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ROBUSTNESS OF THE WILCOXON TEST TO A CERTAIN
DEPENDENCY BETWEEN SAMPLES
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Robustness properties of the two-sample Wilcoxon test are established
when the assumption of independence between samples is weakened to
allow pairing. In particular, the test is shown to be (asymptotically) con-

servative when the bivariate distribution governing the pairing is positively
quadrant dependent.

1. Introduction and summary. The Wilcoxon test of the hypothesis H,, that
two distribution functions (df’s), F, and F,, are equal, is typically based on
independent random samples, X, ---, X, from Y,, ..., Y, from F,. Serfling
(1968) considered robustness of this test to a specific type of dependence within
samples. The present note establishes properties of the Wilcoxon test when the
assumption of independence between samples is weakened to allow pairing of X,
and Y, for some values of i. This type of data arises in various ways:

(i) A researcher may wish to observe the effects (X,’s) of treatment 4 on L
subjects, and at a later date observe the effects (Y,’s) of treatment B on M
subjects. However, factors such as a shortage of suitable patients may cause
the experimenter to include a few subjects both times.

(ii) Treatments 4 and B are compared using 2M rats from the same litter.
Rather than assign the rats to treatments so that each set of M rats has prob-
ability 1/(%) of being the “A rats”, the researcher blocks (either implicitly or
explicitly) on some factor. This blocking may introduce dependencies; however,
the blocking is not recorded and the blocks cannot be identified at data analysis
time. (We are grateful to Byron W. Brown, Jr. for calling this situation to our
attention.)
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(iii) The data may be derived from surveys taken by mail, and it may be
impossible to determine whether some respondents contributed to both the X
and Y samples.

With this motivation we propose the following model. Let X and Y be random
variables with absolutely continuous joint df F and marginals F, and F,. Let
Xy Y)s -y (Xo» You)s Xosrs o> Xusor Yuirs +++» Yoy, be independent where
(X;, Y;) is distributed as (X, Y) for 1 <i<n, X,,, is distributed as X for
1l <i<s and Y,,, is distributed as Y for 1 < i < ¢t. Note that in example (i)
above, n is known and the (X,, Y)), ---, (X,, Y,) pairs can be identified. In
example (ii) » may or may not be known but the pairs cannot be identified, and
in example (iii) n is not known. The results in Section 2 are apropos to each of
these cases.

In the sequel we use the Mann-Whitney form of the two-sample Wilcoxon
statistic,

(1) ' U= 208 2 e X, Y)),
where ¢(a, b) = 1 if a < b and 0 otherwise. In Section 2 we obtain a central

limit theorem for U and investigate the effect of the dependence between X; and
Y,(1 £i < n) on the asymptotic level (asymptotic probability of rejecting H,

when F, = F,) of the test. It is seen that the only effect of F on the asymptotic
level is through the parameter
(2 W(F) =qec 3 — §§ F(x, y) dFx(x) dFy(y) -

Bounds are obtained for v(F), and these bounds lead directly to an assessment
of robustness of the Wilcoxon test to the present departure from independence.
In addition, the test is shown to be (asymptotically) conservative if F is positive-
ly quadrant dependent, i.e., if F(x, y) = Fy(x)Fy(y) for all x, y. This has been
shown to be a relatively weak form of positive dependence. See Lehmann
(1966) and Esary and Proschan (1972).

2. Conservativeness and robustness. Let N = s + ¢ 4+ 2n, and let 4, 4,, 4; be
nonnegative numbers such that 2, + 4, > 0, 4, + 4, > 0,and 2, + 4, + 24, = 1.
The notation “N —, co” will indicate “N — oo, s/N — 2, t/N — 4,, and n/N —
2.7 Let py = § Fy(x) dFy(x), py = § [| — Fy(x)F dFy(x), py = § F(x) dFy(x),
and define

U
3) T = {(n + $)(n + /NP [m — ).

THEOREM 1. As N —, oo, T converges in distribution to a normal random variable
with mean O and variance o = (2, + A;)p, + (A4 + A)ps — pt — 24, (Cov Fy(X)),
Fy(11)).

SKETCH OF PrROOF. The calculation of the asymptotic mean and variance is

straightforward. Perhaps the shortest route to the stated form of ¢* is via the
limiting variance of the random variable Z defined below. Asymptotic normali-
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ty can be shown by a modification of the method used by Hoeffding (1948) and
Serfling (1968).

