is asymptotically equal to

(1) 15Ny — No)* + 0o(n')

where N, is the d-quantile of the standard normal distribution. (See Chibisov
(1973, Corollary 2) and Pfanzagl (1973, Section 8, formula 24) or Pfanzagl (1975,
Proposition 1, formula 6.2).)

This result enables one to check whether the rule suggested by (8.3) is rea-
sonable. For a = .01 and 8 = .99 the deficiency is 5.4y} + o(n"). Mr. Efron
suggests in (8.3) not to worry about curvature if n = 875 . To follow this sug-
gestion and to use a LMP test instead of a -optimal test could mean to waste
more than half of the sample.

The following is another asymptotic result (for nonatomic families) illustrating
the statistical relevance of curvature. If a sequence of tests is ,-optimal, then
its deficiency at rejection level § is at least
@) 175(Np — Np)* + o(n")

(see Pfanzagl 1975, Corollary 2, formula 6.5). Hencea sequence of tests having
asymptotic deficiency zero for more than one alternative cannot exist unless the
curvature is zero.

In another attempt to demonstrate the statistical relevance of “curvature,”
Mr. Efron refers to a result of Fisher (see (9.1)). Mr. Efron is careful enough
not to follow Fisher’s abuse of language using a suggestive word for a mathe-
matical construct (such as “information” or “likelihood”) without paying any
attention to the question whether the interpretation thus suggested is meaningful
from the operational point of view. ‘

A statement like “Since a single observation contains an amount i, of informa-
tion this [namely the use of a MLE instead of the whole sample] is equivalent
to a reduction in effective sample size from nton — y,* -..” (see beginning of
Section 9) is misleading, at least, since for nonatomic families the level a-test
based on the MLE has asymptotic deficiency zero at the rejection level (1 — a),
and not asymptotic deﬁciency 74%, as the statement quoted above might suggest.
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(See Chibisov 1973, Corollary 3 or Pfanzagl 1973, formula 23 for r = —2N, L},
or Pfanzagl 1975, end of Section 6.) Probably the statement quoted above is
meant as the interpretation Fisher himself would give to (9.1). Since this
interpretation is unjustified, how can (9.1) convince the reader that “curvature”
is statistically significant?
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NieLs KEIDING
University of Copenhagen

1. An important feature of Efron’s paper is the study of the loss of infor-
mation resulting from summarizing the data in n replications X;, ---, X, of a
multivariate random variable into a one-dimensional statistic T(X) = T(X,, - - -,
X,). In most of the paper it is assumed that the X,’s are observable and that
their distribution belongs to an exponential family of which the statistical model
forms a “curved subset”, in the sense of the mean value parametrization. The
basic result in this connection is formula (9.3), stating that the information loss
from n replications is

i, — 1,7 = E, Var, {1,(X)| T},

where for T = 0, the right hand side is i,7,?, independent of n. (Notice that it
is an implicit consequence of this that § cannot itself have the form ZH(X)))-

A somewhat related problem is that of incomplete observation of an exponential
family, where the statistician is “forced” to work with nonsufficient reduction
of data. It is here assumed that the statistical problem is specified in terms of
an exponential family where only a function Y = Y(X) of each component may
be observed. If Y is a linear function of the canonical statistic X, there seems
to be a canonical way of decomposing the parameter vector into an efficiently
estimable part and a nonidentifiable part, using the concepts of “mixed para-
metrization” and “cut” introduced and further studied by Barndorff-Nielsen
(1973, 1974) and Barndorff-Nielsen and Blaesild (1975), and in the case of con-
tinuously distributed random variables this seems to hold as soon as the level
curves of Y are hyperplanes. Asymptotic results for arbitrary “curved” func-
tions Y were given by Sundberg (1974) who points out that the same formula as
above applies for the information loss, which here in general will be of order n.

It is clear that the two situations might be combined: a “curved” model with
incomplete observation. An example of this was discussed by Fisher (1958,
Section 57.1).
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" 2. The relation (10.1) for the asymptotic variance of any consistent and
efficient estimator § contains the term Ago, being always nonnegative and zero
for the MLE. This quantity was computed by Rao (1963) for several estimation
methods in the multinomial distribution, as noted by Efron. It would be inter-
esting if some geometrical interpretation, or at least a bit more transparent ex-
pression than (10.24) could be given for this quantity, which must be related
to the intuitive discussion by Fisher (1958, Section 57) of “the contribution to
x? of errors of estimation”. '

3. Curved exponential families occur frequently in population process and
life testing models leading to occurrence/exposure estimates of birth or death
intensities. One familiar example is that of estimating the mean p~! of an ex-
ponential distribution from a sample of n, censored at a fixed point 7. If D is
the number of variables less than ¢, and S the sum of these + (n — D)t, then
the likelihood function is pPe~#S, yielding g = D/S.

