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OPTIMAL CONVERGENCE PROPERTIES OF VARIABLE
KNOT, KERNEL, AND ORTHOGONAL SERIES
METHODS FOR DENSITY ESTIMATION!

By GRACE WAHBA
University of Wisconsin

Let Wpym(M) ={f: f&) abs. cont., v=0,1,---,m —1, fim e &,
||ftm||p < M}, where ||+||, is the norm in %, m is a positive integer and
p is a real number, p = 1. Let {fu(x)}, n=1,2, --- be any sequence of
estimates of a density at the point x where fn(x) depends on n independent
observations from someAdensity feWpm(M). It is shown that if
supsew,m ) Ef(f(X) — fu(X))? = bpn=$tm:p+), where ¢(m, p) = (2m — 2/p)/
(2m + 1 — 2/p), and ¢ > 0, then there exists a Dy > 0 such that b, = D, for
infinitely many #. Thus the best possible mean square convergence rate
for a density estimate, which is uniform over W,m)(M), is not better than
n—¢tm,p+o for arbitrarily small e. The following types of density estimates
are shown to have mean square error at a point bounded above by Dn-¢(m.»),
provided that a certain parameter, usually depending on m, p and M, is
chosen optimally: the polynomial algerithm, kernel-type estimates, certain
orthogonal series estimates, and the ordinary histogram. D’s for each
method are given.

1. Introduction. Let W,™ be the Sobolev space of functions whose first
m — 1derivatives are absolutely continuous, and whose mth derivative is in &,.
Let
(§=e [f™ @I ey <M, if p=1,
sup [f™ (@) =M, if p=oo,

TP
™ lles

and let

w,m(M) = {f:fe W, [If™]l, = M}.

The functions in W,™ (M) may be thought of as possessing a certain minimal
degree of smoothness, characterized by the parameters m, p and M. In this paper,
m, p and M are fixed, m = 1,2, ..., p = 1,and M > 0.

Ina recent paper [6] estimates of a density at a point were studied, for densities
assumed to be in W,™(M). The choice of estimate there depends m, p, and M.
If £,(x) is the estimate of f(x) based on n independent observations from the
density f, it was shown, for the estimates in [6],” that

(1.1) E(f(x) — fux)) = O(n=#")
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16 GRACE WAHBA

where

(1.2) ¢(m, p) = (2m — 2/p)/(2m + 1 —2/p) .
Subsequently, the author was led to conjecture that the convergence rate of
(1.1) cannot be improved upon simultaneously for all f e W,™(M). Indeed, it
is known that the Parzen kernel estimates [4] achieve this rate form = 1,2, - . .,
and p = oo. Serendipitously, a paper by Farrell [1] appeared shortly thereafter
with a theorem concerning the best available rates, which allows the question
to be answered.

The purpose of this paper is twofold. First, it is shown, as a modified version
of Farrell’s theorem that, if

SUPsewyman EAS(X) — ful(x)) = b,mtmare,
where £,(x) is any sequence of estimates of f(x) based on n independent observa-
tions from f, and ¢ > 0 is fixed but may be arbitrarily small, then liminf,_, b, =
Dyc) > 0. (Note that ¢(m, p) is an increasing function of p.)

Secondly, several types of density estimates achieving the rate n=#™» are
compared on the basis of mean square error. The result (1.1) in [6] for the
polynomial algorithm for density estimation is extended to all p > 1. Next, it
is shown that the Parzen kernel estimates achieve the rate n=¢™», for m = 1,
2,...,p = 1. Then, itis shown that the Kronmal-Tarter orthogonal series meth-
od [3] achieves this rate for m = 1,2, - .-, and p = 2 if f has compact support.
(The result is probably not true for arbitrary orthogonal series, however.) Fi-
nally, it is shown that, for m = 1, p = 1, the ordinary histogram method for f
with compact support achieves the best obtainable rate if the size of the “bins”
is allowed to vary appropriately with n.

