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ALMOST SURE BEHAVIOUR OF U-STATISTICS AND VON MISES’
DIFFERENTIABLE STATISTICAL FUNCTIONS!

By PranaB KUMAR SEN
University of North Carolina, Chapel Hill

For U-Statistics and von Mises’ differentiable statistical functions,
when the regular functional is stationary of order zero, almost sure con-
vergence to appropriate Wiener processes is studied. A second almost sure
invariance principle, particularly useful in the context of the law of iterated
logarithm and the probability of moderate deviations, is also established.

1. Introduction. Let {X,, i = 1} be a sequence of independent and identically
distributed random vectors (i.i.d. rv) defined on a probability space (Q,. /| P),
with each X, having a distribution function (df) F(x), X e R?, the p(= 1)-di-
mensional Euclidean space. Let g(X,, .-, X)), symmetric in its m(= 1) argu-
ments, be a Borel measurable kernel of degree m, and consider the regular functional

(1.1) OF) = §yom -+ § 9(X0s + -+ X,) dF(x)) - - - dF(x,) ; Fe. ",

where .7 = {F: |0(F)| < oo}. The minimum variance unbiased estimator of
0(F) based on a sample X, -- -, X, of size n is (the U-statistic)

(1.2) u, = @) Z(,n'mg(Xil, e X ) Con={1Zi< - <i,<n}.

If we let ¢(«) be equal to 1 if all the p components of u are nonnegative and
otherwise let ¢(#) = 0, then on defining the empirical df

(1.3) F(x) =n13" c(x — X)), xXeR, n=1,
the corresponding functional
(1‘4) (}(Fn) - SI{P"‘ S g(xl’ ) xm) an(xl) te an(xm)

=n" Zi1=l te 7m=1g(Xf1v oty Xim)

is termed a von Mises’ (1947) differentiable statistical furction.

Asymptotic normality of n[U, — 6(F)] and n}[6(F,) — 6(F)] are studied in
von Mises (1947) and Hoeffding (1948). Under the same set of regularity con-
ditions, Loynes (1970) has shown that a process obtained by linear interpolation
from {n}[U, — 6(F)]; k = n} weakly converges to a Wiener process, as n — co.
Also, Miller and Sen (1972) have shown that under the same set of conditions,
processes obtained by linear interpolation from {n—k[U, — O(F)], m < k < n}
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388 PRANAB KUMAR SEN

and {n~t%k[0(F,) — 6(F)], 1 < k < n} converge in distribution in the uniform
topology on the C[0, 1] space to a common Wiener process, as n — co. In the
present paper, among other results, these weak convergence results are strength-
ened to almost sure (a.s.) convergence results.

For sums of independent random variables and martingales, Strassen (1967)
studied three a.s. invariance principles. His first invaraince principle, namely,
the a.s. convergence of sample partial cumulative sums to Wiener processes is
extended here (see Theorem 2.1) to a broad class of {U,} and {#(F,)}. In Theorem
2.2, we consider a result analogous to his third a.s. invariance principle, and
this is particularly useful in the context of the law of iterated logarithm and
the probability of moderate deviations for U, and #(F,), for which we may refer
to Rubin and Sethuraman (1965), Ghosh and Sen (1970) and Serfling (1971),
among others.

The basic results along with the regularity conditions are stated in Section 2.
The proofs of the theorems are presented in Section 3. Some applications are
sketched in the last section.

2. Statement of the main results. Define for every 4(0 < & < m)

’

2.0 gu(xy ) = Eg(x, e X X oo Xp) s gy = O(F)

(2.2) C(F) = EgX(X,, -+, X,) — 6(F), Lo(F) =0;

(2.3) CH(F) = maX,g, oz cn EG(X,, - X, ).