We shall here comment a little upon the similar example of estimating the
birth intensity 2 in a pure (linear) birth process (X,) from continuous observation
of the process in [0, ¢]. See Keiding (1974) for details of the problem.

Assuming X, = x,, degenerate, the likelihood is

ZXt—zoe—XSt

with S, = { X, du. Setting B, = X, — x,, the maximum likelihood estimator
is A= B,/S,. It is readily seen that the Fisher information

iy = xe* — 1)/&

and the statistical curvature 7, is given by

s 1 [ 1 (Ar)?e**
= x—o 1 — 2t (e — 1)3:|'

In the spirit of the paper, we quote some values of 7> (x, = 1) in Table 1.

Two asymptotic schemes are inviting: large initial population size (x, — co)
for fixed ¢ and large observation period (1 — oo) for fixed x,. Beinga branching
process, a birth process with X, = x, may be interpreted as a sum of x, birth
processes with X, = 1 and the same 4. Therefore the first scheme is still within
the realm of independent identical replications, and may be treated with the
methods of Efron’s paper. This was done by Beyer, Keidingand Simonsen (1975)
for this case as well as for the life-testing situation outlined above.

The second scheme, however, is a “real” stochastic process situation, and we
encounter here the trouble that the minimal sufficient statistic is not consistent,

TABLE 1
Statistical curvature for the birth process with xo = 1

at 0 0.1 0.5 1 2 5 oo

7.2 0 0.009 0.052 0.125 0.319 0.835 1
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F1G. 1. The canonical sample space of the birth process estimation problem. The
curve is the statistical model corresponding to 0 < 2 < co (mean value parametrisa-
tion). The full-drawn line is the set of points for which B; = 1S: where 2 is the
“true’’ value, and the broken line is the set where B, = iS;.

in fact, as t —» oo
e (B, S,) — (1, 2 YW

almost surely, where the random variable W is gamma distributed with form
parameter x, and expectation x,. Nevertheless 4 — Aa.s., asillustrated in Figure
1. Here 2! is the slope of the full-drawn line, i-! is the slope of the broken
line (connecting the observed (B,, S,) and the origin.) Normalising with e=*,
the minimal sufficient statistic will converge towards some (1, 2-) W (shown by
arrows), but the empirical line will always converge towards the correct line.

In the standard situation the asymptotic normality of 6 is based upon the as-
ymptotic normality of the minimal sufficient statistic combined with pure dif-
ferential geometry, as noted by Efron in Section 9. It is therefore no surprise
that asymptotic normality breaks down here. Notice also that y, — 1 (not 0) as
t — co. However, for given “nuisance statistic’’ W, the minimal sufficient sta-
tistic is asymptotically normal with asymptotic variance proportional to W=,
and hence also 1 is asymptotically normal. (Marginally, the distribution of
e*%(4 — A) converges towards a Student distribution with 2x, d.f., which may
be interpreted as the mixture of the normal distributions over the gamma dis-
tributed inverse variances.)

It is thus tempting to investigate the problem obtained by conditioning on
W = w, replacing the “nuisance statistic”’ W by a nuisance parameter w, see
Keiding (1974). The resulting “conditional” maximum likelihood estimator 2*
has the same first-order efficiency properties as 4. A comparison of second-order
efficiencies is not yet completed.
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- 4. A more general aspect of the last example is: can curved exponential
families be “avoided”? In the birth process situation a stopping rule like “sample
until X, = »n” will make the minimal sufficient statistic one-dimensional, in fact
equal to S, r = inf {r| X, = n}. Also it should be mentioned that conditioning
on statistics which are in some sense ancillary (see Barndorff-Nielsen (1973) for
a survey of ancillarity) may completely change the curvature properties of the
problem.
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A. P. DAWID
University College London

With his introduction of the concept of statistical curvature, Professor Efron
has provided, not merely a valuable theoretical tool, but a new way of looking
at statistical problems which at once unifies what has gone before and opens up
new territory.