For each method except the polynomial algorithm, we exhibit a D such that,

for all fe W,™(M),
(1-3) E(f(x) = fu(0)* < Drot=2(1 + o(1))
D is of the form

D = [ M2AB*™-2/p]/@m+1=2/p)

where
2m + 1 —2/p)

0 = 0(m, p) = (2m — 2/];)(2'”“2/?) ,

and A4 and B are constants given in terms of m, p and A where A satisfies
sup: f(§) = A .
It can be shown that if f is a density there exists A = A(m, p, M) < oo such that
SUP ;e ,man SUP: f(€) < A(m, p, M),

but this demonstration is omitted. In the case of the polynomial algorithm,

(1.3) holds uniformly only for the set of f’s in W, ™(M) satisfying f(u) = 2 > 0,
all u in a neighborhood of x. In this case, 4 and B are inversely dependent on 4.
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2. Farrell’s theorem for fe W,™(M). Let k be a positive integer and » a
differentiable function on the real line. The function f is said to be in Farrell’s
class C,, if

1. f* continuous, v =0,1, ---, k

2. there exists a polynomial s of degree k such that, for all y, |f(y) — s(y)| =
207y ' ()

For our purposes we will take 7(y) = Ky* for some positive constants K and r.
(See [1] page 172.)

We next show that fe W, ™ (M) implies that fe C,_,, with »(y) = K,My",
t=2—1/p. For 1 <p< oo, K,={2t[(m — 1)g + 1]V}, 1/g+ 1/p=1,
and, for p = co, K, = }. This follows upon taking s(y) = 2= f*(0)(y*/»!)
since, with 1/p 4+ 1/g = 1, using a Holder inequality on Taylor’s formula with
remainder,

y (y 0" iy
fy L= o) a

< oy OV (0] — b e

[P dul

<2 MW" gy
=20 Ty 7|yl

K = Klf ™1, -

f0) — Dz o) X | <

with

Let X}, X,, - - -, X, be n independent random variables with common unknown
density f. Without loss of generality, suppose we are estimating f at the point
x = 0. Then

THEOREM 2.1 (Farrell, [1], Theorem 1.1). Suppose {a,, n = 1} is a sequence of
nonnegative real numbers such that

(2.1) lim inf, . inf;., ” Plr(Xp Xy -+, X)) —f(O) S a,) =1

with y(y) = Ky*=», (and where y, is an estimate of f(0) based on X, X, - - -, X,).
Then

(2.2) liminf,_, n#™?a,® = oo .
We have the following
COROLLARY. If
(2.3) SUPegyy, Er(rn — [O)) = byn™tm?

with n(y) = Ky*~V?, then there exists D, > O such that b, = D, for infinitely many
n.
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Proor oF CoroLLARY. By Tchebycheff’s inequality and the hypothesis,

PAlre —fO) S a) 21— EA = SOV o g LanT0T

Taking a, = n~#"™?7, if lim sup b, = 0, then (2.1) is satisfied but (2.2) is not.

We would like to have the Corollary for fe W, ™ (M). However, W ™ (M)
is strictly contained in C,_,, with »(y) = Ky*"/» for any K > 0 and so this is
too much to ask. (The functions # defined in the Appendix are in C,_, , with
7(y) = y*~V?, but are not in W ,™.) However, we come close with the following
Theorem, by noting that ¢(m, p) is a continuous, monotone increasing function
of p for fixed m.

THEOREM 2.2. Suppose {a,, n = 1} is a sequence of nonnegative real numbers
such that

(2.4) liminf, . inf.cp o Pe(lre —f(0) S a,) =1.
Then, for every fixed ¢ > 0,
lim inf,_, n#™?+9q ? = oo .

A proof of Theorem 2.2 is given in the Appendix. The Corollary is immediate,
as before.

COROLLARY. For any fixed ¢ > 0, suppose

Supfewp('”)(M) Ef(rn _f(O))2 = bn podim,pte) |
Then there exists D, > D such that b, > D, for infinitely many n.

Thus, mean square convergence can take place uniformly over W, ™ (M) ata
rate which is no better than ¢(m, p + ¢) where ¢ > 0 is arbitrarily small.