We term that 0(F) is stationary of order zero (cf. Hoeffding (1948)), if

(2.4) 0 <(F)< oo

Let S = {S(r): 0 < t < oo} be a random process, where

(2.5) Sky=5,=0, 0<k<m—1,

= k[U, — 6(F)], k>=m,

and S(r) = S, for k <t < k + 1, kK'= 0. Similarly, let S* = {§*(r): 0 < ¢ < oo}

be a random process, where

(2.6) S*(k) = S,* = K[O(F,) — 0(F)], k=1,
=0, k=0,

and S*(t) = S,* for k <t < k + 1, k = 0. Alternatively, S(r) (and S*(¢)) can

also be defined by linear interpolation between (S,, S,,,) (and (S.*, S,,)) when

telk, k + 1], k = 0. Consider now a positive and real-valued function f{(r),
t € [0, o0), such that

(2.7) f(®) is 7 but f(r) is | in 1:0<1¢ < o0;
(2.8) T e [ (em)]E([g (X ) PH([9:5 (X)) > flem)) < o0,

for every ¢ > 0, where g,*(x) = g,(x) — 6(F) and I(A) denotes the indicator
function of a set 4. (2.8) is framed by analogy with the basic condition of
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Theorem 4.4 of Strassen (1967) (see his (138)). Since g,*(x) = E([g(X,, - -+, X,») —
0(F)]| X, = x), and the X, are i.i.d., (2.8) can also be restated in terms of the
kernel g(X,, ---, X,,). In applications, this does not make much difference,
though the current form of (2.8) is a little less restrictive. For example, when
the X, are univariate rv’s with mean p and variance ¢%, the U-statistic corre-
sponding to ¢? has the kernel g(x, y) = 3(x — »)? so that g,*(x) = [(x — p)* — ¢%]/2,
and hence (2.8) is equally easily verifiable. A similar case follows with the
Wilcoxon signed rank statistic or the Kendall tau which are expressible as U-
statistics or von Mises functionals. Also, as in Theorems 4.6 and 4.8 of
Strassen (1967), we may strengthen (2.8) to E|g(X;, - -, X,,)|” < oo, for some
r > 2, and this improves the approximation in our Theorem 2.1. Such a con-
dition is of course easier to verify. Finally, let { = {{(1): 0 < 1 < o} be a
standard Wiener (Brownian motion) process, and we let

(2:9) 7= ml(F) (> 0by (24).
Then, the following theorem extends Strassen’s (1967) first a.s. invariance princi-
ple to {U,} and {6(F,)}.

THeoreM 2.1. If O(F) is stationary of order zero and {,(F) < oo, then under
(2.7) and (2.8), as t — oo,

(2.10) S(r) = y&(1) + o((1f(1))t logr) a.s.
Also, under (2.4), (2.7) and (2.8), if {*(F) < oo, then as t — oo,
(2.11) S*(1) = r&(1) + o((tf(r)t log 1) a.s.;
(2.12) S(1) — S*(r) = o((¢f(r))t logt) a.s.

Let now ¢ = {¢(f): 0 < t < oo} be a positive function with a continuous
derivative {¢’(¢)}, such that as 1 — oo,

(2.13) s/t — 1= ¢'(s)]¢'(1) > 1,
(2.14) t~ig(r) is T but thg(r) is | in ¢ forsome } < h < §;
(2.15) i 3 (1) exp (— hrgH()) dr < oo .

Then, as an extension of Theorems 1.4 and 4.9 of Strassen. (1967), we have the
following theorem where we define {S,} and {$,*} as in (2.5) and (2.6).

THEOREM 2.2. If 9(X,, ---, X,,) has a finite moment generating function in a
neighbourhood of 0, then under (2.4), (2.13) (2.14) and (2.15), as n — oo,

(2.16)  P{supia, Si/g(k) = 1} ~ (7), §w 17 (n) exp {— b7t g¥(0)} dt
while, if in addition, g(X,, ---, X; ) has a finite moment generating function in a
neighbourhood of 0 for every 1 < ..o Zi, < m, thenas n — oo,

(2.17)  P{sup,z, S,*[$(k) = 1} ~ §7 172" (1) exp {— §17'¢%(n)} d

(27)*
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The proofs of the theorems rest on the reverse martingale property of {U,}
(see Berk (1966)), certain related results studied in Miller and Sen (1972) and
the basic theorems of Strassen (1967). We shall see in Section 4 that Theorem
2.2 strengthens some earlier results of Rubin and Sethuraman (1965) on U-
statistics.

3. Derivation of the main results. Proceeding as in Miller and Sen (1972),
we have for every n > 1,

G- OF,) = 00F) + T3, (0)Vo"
(B2) K = G S5 o x) I dFy(x) — Fix)l, L= h<m,

and for every n = m,

(3.3) Uy = 0(F) + i @U» 00 =105

G U =t S S (s - x) T dle(eg — X)) — Fxp)]
where n ={n...(n —h+ )} and P,, ={1 <i,%# --- #i, =n}, h =
1, -, m.