The general study of curvature belongs to Differential Geometry, a subject
which has proved an invaluable tool in Physics, both Newtonian and Einsteinian.
It may have much to offer Statistics. A good introduction is Laugwitz (1965)
while Hicks (1965) emphasises a coordinate-free approach more suitable for
Statistics.

In general differentiable spaces, we cannot talk about curvature until we have
chosen, somewhat arbitrarily, a linear connexion: this defines what we mean by
“displacement of a vector parallel to itself along a curve.” For example, consider
an observer who lives and measures on a plane inverted in its unit circle. To
him, a circle through“ the origin looks like a straight line, and he would consider
its tangents as parallel; to us they are not. The need for the parallelism concept
may be seen from Efron’s Figure 1: a, is the angle between (i) 7, and (ii) 7,
displaced parallel to itself along < to 7,. This depends on our connexion.

Let us try to frame Statistics within Differential Geometry as follows (ignoring
obvious technical difficulties): Let &2 be the family of all distributions over .27
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equivalent to a carrier measure p. A curve <’ in 27 is a 1-parameter family in
G, say ‘©” = {P,} with densities { f;}, having suitable regularity properties.

If _# is the vector space of signed measures m on 2%, with m & p and
m(Z") = 0, we may define the tangent to € at P = P,as my* € #, with m,* =
“lim,_,” (Py,; — P,)/d. (Equivalently, dm,”/dp = f;). Conversely me 2 is
tangent to some curve at P.

Let 77, be the vector space of random variables 7T(x) having E,[T(X)] = 0.
For given P, there is a natural isomorphism between _"and 77,: dm = T(x) dP.
Then m,* maps into /,(x), which may again be identified with the tangent to &
at P,.

Now let Py, Py € %, with tangent spaces ¥, 7, and let T, e 7, T, ¢ 7.
To be able to talk about the angle between T, and T, we must put them into
the same space. We may do this by a parallel displacement of T, along < to 0,
where it becomes T’ € .

The parallel displacement used implicitly by Efron—what I propose to call
the “Efron connexion”-—has

(1) To’ =T, — Eal(To) .

This happens to be independent of the curve &7, which is not always so. Noting
(d/d6)E,[T]| = E,[Tl,] for fixed T, we can generate (1) by the infinitesimal dis-
placement rule (having 6, = 6, 4 df)):

) Ty = Ty — Ey(Tol,,) - 6 .

For curvature, we look at the angle between Loy =1lo,— lg, - df and l,,1 = l,,0 -+ I';,O do.
We may measure this by'any convenient inner product, but in our statistical
set-up there appears to be only one natural inner product in 27, namely
(T, Uy = Ep(TU). (For any parametric family {P,}, this yields the information
inner product, with matrix (E,[(0!/0¢,)(0!/0¢;)].) Hence we may call this the
information metric). Thisleads to Efron’s measurement of angle and of curvature.
The “straight lines” have a characterisation i'ndependent of the metric: [,
must displace to become a scalar multiple of /,. By reparametrisation, the
multiple may be taken as unity. This leads to the differential equation

(3) i;‘)+i0:O

characterising exponential families.

The Efron connexion is not, however, the only available one (although it
probably is the only one that fits in neatly with repeated sampling, as in Efron’s
Section 6). An alternative obvious definition of parallel displacement considers
-7 as the tangent space and uses the identity transformation (again, independent
of path). This is equivalent to transforming 27 into ¥} with

dP
4 T =T, < ”0>,
“ o » \a,
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yielding the infinitesimal displacement
(5) Ty = Ty — Toly, - dfl .

To measure curvature with this connexion, using the information metric, M,
in Efron’s (2.3) must be replaced by the covariance matrix of J, and (I, + ).
The “straight lines” now have I, + I = 0, which yields mixture families: P, =
(1 — 0)P, + 0P,. Thus the above connexion may be termed the “mixture
connexion”.

Now the information metric makes .&° into a Riemannian space, and from this
point of view there is a serious deficiency in both connexions above: they are
not compatible with the metric. That is, the length of T, at Py (viz [E,(T,*)]?) is
not the same as that of its parallel translate T/ at P, . It may be checked that
the infinitesimal displacement

(6) T =Ty — §[Toly, + Ep(Tolp,)] - dO

yields a connexion—the “information connexion”—that is compatible with the
information metric. Curvature for this connexion (which is the geodesic curvature
associated with the information metric) uses the covariance matrix of /, and
i, + i

We can calculate the torsion and curvature tensors (Hicks, page 59) for the
above connexions. We find that all have zero torsion (equivalently: are sym-
metric, or affine). There is a unique affine connexion compatible with a given
metric, hence (6) supplies it for the information metric.