3. Convergence properties of the polynomial algorithm for density estimation.
Lett, t,, - - -, t, be the order statistics for X}, X,, - . ., X, and let F,(x) be n/(n + 1)
times the sample cumulative distribution function, based on ¢, t,, .-, ¢,. Let
k, « n be an appropriately chosen sequence depending on n. An estimate for
f(x) may be obtained by interpolating F, at every k,th order statistic, 1, , i =
1,2, ...,[n/k,], by a smooth function. Call this smooth function F,, and let
the density estimate f,, be given by

Fu) = LB

We call this class of methods “variable knot interpolating methods.” The “knots”
are the points of interpolation. The only examples of these methods that we
know of in the literature are the polynomial algorithm [6] and Van Ryzin’s
histogram method [5], of which [6] is a generalization. The method described
in [6] uses local polynomial interpolation and is as follows:
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Suppose fe W,™. Let [ be the greatest integer in (n — 1)/k,. Let
i =0,  x<ity,

d
= Ex‘ﬁn(‘x) ’ i, = X < tgomyk,

=0, Limmith, = X
where F,(x) is defined as follows: For m = 1,
) Fn(t(i+l)k,,,) - Fn(tik,n)

Lasnk, — Yik,
tiey, = X < g, s . i=2,3,...,1—1.

ﬁn(x) = Fn(tik,,,) + (x - tik,n

Form =2, let £, (x),i=1,2,...,1 — m — 1, be the mth degree polynomial
which interpolates to F,(x) at the m + 1points x =ty , fpnp,s = *> Lismk,  FOT
X € [fiyam,» Lasan,)> define £,(x) to coincide with £, (x),i = 1,2, ---, [ —m — 1.

More explicitly, for any given numbers x, < x;, < - -+ < x,,, let [(x) = [(x;
Xo Xy, + + +» X,,) be the mth degree polynomial with [,(x,) = l,v=p=0,1, ..., m,
L(x)) =0, g #v. Letl (x) = L(X; ty» Lusnys ***> Ligmp,) TheN

GD) [ = g Dbl e

fu(x)=0 otherwise,

i=ix), xe [tzk,,,a t(l—m+l)kn)

where it is understood that d/dx applies to the polynomial /; (x) with i fixed,
and where i(x) is defined for x € [ty , #_m+1,) @s that value i which satisfies

Livor, = X < Lo,
for m = 2, and by that value i which satisfies
L, = X < iy,

when m = 1. Thus,

S0 = o) = {709 = T 1,0 S0 10) e}
+{"tdAﬂMHmw) Fira) = 22 ))
X €[ty timming,) »
f(x) _fn(x) = f(x)» x¢ [tzk,p t(l—m+1)ku) .
Therefore,
E(f(x) — fu(®))
(62) < 28 {19 — T L 1,0 S0 10) def

+ 25{ i ll (%) <F(t(z+v)k ) — F(ta,) — ,,vf_” 1>}2
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where i = i(x) is a random integer, and, if x ¢ (%2, Li-msnr,)> then [y (x) is de-
fined as 0. We will call the first term on the rlght the blaS term, the second,
the variance term.

Letting F(x) = §°, f(#) du, the variance term may be viewed as the error in
approximating F(t, ) by ﬁ(’uz,,) = ik,/(n + 1). Under some additional condi-
tions to be stated later, it is shown in [6], that the variance term has the bound

(3.3a) 2E{ Py l“(x)(F(tuw) Flta,) — vi"1>}2
shp(1+o(g)+o(%)

where

(3.3b) B, = 2mm+% z;l}m-n 34

and 2 > O satisfies
(3.3¢) 2= f(w)

for u in a neighborhood of x. We remark that B, is probably not the best
constant.

The bias term is due to the error committed in approximating f(x) from values
of F(ty, ), i=1,2, ..., [n[k,]. The mth degree polynomial F(x) interpolating
to F(x) at x,, xy, - - -, X, is given by

Fx) = Lo b(x) §22 f(§) dé
and its derivative f(x) = (d/dx)F(x) is given by

fx) = _o—l(x)S W S(§) dE = 1”=1%l»(x)525f(5)d€-

To analyze f(x) — f(x), the following lemma was given in ([6], Theorem 3), for
P = 2.
LeEmMA 3.1. Let fe W,™ forp = 2. Then
(fx) = f))* < a(m)(§5p |f ™ @)Y 2 (xp — x)m7,
xe[xpx,l,m=1,2; xe[x, x,_,],m=3
where

al)=1, a@) =@, am)= B’(n’” +1§”)] ., mz3.