We start with the proof of (2.10) in Theorem 2.1. Consider a random process
ST ={SP(1): 0 £ 1 < oo}, where for k <1 < k + 1, SV(1) = SV(k) = S,'",
k = 0, and \

(3.5) S =kUY if kzm, and 0, if k<m—1.
Further, let
(3'6) Un* - ZZL:Z (T)Un“‘) ’ n z m.

Then, to prove (2.10), it suffices, by virtue of (2.5), (3.3), (3.5) and (3.6), to
prove that as 1t — co,

(3.7 SU(1) = r&(r) + o((#f(r))t log 1) a.s.,
and as n — oo,
(3.8) SUP.z (U [(Af(K)) Tog k]7} —,, 0.
Now, since S,V = kU,'" = 3% [g,(X;) — 0(F)], k = 1, involve the sequence

of iLild. rv {g,*(X,) = g,(X,) — 0(F); i = 1} where Eg,*(X,) = 0 and E[g,*(X))]' =
S(F) (> 0), and (2.7)—(2.8) hold, the proof of (3.7) follows directly from
Theorem 4.4 of Strassen (1967). So, we need to prove only (3.8). For this, on
writing

(3.9) ¢, = k[(kf(k)! log k] = [(Kiflog K)K[f(K)}], k= m(=2),
we note that {c,} is a sequence of positive numbers such that (by (2.7))
(3.10) ¢, is 7 in k, for k=8.

Also, by (3.6), for k = m, U* is a U-statistic, and hence, {U,*, k =z m} isa
reverse martingale with respect to a non-increasing sequence of g-fields (cf. Berk
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(1966)). Further, as in Hoeffding (1948), it can be shown on using (3.6) that
for every n = m,
E[U* — Ul = E[U} — E[ULT
= E[U, — 0(F)} — mE[U, "}
(3.11) — E[U,., — 0(F) + mE[U}),]
= ()7 20 GIDSE) — min=1(F)
= ()7 2 (CRIDSE) 4 mi(n 4 1) 7I(F)
< C(F)n—, where C(F) < oo when {,(F) < oo .
Finally, as in (3.11), E[U,*]* < C(F)n~* for every n = m, so that by (2.7) and
(3.9),
(3.12) lim,_., {¢,’E[U,*]"} = 0.
Consequently, by (3.9), (3.11), (3.12) and Theorem I of Chow (1960) (i.e., the
Héjek—Rényi inequality for sub-martingales), we obtain on noting that ¢’ =
o(n?) (by (2.7) and (3.10)) that for every ¢ > 0, (and n = 8),
P{maxk%n thuk*{ > €} é 5_2{22‘):7; Csz[Uk* - L]I>ck+l]2}

(3.13) = C(F)e? g, ¢k
C(F)elo(n"H)]— 0 as n— oo .

Il

Thus, (3.8) holds and the proof of (2.10) is complete. We next consider the
proof of (2.12). Proceeding as in the proof of Lemma 2.6 of Miller and Sen
(1972), it can be shown that for every n = m,

(3.14) E{n[6(F,) — U]}’ < C*(F)n™*,

where C*(F) < oo whenever {*(F) < oco. Therefore, for every ¢ > 0,

P{sup,.., [IS(1) — S*(0)/[(tf (1))} log t]] > ¢}

Pimax,., [k|0(F,) — U.|/[(kf(k))* log k]] > <}

Diea PIkIOCF,) — U,| > <[(kf(k))! log k]

S CH(F)e™® i, kT [(kf(k)) log k]~

= CX(F)e’[f(m)] *(log n)=* 35, k™1

= C¥(F)e7*[ f(n)] }(log n)~*[O(n 4] — 0 as n-— oo.

A IA

(3.15)

Thus, (2.12) follows from (3.15), and (2.11) follows directly from (2.10) and
(2.12), and hence, the proof of Theorem 2.1 is complete.
For the proof of Theorem 2.2, we first consider the following.

Lemma 3.1, For even k(2 < k, < o(n¥)), as n— oo, forevery 1 < h < m,

(hk,)!
2ku(Lhk,)!

where E[|g(X}, - -+, X,)|»] < co = C(F) < oo forh =1, ..., m.