We find zero curvature for the Efron and mixture connexions, while the cur-
vature tensor R associated with the information connexion has

) R(T, UV = [T EUV) — U. ETV)].

The Riemann-Christoffel curvature tensor K of type 0, 4 (Hicks, page 72) is
then given by:

t)) K(T, U, V, W) = LETV)E(UW) — E(TW)E(UYV)].

From this we find that the space &, with the information metric, has constant,
positive, Riemannian curvature %.

The geodesics (shortest paths) for the information metric are the “straight
lines” of the information connexion, satisfying

9) I, + 32+ %i,=0.

Solutions of (9) are closed curves, parametrized by an angle 9, having an angle-
valued sufficient statistic ¢, with density of the form

(10) f(t]0) =1 + cos (t — 6)
with respect to a probability measure v over the unit circle for which

{¢™ e* du(f) = 0. Such curves have iy = 1, and total length 2z. Thus .&° looks
rather like the surface of a sphere of radius 2, opposite points being identified.
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'The nonvanishing of (7) means that the information parallel displacement
depends on path, which makes it less immediately intelligible than the Efron
and mixture displacements. Can we give any interesting statistical interpretation
to the information connexion, and its associated families (10)?
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Jim REEDs
Harvard University

1. Ideas of geometrical curvature are not completely new to statistics. Efron’s
paper is the logical successor to papers applying the differential geometric point
of view to statistical estimation. Rao (1945) and Bhattacharyya (1943) viewed
the multiparameter Fisher information as defining a local (Riemannian) metric
(Eisenhart (1926 and 1960), Spivak (1970)) on the parametet space; the inte-
grated arc length of a geodesic connecting two parameter values then defines a
global metric or distance function on parameter space. Holland (1973), Huzur-
bazar (1950 and 1956) and Mitchell (1962) exploited transformation properties
of the Fisher information viewed as a Riemannian metric. Holland, for instance,
sought covariance stabilizing transformations (like the square root transforma-
tion of univariate Poissons). Such a transformation makes the Fisher information
matrix, expressed in transformed coordinates, a constant matrix. “When can
it be found?” is the question “When is a given Riemannian manifold locally
isometric to a Euclidean space?” Riemann gave the answer: “When the Rieman-
nian curvature (or, in two dimensions, the Gaussian curvature) vanishes iden-
tically.” This always happens only in dimension one. In all higher dimensions
non-Euclidean manifolds—and noncovariance stabilizable parameter spaces—
occur.

Recent unpublished work of Tadashi Yoshizawa (1971) makes explicit use of
the inherent Riemannian structure in parameter estimation problems. He shows
how one can isometrically embed the parameter space into a Euclidean space
of sufficiently high dimension, and then read off the (first order) asymptotic
properties of the estimation problem by inspecting the parameter space as a
curved submanifold of a Euclidean space.

Thus curvature of one sort is not new to statistics. But Efron’s curvature is
of a different sort—not the Riemannian or ‘“intrinsic” curvature but instead the
curvature of embedding, associated with the particular way a parameter space
is placed inside a higher-dimensional “natural parameter” space. Riemann cur-
vature—measured by the curvature tensor—is determined solely by the “first
fundamental form” or metric tensor, the physicists’ metric ground form, the
statisticians’ Fisher information matrix. Efron’s curvature, curvature of embed-
ding, is measured by the “second fundamental form” and depends on more than
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Fisher information. The distinction is illustrated by a cylinder embedded in
Euclidean 3-space. This surface has curvature of embedding but no Riemann
curvature, for any piece of it can be unrolled without distorting lengths. A
sphere in 3-space has both sorts of curvature; a parabola in the plane has only
curvature of embedding. No submanifolds of Euclidean space have Riemann
curvature without curvature of embedding.

Efron takes the natural parameter space as Euclidean, with constant metric
given by the Fisher information evaluated at the true value of the parameter,
6,- The actual parameter space is a submanifold of natural parameter space; its
curvature of embedding is calculated with respect to this constant Euclidean
structure on the natural parameter space. Efron’s discussion in the second para-
graph of Section 2 is unclear; one might falsely assume that the natural parameter
space was endowed with the (nonconstant) metric provided by the Fisher in-
formation as a function of 6.