Lemma 3.1 is immediately extended to p > 1 by replacing the Cauchy-Schwarz
inequality in (3.9) of [6] by a Holder inequality with 2 replaced by p.

3 The factor 2 was erroneously omitted in [6], Equation (2.26b).
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The entire argument of [6] (including the use of Lemma 1) now goes through
exactly for p > 1, simply by replacing 2 by p in Theorem 3 of [6].
The result (from [6]) is then

1) Yl f6) )

sswa(h ) (ro ()

n

(42) 28 (f(v - It d

v

where || f™]||, < M and

(3.4b) A, = 2a(m) - m (Lx”.y"’—”” .

Thus, ignoring a factor (1 + O(1/k,) + O(k,/n)), if f € W™ (M) and f(u) = 4 for
u in a neighborhood of x, then

kn >2m—2/p + Bl _1_ .
n o+

(3-5) E(f() = fo) = M2, :

n

The right-hand side of (3.5) is minimized (see Lemma 4a of [4]) by taking

(3.6) k, = [ 1 B, :Il/(mﬂ_z/") (n + 1)Em=wm/amti=yp)
" (2m — 2/p) M4,
in which case
E(f(x) — fu(x))! < Dyn=#m»
where
Dl — 0(M2A1Bl2m—2/p)1/(2m+1—2/p)

and @ is the constant given following (1.3).
For completeness we state the extended version of Theorems 1 and 2 of [6], as
now obtains for p > 1.

THEOREM 3.1. Let f(u) < A, all u, let f(u) = 2 for u in a neighborhood of x,
let |u(! — F(u))| and |uF(u)| be bounded respectively for u = x and u < x. Let m
be an integer, m = 1. Let p be a real number, p = 1 and let fe W ,™(M). Let
Fa(x) be given by (3.1) with k, given by (3.6). Then

E(f(x) —fn(x))2 < D,n-em-yavemii-va(1 4 o(1))
where
D, = 0(M?*A, Bm-¥»)\/@m+1-2/p)
and
AlBlzm_z/p — |:2(1(m) S <%1->2m—2/17] I:Zm”’“z* ﬂ 3{|zm—z/p .

22(1»—1)

4. Convergence properties of the Parzen kernel-type density estimates. The
argument of this section was graciously suggested to the author by Professor
Farrell. Suppose fe W,™(M). Let K(y) be a real-valued function on (— oo, o)
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satisfying
() SUP_eeyew [K(p)| < 00
(i) §2. [K(y)| < oo
(iii) lim,_, |yK(y)| =0
(iv) §=.K(y)dy =1
(v) §Z.y'K(y) =0 i
(vi) 2. [y["?IK(y)| dy < oo .

The kernel-type density estimate f,(x) is then given by

(“.1) fue = S ma k(X))

where 2 > 0 is to be chosen so that # — 0, nk — co.
Let

2 1 x — &
J) = Ef ) = - i K (25) ey e
From [4], Theorem 2 A, the variance term is

@22)  ELW =y =L e (140 ()

=5 (140 )

where
(4.2b) B, = A§=.K¥y)dy.
The bias term may be established for m = 1,2, ..., p = 1, by noting that
B(f,(x) — f(0) = §2 K(—&)f(x + £h) dE — f(x) .
Now
@3) o+ ) = ) + mr L oo

aten (X + §h — w)" "t my
+ {z m 1! f (u)du .
Using (iv)—(vi) in (4.3) gives

E(fu(x) — f(x) = §=. K(—&) d& §zrer C T R = 0" pamy gy

(m —1)!
and an application of a Holder inequality to the inner integral gives
(4.4a) [E(fa(x) — [ = M*A,hm=/e
where
@4b) A= o (8 K@) e

[(m — DIF [(m — 1)g + 1]
with 1/g + 1/p = 1.