(3.16) E[ U, or < [C(F)] I+ o)
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Proor. We sketch the proof only for the case of # = 2; the same proof holds
for every 1 < h < m. By (3.4) and the Fubini theorem,

E[nU, @) = E{(n — D)7 20, Saee -0 § 0530, X5)
(3.17) X M- dle(x; — X)) — F(x)])k»
=(n— 1) 375§, - § {TT52, 9a(x10 X10)}
X E{Liz o dle(x; — X)) — Flx)])s

where the summation > ¥ extendsoverall 1 < i, #i,<n [I=1, .- k,.
For a given set {i;;, j = 1, 2,1 =1, ..., k,} of 2k, integers, suppose that there
are s, distinct integers j,, - - -, j, , 5, = 1, where j, occurs r,(= 1) times, so that

r + e+ r’n — 21(". Then,

[E{TT i [ 13- de(x; — Xilj) — Fx )i

(3.18) =0, if at least one of r, R 1,

< ke 1320 dF(xg5) otherwise,
for every set of {i,,j=1,2,1=1,..-,k,). Thus, the leading terms in
(3.17) arise from sets for which s, =k,, r = ... =r, = 2; there being

[(2k,)!/2% - k,!] such sets, their total contribution in (3.17) is bounded by

(2k,)!
2knk,!

(3.19) [§0 -+ § lgu(xy, x,)| dF(x)) dF(x,)]Fn

— [CLF) - [(2K,)125 - K],

where Cy(F) < [(F) + 0%(F)]* < oo whenever {,(F) < oo. The other sets with
non-zero contributions in (3.17) correspond to valuesof 5, < k, — 1 withr, = 2
fork=1,.-.,s,. Ifs, =k, —u, u>=1, and E|g|"*™* < oo (as assumed), then
the contribution of the sets to (3.17) is bounded by (3.19) times a coefficient
which is

(3.20) O[(k,}n)*], for u=1,..-,k,—1.

Thus, the total contribution of these sets (with 5, < k, — 1) is bounded above
by (3.19) times a coefficient
(3.21) Xt {O[(nk,N)*])
= O(n'k,?) + (k, — 2){O(n7*k, )"} = O(k,’[n) = o(1). U
In the context of convergence rates for U-statistics and related statistics,
results similar to the one in Lemma 3.1 have been considered by Abdalimov

and Malevic (1970) and by Grams and Serfling (1973).
A direct consequence of (3.6) and Lemma 3.1 is. the following.

LEMMA 3.2. If E|g|» < oo, then for every even k [2 < k, < o(n})], asn— oo,

(3:22) E[nU ) < () o[ Co F)]*{(2k,)! 25k, T + o(1)) -
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- (Note that in deriving (3.22), we make use of the fact that for every & > 2,
[n= R ([ (hk,) (2K )KL [(BRK )23 Dk) — 0 as n — oo.)

Also, by using (3.1)—(3.3), and proceeding as in Lemma 3.1, we have the
following.

Lemma 3.3, If Elg(X,, -+, X; )|*» < co for every 1 <i, < --- <,
then for every even k,[2 < k, < o(n})], as n — oo

A

m,

(3.23)  E[S,* — mS, V] < (1) [ Co(F)*{(2K,)! 250k, 1T + o(1)]
where S, * and S, are defined by (2.6) and (3.5).
LEMMA 3.4. [If E(exp {ug(X,, - -+, X,)}) < oo for|u| < ¢(> 0)and 1 < b < 4,
0<3a<4b—-1(=0<a<i),thenasn— oo,
(3.24) P{k|U,*| > 1k* for some k > n} = o(e"%),

and, if E(exp {ug(X,, -+, X, )})) < oo forevery | S iy < - < iy < m,u] < e,
then, as n — oo,