The point of Efron’s paper is that the curvature of embedding, calculated in
this way, has an effect on statistical procedures, an effect amenable to quanti-
tative study.

2. The main result of Section 10 may be generalized to a multivariate curved
exponential family. Both this result and Efron’s suffer from a defect which
might be overcome in future work. The defect is that both make statements
about the coefficients of the asymptotic expansions of the variance, not about
the variance itself. Thus, the conclusions are of the form

“Var (T,)

2+l tomn (or o),

and aza, andif a=a, b=4,

where a and § are certain theoretical lower bounds. This should be contrasted
with a stronger type of conclusion:

“Var(T,) = & 4 & »
n n
where @ and § have the same meaning as above. (If T, is such that Var (T,)
has an asymptotic expansion at all, the second conclusion implies the first.) Both
the Cramér-Rao and the Bhattacharyya inequalities provide conclusions of the
second type. In a sense, we can trace the difference to the different methods
used to prove the various inequalities. The classical proof of the Cramér-Rao
bound proceeds by constructing a certain variance-covariance matrix, and using
its positive semidefiniteness to get the desired results. This is to be contrasted
with the method used in the present theorems: Taylor expansions of the func-
tional form of the estimate, coupled with systematic discarding of negligible
terms.
It is conceivable that a proof of the theorem of Section 10 could be constructed
by the classical method, by considering the joint covariance of the estimate, the
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first derivative of the log likelihood, the square of the first derivative of the log
likelihood, and the product of the first and second derivatives of the log likeli-
hood. This is conjectured on the grounds of the simple form the covariance
matrix takes, when only terms of order up through 1/n* are considered.

We may define a curved g-parameter exponential family by means of a smooth
map 7: © — H, where O is some open subset of R?, and H is the natural pa-
rameter space of a k-variate exponential family. To simplify the discussion that
follows, we will assume that 7 is an embedding in the sense of differential ge-
ometry: » is a C= injection, with differential of full rank at each point, and that
“smooth”—whenever it appears in this discussion—means C~. Note that accord-
ing to this set-up, © is not a submanifold of H; but »(®) is. An estimate is a
function 7': -#°— 0, mapping the space of the sufficient statistic to the parameter
space.

If we restrict ourselves to estimates 7' that depend only on the sufficient sta-
tistic X, = n~}(x, + --- + x,) (and not on n), and which satisfy certain regularity
conditions, we may prove:

THEOREM. Ler T depend only on %,, the sufficient statistic for a curved g-param-
eter exponential family. Suppose T is smooth in some neighborhood of E(%,), and
suppose T grows (as a function of %,) no faster than exponentially.

If T is a consistent and first order efficient estimate of 0, the variance of T possesses
an asymptotic expansion

Var (T(%,)) = CRLB + 4 + B 4 € 4 o(nsy.
n n n

(Here CRLB denotes the Cramér-Rao Lower Bound,

A denotes the “naming” or “Bhattacharyya” curvature, which can be made
zero by an appropriate reparameterization of parameter space. It is in-
dependent of 7.

B is the “Efron excess”, or statistical curvature term and is independent of
T.

C depends only on the function T, and vanishes for the particular choice
T = the maximum likelihood estimate.

All these quantities are g by ¢ positive semidefinite symmetric matrices.)

The proof of this multivariate theorem parallels Efron’s univariate arguments.
It shares the use of affine transformations to bring the problem into “standard
form,” calculations with Taylor expansions to exhibit the consequences of con-
sistency and first order efficiency, and finally, replacement of T by a Taylor
approximation, and the calculation of expectations and variances of the Taylor
approximant.