L2, ...,m—1



CONVERGENCE OF DENSITY ESTIMATES 23

Thus, ignoring a factor (1 4+ O(1/nh)),
(4.5) E(f(x) — fu(x)) < M2A, ks 4 B, ”IZ .
n

Define k, = nh, and choose

1 B 1/(2m+1-2/p)
(*-6) ko= [(2 2/p) WA ] e,
m — z/p 2

which minimizes the right-hand side of (4.5).
We have the following

THEOREM 4.1. Let m be an integer, m = 1. Let p be a real number, p = 1 and
let fe W,™(M). Let f,(x) be given by (4.1) where K sdtisﬁes (i)—(vi) and h =
k,[n with k, given by (4.6). Then

E(f(x) _fn(x))z < Dyn—em-yp/emii-un (] 4 (1))
with
D, = ﬂ(MzAzBzzm—Z/P)l/(2m+1—2/p)

and
1

[(m — DH((m — DAL = 1/p)) + 1]=7]
X [§20 [K(@)| €[ dT* - [A §=.. K() dy]am-v.
From the point of view of minimizing the bound on the mean square error

here, to optimize the choice of kernel, one should choose K subject to (i)—(vi)
to minimize

(am—2/p) __
A, B, /) —

> |K(&)| €|~V dE[§=,, KX(&) dE]m—V» .

5. Convergence properties of the Kronmal-Tarter orthogonal series density
estimate. Suppose that f(§) = 0 for £¢[0, 1]and fe W, (M) on [0, 1]. Let
¢u(x) = coswkx, k = 0, 1,2, .... Then the Kronmal-Tarter orthogonal series
density estimate [3] is given by

(5.1) fa®) = Tio dugh(x)
where r is to be chosen, and

. 2
(5.2) a4, = —';- Z?:l ¢'k(tj) ’ k = 0, l, 2, “ o

d, is an unbiased estimator of a,, where
a, =2 §; f(§)u(§) d k=0,1,2, ...

Since {¢,}7_, are complete on [ —1, 1] with respect to even functions on
[—1, 1] and we can define f(—¢&) = f(£), the density f has the Fourier expansion

flx) = % + Y%, a, cos rkx .
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Thus
J(x) = fu(x) = a1 (@ — G)Pu(X) + Lieri @ Pu(X) -
Here a, = 4, = 2.
The variance term is studied by observing that

E(Zi=1 (@ — ()’ = 71;— {Z%1=1 B[4 §3 $u()Pu()(€) 4§ — a,a ]}

= % [4 §6 (Zim1 S0 )) () 6 — (Liar @ u())] -
Now
She1 Pu(X)u(§) = Y35-1 COs Thkx COs Tk = %[w‘r(x + &) + w,(x — §)]

where
sin (rzt/2)
sin (z7/2)

Therefore, for large 7, and x in the interior of [0, 1], the variance term “behaves
like” f(x)(r/n). For concreteness, we note that since

w,(t) = cos (§(r + 1)z7)

§8 (Xie SO dE <

(5:33) E(Sies (@ — G)$u())' < By
where
(5.3b) B, = 2A .

To establish a bound on the bias term, we use the following
LemMa 5.1. (Young and Hausdorff). Suppose g(x) e &£[—1, 1] with Fourier
series 3=, g,€™, g, = 3 (L, 9(x)e™**dx. If1 <p <2, and 1/p + 1/g = 1, then
(B2 |9 = (& T2a lg()l? dx)> .

This result is stated in Hardy, Littlewood, and Pdlya [2], equation (8.5.7);
for the proof see [2], page 221. The limitation on p is essential; indeed, if p = 2,
the reverse inequality holds (see (8.5.6)).

Now,
(5.4) |50 01 @, COS ThX| < 5 |ark™ - %1;
1\
< (Zon Iakk"‘l*‘)‘/"( k_) .
Also,

Let fe W,™, then f™ ¢ %, and f*™ has a Fourier series expansion. If, further-
more, fe Z: (f: f®VO0+) = fo-0(1—=),v = 1,2, -+, [(m — 1)/2]}, then it
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can be shown that
[™(x) = 7™ 7., a,(—1)™%™ cos wkx , m even

= ™ Yooy @(— 1) ™0 2k™ sin wkx , m odd .