(3.25) P{|S,* — mS, V| > Lk* for some k > n} = o(e "").
Proor. By (3.22) and the Markov inequality, for large n,
(3.26)  P(a|U,*| > 3} < (3n)*oE[nU, [l
< (30") () [CF){(2K,)! 25k T + o(1)]
so that on choosing k, as the largest even integer contained in n®, we obtain
that the right-hand side of (3.26) is asymptotically (as n — co) equal to
[2()CLF) [ Yn{(2Zk, it he=n 25k, fnhe =5l 1+ 0 (1)}
(3.27) ~ [m(m — 1)Cy(F)/n*]"*2"%e="*(n*)"*{1 + o(1)}
= [2m(m — 1)C(F)/n*=*1"¢~"*{1 + o(1)}.
Now,3a<4b—1=4(b—a)>1—a > %=0b—a > L. Therefore the first fac-
tor on the right hand-side of (3.27) is bounded above by [2m(m — 1)C,(F)n=*]*".
Consequently, by (3.26), (3.27) and the Bonferroni inequality, as n — oo,
P{k|U,*| > k* for some k = n}
< D PKUL] > 3K
Lz [2m(m — DC(F)k1 e 1 + o(1)]
e[l + o(1)] X, [2m(m — 1)Cy(F)k~4]*
o(e %),
as 3., [2m(m — 1)Cy(F)k=#]** — 0 as n— oo. The proof of (3.25) follows
similarly by using Lemma 3.3. [J '

(3.28)

A 1IA

THEOREM 3.5. If O0(F) is stationary of order 0 and E(exp {ug(X,, - -+, X,)}) < oo
for |ul < &(> 0), then there is a standard Brownian motion § = {§(1): 0 < t < oo}
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such that if L < b < Land 0 < 3a < 4b — 1, then as s — oo,
(3.29) P{|S(t) — 7&(1)| > t* for some t > s} = o(e™*"),

and, if further, E(exp {ug(X;, ---, X; )}) < oo for |u| < ¢(> 0), uniformlyin1 <
< --- <L, <m, then as s — oo,

(3.30) P{|S*(t) — 7&(1)| > t* for some 1> s} = o(e~*"),

where S(t) and S*(t) are defined as in Section 2.

Proor. We only prove (3.29) as (3.30) follows on parallel lines. By virtue
of (3.3) and (3.5), S, = mS, 'V + kU,*, so that the event [|S(r) — 7{(¢)| > ¢* for
some ¢ > s] is contained in the union of the two events [|mS®(r) — y{(1)] > L¢°
for some ¢ > s} and [|kU,*| > 1k for some k > s]. Thus, the left-hand side of
(3.29) is bounded above by

(3.31) P{imS® (1) — yL(1)| > $t* for some 1 > s}
+ P{lkU.,*| > L1k* for some k > s}.

Since S™(¢) involves the i.i.d. rv {g,(X;) — 0(F), i = 1}, by Theorem 4.8 of
Strassen (1967), it can be shown that the first term in (3.31) is o(e~*") as s — oo,
while by Lemma 3.4, it follows that the second term is also o(e*") as s — oo.
Hence the theorem follows.

Returning now to the proof of Theorem 2.2, we observe that the proof follows
along the same line as in Corollary 4.9 of Strassen (1967) where in his (204)

and (206), we need to use our Theorem 3.5, instead of his Theorem 4.8. For
brevity, the details are therefore omitted.

4. Some applications. For {U,} and {#(F,)}, the law of iterated logarithm has
been studied by Sproule (1969), Ghosh and Sen (1970) and Serfling (1971). The
same result follows from Theorem 2.2 by letting

(4.1) $(n) = [2n(1 + ¢) log log n]*, e>0,
and noting that the right-hand side of (2.16) or (2.17) is then asymptotically
equal to [(47)*e(log n)’]™*, and hence, converges to 0 as n — oo (for every ¢ > 0).
Rubin and Sethuraman (1965) have shown that as n — oo,
(4.2) (log n)~'log P{nt|U, — O(F)| > rc(log n)t} — —Lc*, c>0.
On substituting ¢(n) = c[n log n]*, ¢ > 0, we obtain from Theorem 2.2 that as
n—»> oo,
P{k}|U, — O(F)| > ye(log k)t for some k = n}
(4.3 ~ (¢/2(27)}) § 7 ute 2 du
= [e(2r)! ] {n~t(log m)~H[1 + O((log m)™)]} -

Thus, not only (4.3) specifies a better order in asymptotic expression, but also

strengthens (4.2) to the entire tail of {U,, k = n}. The same result holds for
{0(F,); k = n}.
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Theorem 2.1 is of great help in the developing area of sequential procedures
based on U-statistics and {f(F,)}, where the derived Wiener process approxi-
mation simplifies the ASN and the OC functions in a certain asymptotic sense.
These will be considered in a separate paper.
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