The key quantity of interest in the conclusion of this theorem is the term B,
the “Efron” or “statistical curvature” excess. It is the multivariate generaliza-
tion of y*/i, and (like y*/i) may be defined in several ways.
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4 (1) Let 9(6), in the vicinity of #,, have an expansion
Wi(a) =a + Zi bji(aj - 0oj) + % ij Cﬁk(ﬁ" - ‘901')(‘91c - 00") + .-
where ¢ has coordinates (6", 6%, ..., #7). Let (g*/) denote the inverse of the

Fisher information matrix for #, and let (G,,) denote the Fisher information
matrix for the natural parameter . Let

Dih = er bianbh‘ ’
Ei,mn = Zn birGrsc:nn
ij,m'n = er c;kG'rxc:n'n .
Let the inverse of D = (D,,) be D~ = (D/). Let
ij,'mn = ij,mn - Zih Ei,jkEh,mnDih .

and

Then
BY = 34 Ymn 9G G
If, at 6,, the Fisher matrices of both # and 7 are equal to identity matrices, this
simplifies to
Bij == Zk,r c{kc;j b
where the summation extends over r > g + 1.
(2) Let [ be the log likelihood function. If

L= 9
a0,
and
aZ

i
36,00,

I

we may form the linear regression of I on [ as follows:

I;k = Zi AB;klz ’

and we may calculate the regression-residual variance:

Cov (I; — Iy Ty — ) = iy
Then
BY = 3w 2k 9" Ui 1n 9
(3) Let Q,,; be the components of the second fundamental form of the im-
bedding »: ® — H (see Eisenhart (1926 and 1960)) where H has the Euclidean
structure induced by the Fisher information evaluated at »(4,). Then

Bij = Zmn Zkl Zr gimermkgler)l'ﬂg"j .

Similar formulas hold for the naming curvature term 4. In the special case
where both the Fisher information matrices are equal to identity matrices (at 6,)
and where

bi an

= e— Y

i
J ; - 1)
067 1g,
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the ijth term of the naming curvature is given by
aG,, >< . 0G,,
a c] a
WA a0;

a0, 00) ’
where the summation extends over 1 < a, b < ¢.

Notice that in the univariate case the naming curvature term 4 can always
be made to vanish identically by a suitable reparameterization, but in the mul-
tivariate case this cannot in general be done. It can always be made to vanish
at isolated points, but there need not in general exist reparameterizations which
make the naming curvature vanish globally. This is related to the general
nonexistence of multivariate covariance stabilizing transformations. In the
univariate case, the naming curvature vanishes identically exactly when we
parameterize the curve by arc length: that is, it vanishes when the variance is
stabilized. Inthe multivariate setting, however, we cannot in general covariance
stabilize, and we cannot in general make the naming curvature identically zero.
Perhaps the easiest example is provided by the trivariate normal distribution,
with unit covariance matrix, with the mean vector constrained to have unit
length (and, to avoid global topological problems, with first coordinate positive).
Thus, in the multivariate case the naming curvature term takes on added sig-
nificance, and must be viewed as serious an object of study as the statistical
curvature term itself.

AY = Yo, <cib +
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REPLY TO DISCUSSION
The discussants are (almost) uniformly constructive and informative in their
comments. They point out many important facts, and even whole areas, that
the paper misses. Only two of them consider me basically deranged in my
thought processes. In what follows I have tried to answer a few specific points,
without exploring much further the bigger questions raised.
Professors Cox and Pierce suggest that the distance from (%, %,), to 4; is a
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useful approximate ancillary statistic. (See Figure 4. It is simplest to assume
that the family & is in standard form at § = 0, and that we are considering ¢
values near zero.) I particularly like Pierce’s suggestion that the ancillary in-
formation has to do with the precision of 8 and not its location. To make things
really easy, consider repeated sampling in Example 1, and suppose that we happen
to get § = 0, that is %, = 0. (See Figure 2.) The likelihood function for 6 is
proportional to exp{—(n/2)[1 — r,%, — 7,°0°/4]6*} which for @ in the interval
6 =+ c/n behaves like exp{—(n/2)[1 — 7,%,]6*}. That is, the likelihood function
for @ is approximately .4 (6, [1 — 70%,]/(niz)). The distance from (%,, %,) to 8, %,
in this case, modifies the unconditional variance (ni;)~! by the factor [1 — 7,%,].
It is probably possible to extend this likelihood analysis to a genuine conditional
variance statement, as Pierce suggests.

Bayesians and other nonfrequentist statisticians do not like averages taken
over the sample space 22” with 6 fixed. Professor Lindley raises this objection
to the curvature 7,% as it has been raised to the Fisher information i, itself.
Those who believe in direct interpretation of likelihood functions prefer —f3(x),
the actual curvature of the log likelihood function at its maximum, to the average
value i,. (Incidentally, I use 6 as a subscript rather than an argument to save
writing parentheses!) I find some force in these kinds of considerations but,
perhaps because of my training, can never be convinced without the support
of some relevant averaging property, be it frequentist, conditional frequentist,
Bayesian, or otherwise. (See my discussion following Blyth (1970).)