Let g(x) = f“™(x). Then the nonzero Fourier coefficients of g have absolute

values 7™|a,|k™, k = 1,2, ..., and by the Lemma of Young and Hausdorff, we
have :
(5-6) [ D% la k™11 < (S5 1S ™)) l<p=2.
Putting together (5.4), (5.5) and (5.6) gives
1 2m—2/p
(5.72) |15, .1 @, cos wkx|? < M?A, (_>
r
where
1 1
5.7b A= — -
( ) 8T oam (pm — 1)¥»
Thus
A 1 \2m—2/p r
(5:8) E(f() — fuy = Meay (<) 4 B, L
where
A= L 1
™ (pm — 1)¥?
B, =2A.
Define k, by k, = n/r, and choose r = n/k, with
(5.9) k = [ 1 B3 :ll/(2m+1—2/p) n(zm—ﬂ/p)/(2m+1-—2/p) .
" (2m — 2/p) M4,

Then the right-hand side of (5.8) is minimized. We have the following

THEOREM 5.1. Let m be an integer, m = 1. Let p =2. Let fe W,™(M) on
[0, 1] and O elsewhere, and let fe <. Letf”(x) be given by (5.1) where r = njk,,
with k,, given by (5.9). Then

E(f(x) — fo(X))? < Dyn~tm-2p/am+i-2/p
with
D3 — 0(M2A3B32m-—2/p)1/(2’m+1—2/p)

and
1

ABim=r = © _ (2A)m-¥r
o*™(pm — 1)¥»
We remark here that there is some doubt as to the truth of this result for
2 < p < co. Also, one cannot use an arbitrary orthonormal series and expect
to obtain the same result, as sup, , [cos kx| < 1 was needed in the proof in

(5.3a) and (5.4).
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6. Convergence properties of the ordinary histogram. Suppose that f(§) = 0
for £ ¢ [0, 1] and fe W, (M) on [0, 1] for some p > 1. Let & be chosen so that
1/h = I, an integer. Let I; be the interval [jh (j+ Dh), j=0,1,...,1 — 1.
Let

2 Y. .
(6'1) f,,,(x):—]’ —xe[]"j:O,l"‘"l_17
nh
where

Y; = number of 1,1, -..,t, in I.

Since Y is binomial B(n, p;) where p; = {4+ f(€) dé,

Efn(x) = '}ll—PJ

A

7 _pi(l—p)
(6.2) Var f,(x) = b <=

Now, for x e I,,
B = Fule) = o S5 () — fi€) e
and, for fe W,"(M), and x, £ ¢ I,,
03) = )] = 15/ ™ (@) du < w=vm)| f0]], < MB-s

Thus R
E(f(x) = [ = M=
and
6.3 E(f(x) — f.(x))* < M2a,pom-v» 4 B L
Jx) = fu(%)) ‘ —
n
where
A4 =1 , B4 =A.

Define k, by k, = nh, and choose & = k,/n with
(6.4) kK — |: 1 B, ]lmm“_wp)n<zm—2/p)/(2m+1_z/p) , m—=1.

" L@em —2/p) M4,

Then the right-hand side of (6.3) is minimized and we have the following

THEOREM 6.1. Let p be a real number, p > 1 and let f ¢ W, (M) on [0, 1] and
0 elsewhere. Let f,(x) be given by (6.1) where h = k,[n with k, chosen as in (6.4).
Then

E(f(xX) = fu(x))" < Dyn--2mre=2i
with
‘D4 —_— 0(A4B42—2/1))1/(3—2/17)
where
A,B2Yr — N2

7. Concluding remark. We conclude with a brief remark concerning the
criteria we have been using, namely minimum mean square error at a point.
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Firstly, there is no asymptotic distribution theory here, and it probably does
not exist. In order for asymptotic normality to obtain, it is apparent that the
bias (squared) term must be asymptotically negligible compared to the variance.
If the parameter (respectively k,, &, rand & here) is chosen so that this happens,
then the rate n—@m-¥»/em+1-3/» — p—¢(m» will not obtain. Thus, it seems prefer-
able to choose the parameter to maximize the convergence rate, and use
Tchebycheff’s Theorem to construct confidence intervals.