If a Cauchy translation sample of size 10 yields a very normal looking likeli-
hood function, say .#7(0, .3), should we behave as if the MLE has variance .3?
Professor Lindley answers “yes” on Bayesian grounds, in the absence of prior
‘information. Professor Pierce’s remarks indicate that the curvature may have
something helpful to say to frequentists about such problems.

Returning to less slippery ground, here is a calculation of asymptotic Bayes
risk that makes use of the curvature. In a curved exponential with an i.i.d.
sample of size n, let ¢ have prior distribution .#7(6,, c,/n), where ¢, is going
sufficiently slowly to infinity. Then the Bayes risk is asymptotically

Loyt ey o ()

"
Ny Mg, iy,

which equals to order 1/n* the squared error risk of the biased corrected MLE
at @ = 6,. (This result follows, with some effort, from (10.19).)

Professor Le Cam’s warning about over-reliance on local methods is well
taken. As a matter of fact, my paper is most concerned with curvature as a
check on the appropriateness of first order local properties such as Fisher’s in-
formation and the Cramér-Rao lower bound. In the situation of Figure 6, cur-
vature can be used quantitatively to improve the first order approximation. I
hope, but of course am not certain, that other situations will be similarly obliging.

Le Cam’s criticism of the MLE as a point estimator should not be confused
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with Fisher’s preference for it is an information gatherer. A function of the
MLE may be better than the MLE itself for any specific estimation problem.
This is the case in the Berkson example quoted. Berkson findsa “better” estimator
than the MLE, which eventually is improved by Rao-Blackwellizing it on the
sufficient statistics. This gives a function of the MLE! (It has to because the
situation involves a genuine uncurved exponential family.) Figure 4 becomes
more convincing the more you study it. Locally the straight level line L; seems
intuitively preferable to any curved competitor M;. (See Dr. Keiding’s remarks
and my reply.)

Quadratic approximations to the log likelihood function have been used suc-
cessfully by many authors, notably Professor Le Cam himself. They are the
basis of Rao’s work in second order efficiency. They can be used to produce
estimators other than the MLE which are second order efficient. Whether there
is a corresponding theory of third order efficiency, and whether the MLE is still
the champion, is an interesting open question.

After a long fallow period there seems to be a revival of interest in second
order efficiency and related topics. Iam eager to see Professor Ghosh’s work
with Subrahmaniam and Srinivasan. (Also, I must apologize for not having been
aware of Pfanzagl and Chibisov’s papers, which demonstrate rigorously the rele-
vance of what I have called curvature to hypothesis testing problems, even out-
side an exponential family framework.) As Ghosh suggests and as I mentioned
in discussing Pierce’s comments, there is some connection between 7, and the
geometrical curvature of the likelihood function, but not one I understand clearly
yet. Professor Ghosh’s last question can be partially answered in the affirmative:
in the counter-example of Figure 5, change ¢ to (—2%, 4). Then the MLE of
any % vector with X, = } is zero, but if X, = } each X corresponds to a unique
6. For n any multiple of 3, § will lose mformatlon because of the grouping of
those X vectors with X, = }. It is easy to curve the level lines of another con-
sistent efficient estimator 5, a la Figure 4, so that the vectors with X, = } are
separated, and (%) is different for all different % vectors, so no information is
lost. This works for any fixed n divisible by 3, but I am less certain about find-
ing a 6 that works for all values of n.

There is less difference between Professor Pfanzagl and me than the tone of
his comments indicates. His results (1) and (2) follow from (8.4). Ishould have
said earlier that a rescaled version of this equation holds as an approximation
when testing 6 = 0 versus # > 0 under i.i.d. sampling in any curved exponential
family,

1 — B3(0) = D1 + 7'0°/4)} cos (45, — A;) — 2,) »

where § = (ni))}0, 7, = 1,/n}, and 4; = tan~!(7,0/2). In order for this approxi-
mation to be sufficiently accurate to yield Pfanzagl’s asymptotic results, the
family must be nonatomic. However, the type of power comparisons presented
in Table 3 are less sensitive as well as more familiar. For &« = .01, power = .99,
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_ 1/n =}, the case Pfanzagl discusses, the locally most powerful test has ap-
proximate power .94 compared with the envelope value .99. I consider this
borderline acceptable, and will stick to my suggestion of y’/n > } as a rough
indicator of nonnegligible curvature effects.

Fisher defined 7,? as the loss of information in using § instead of the whole
sample. Rao’s results on estimation with squared error loss partially vindicate
this definition. Pfanzagl’s own work shows that y,’ plays a key role in the loss
of effective sample size in hypothesis testing problems. Then why does he seem
to say that 7,’ has no statistical significance? The fact that the level « test based
on the MLE is asymptotically equivalent to the 8 optimal test with power 1 — a
has nothing to do with the existence of curvature effects. There still is no uni-
formly most powerful test. The global deviations of any attainable power curve
from the power envelope are still ruled by the magnitude of y,%.

I was happy to see that Dr. Keiding had found a definite use for curved ex-
ponential families in his work on birth processes. Time series problems offer
many other examples, of which my Example 3 is close to the simplest. (With
Dr. Reeds’ multiparameter theory available we are now in a position to analyze
the second order asymptotics of higher autoregressive schemes.) The geometric
interpretation of the penalty Ago for not using the MLE is simple in the case
r = 2. Comparing (10.24) with (10.5) shows that it equals one-half of the squared
curvature of the level curve M, = {%: 6(%) = 6,}. See Figure 4.

Dr. Dawid raises a deep question: why have I chosen to represent families of
probability distributions by their log densities rather than, say, the density func-
tions themselves? This latter representation would make mixture families rather
than exponential families straight lines, as he points out. What I have called
the matrix M, then has elements y,; as at (1.2) rather than v,; as at (3.21).
Dawid makes the interesting observation that still another definition is needed
to make straight lines into geodesics in the information metric. (Rao 1945a and
1945b, has proposed using this type of geodesic distance to measure the separa-
tion of probability distributions. Atkinson and Mitchell have calculated Rao
distances for many familiar distribution families.) I can’t answer Dr. Dawid’s
deep question except to say that my definition was motivated by what seemed
to be the most pressing statistical considerations. He makes a good case for
other definitions also yielding useful results for the statistician.

My paper considers only one parameter families. Dr. Reeds gives a convincing
extension to the multiparameter case. Having been frustrated myself by the
intricacies of the higher order differential geometry, I am impressed! Hopefully,
his “B”, the analogue of r,*, will also play the correct corresponding role vis-
a-vis Fisher information and hypothesis testing.

Two technical comments: (i) a version of the usual super-efficiency examples
prevents Reeds’ formula (2) from holding generally. In my Example 1, Figure 2,
let (%) = %, except in a band of width +x,* on either side of . Within this
band modify 6 so that it is consistent and first order efficient. Then (10. 19) can
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be used to show that § satisfies (10.1) with the 1 [n*ip{ } term set equal to zero
at , = 0. (ii) It is not true in general, even in the one parameter case, that
the “arc-length parameter” has naming curvature equal to zero. Let o(f) be
this parameter measured from 6 = 6, = 0, where we assume for convenience
that i, = 1. By definition ¢(0) = {{i,d0’ so that da(0)/d0 = iz}, d*¢(0)/d6* =
(diy/d6)/2(iz)t. 1t is easy to show by an expansion similar to (10.10) that in terms
of the quantities g, ; defined at (1.2),

digldd = 2p; — pt -

This gives the Taylor expansion about zero

0) =6 _ Ex 6 6°
o(0) = 0 + (m — £2) 2 4 007,
2/2
4y, and p,, being evaluated at 6 = 0.
The parameter ¢(f) which figures in the definition of T, in (10.1) has Taylor
expansion

$(0) = 6 + y% + o (6%

as given in (10.11). Therefore the naming curvature I'y will not be zero for the
arc-length parameter unless g, = 0. (That is, Fisher’s score function has third
moment zero.)

It is not clear to me whether or not one can always choose a reparameteriza-
tion for & which has naming curvature identically zero, even in the one-
parameter case. We probably wouldn’t want to estimate such a parameter any-
way unless it had something more to recommend it than I')? = 0. I didn’t mean

“to imply that naming curvature is less important than statistical curvature, onyl
that it depends on the name.

Finally, I would like to thank the Editor for arranging this discussion which
involved a large amount of extra work on his part. I hope the Annals of Sta-
tistics will continue the entertaining and enlightening policy of providing occa-
sional discussion papers.
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