Acknowledgment. We wish to acknowledge a number of helpful discussions
with Professor R. H. Farrell.

APPENDIX
Proor oF THEOREM 2.1. The proof consists of modifying certain arguments
of [1]. We suppose, without loss of generality, that f is being estimated at the
point x = 0.
Define

(A.1) 7(x) = x*-1s

where s is any given fixed real number greater than 1 and let g,,(x) be defined

by

9os(X) = —7'(x) , 0<x<d2

9os(¥) = —7'(0 —x), 2=x=9

gos(x) =0 < x
Jos(—X) = —Gos(%) » x=0.

Proceeding recursively, once g _;,, has been defined, then let

gis(xX) = §2a06-15 Gu-1)s(F) A 5 L 26§ < x < 2005
=0 otherwise
and
Gra(¥) = gha(x + 2579) — gi(x — 24719)
Let
(a2 () = s — 24°9%).
¢ws» kK = 1,2, - - -, has the following properties:
(A-3) eas(x) =0,  |x[ =32
(A-4) §=. cpo(x) dx = 0
(A.5) max, |e,,(%)| = €,,(0) = ¢, ¥+1-Vs = ge+1-vs
(A.6) §° (era(¥)) dx < ¢, SHk+I-2/s

where ¢, = 20-Dk=22-14Vs o — 3. 2kg2 g = 2NN S ¢, Relation (A.S5)

4 This is (2.4) of [1]. There is a typographical error there.
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is given in [1], Equation 2.15d, and the others follow readily there. Now let
k =m — 1. For fixed p < s, it is easy to see that ¢,_,, € W,™ and

(A.7) = lem s (X)[? dx = 2732 — 1/s)(1 — 1/s) §32 x~7/* dx
51—1)/3
—_— m+3 e EE——— )
B (1 —pls)

Now, 3f e W, ™ (M[2"7) with f(x) = a > 0 for |x| < 3. 2k-15,
Let

(A.8) hy(x) = f(X) + €m-1s(X) -
Then, by (A.3) and (A.7)
§Za [B ™ (X)]? dx = § 20 [ fM()]7 dX + § 20 [e(mlaa(x)]? dx

< Mp_ + 2m+3 or-r/s )
2 (I = pls)
Thus, 4, is a density in W,™ (M) whenever
(A.9) 4> e
and
(A.10) 5 < [MTM_W,» '
2m+4

By [1], equations (3.3) and (3.4)
(Ad1)  Py(lr. — 1(O0) = a,) = [Pi(|rs — B(0)] = @ )]H(1 + 0% 717%™
where ¢, = c,/a. Letting
inf; ey man Plrs — fO) = @) =1 —6,,
then (A.11) gives

(1 —6,)

(l + c352m+1—2/a)n = Pf(IT,L — h5(0)| < a”)

and, by hypothesis
(1 - 0n) é Pf(lrn _f(o)l é an) .
Since, by (A.5),

|h;(0) — f(0)] = ¢, 0™,
then

(1 - 011)2 m—1/s
(A.12) T3 ey T (1 —6,)=1=2a, > com.

Letting 8 = (d,/n)/m+1-49, (A.12) gives

(A13) (1 ; 0,;)2 ; (1 + [ %)”= nga(m,s)anz > i-dn'/’(m’"

n
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where ¢(m, s) is given by (1.2). Since the left-hand inequality in (A.13) is true

whenever
n [((1 — 0,,)*)1/" _ 1] —d
cy 0

n

d,

n

IIA

and d,’ — oo as 6, — 0, we can always find {d,} so that d, — oo and (A.9) and
(A.10) are satisfied for all n sufficiently large. Letting s = p + ¢, the theorem
is proved for 1 < p < co. For p = oo, let p(x) = (M/4)x*. Then

sup, |e(nly,(x)| = MJ2

and ¢,_,;,; € W, ™(M/2). Lettings = p + ¢ = oo, (A.3)—(A.6) hold upon mul-
tiplying the right-hand sides of (A.5) and (A.6) by M/4, and &, is a density in
W™ whenever fe W, ™ (M/2) and a = (M/4)c,o™. The remainder of the argu-
ment is unchanged, and the theorem follows for p = oo.
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