Letfi(a) = 1 — Fy(a), f(b) = Fx(b), 9(a, b) = [¢(a, b) — p] — [fi(@) — pi] —
[/(6) — p], and Z = (n+95)7* T34 [fi(X) — pul + (n+9)4(n+0)7 T [fu(Y) —
p1]- Asymptotic normality of T will follow if it is shown (i) that Z is asympto-
tically normal; and (ii) that Z and (4, + 2;)"*T have the same limiting distribu-
tion. To see that (i) holds note that Z has the same limiting distribution as

WA+ &)7Hs D AKX — plb
+ [Ah + )% + )7 D (YY) — pilb
+ 07t T {4 A+ )T AWK — pi
+ [A(4 + )% + 2)71/(Y:) — pl)
which is the sum of three independent, properly normalized sums of i.i.d.
bounded random variables. To prove that (ii) holds it suffices to show that
E[(4 + 2)7'T — Z]} > 0 as N —, co. Note that asymptotically
@ EL(h + 4T — 27
(n + s) l(n + t) Z’n+s 'n+t n+s Zn+t h(l ]’ u, v)
where A(i, j, u, v) = E[g(X,, Y;)9(X,, Y,)]. Because ¢ is bounded and
(n + s)™(n + #)~* is of order N=* as N —, oo, we can ignore any k terms of the
sum in (4) if k is of order N?. That the entire sum in (4) is of order N? follows
from the fact that E[g(X,, Y;)| X;] = E[9(X,, Y,)|Y,;] = 0ifi = j, and considera-
tion of the following cases (where i, j, 4, and v represent four distinct indices):
(M) kG, j, u, v) = Eg(X,, Y)Eg(X,, ¥,) = 0;
L) h(, i, u, v) = h(, j, u, u) = Eg(X,, Y,)E9(X,, Y,) = 0;
() hG, j, i, v)=h(, J, u, )=E{E[9(X,, Y))9(X;, Y,) | Xi]} = E{E[9(X;, Y}) | X,] X
E[g(X;, Y,) | X.]} = O;

(V) ki, j u, 1) = h(i, ], J, v) = E{E[9(X;, Y;) | X;, VIE[9(X,, V)| X, Y]} = 0.

These are the only cases for which the number of terms is larger than O(N?). [

CoroOLLARY 1. If Fy = F,, then
) o = 1y + A[2v(F) — 3]

Proor. Note that p, = 4§, p, = p; = 4, Cov (F,(X;), Fy(Y;)) = Cov (Fy(X)),
F,(Y)), and, even if F, + F,,

Cov (Fx(X), Fy(Y) = §§ Fx(0)Fy(y) dF(x, y) — 4
=\ F(x, p)dFy(x)dFy(y) — 3 =% —»(F). [

In order to investigate the asymptotic level of the test, we need only consider
the case F,, = F,. (Theorems 2 and 3 include the case F, # F,, but that case
has little relevance in the present context, for then ¢ is no longer a function

of v(F).) If F, = F, and the usual independence assumptions hold, then n =
43 = 0 and the asymptotic variance of T is ,. Letr =1 + 124[20(F) — }],
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the ratio of the asymptotic variance of 7' in our dependence model to that
assuming independence. If z is an approximate a-level critical point [for the
one-sided test which rejects for large T values (with p, replaced by 1)] obtained
via the normal approximation and the independence assumption, then zrt is an
approximate a-level critical point based on the normal approximation and the
present dependence model. Thus for cases where r < 1 (and F, = F;), the
usual Wilcoxon test is (asymptotically) conservative. The next result charac-
terizes the bivariate df’s for which r < 1.

THEOREM 2. r < 1 if and only if Cov (Fy(X)), F,(Y,))) = 0. In particular,
r < L if F is positively quadrant dependent.

Proor. The equivalence follows from the equation v(F) = 1 — Cov (F,(X)),
Fy(Y;)) which was established in the proof of Corollary 1. If Fis positively
quadrant dependent, then Cov (F (X)), F,(Y})) = \§ Fy(x)Fy(y) dFy(x) dFy(y) —
4+ = 0. (An alternative proof to the latter statement is by Lemmas 1 and 3 of
Lehmann (1966).) []

The following theorem establishes bounds for v(F) which imply that 1 —
22; < r £ 1 + 24, thus providing a measure of robustness.

THEOREM 3. } < u(F) < §.

PrROOF. |Cov (Fy(X)), Fy(Y)))| < [Var (Fy(X))) Var (F,(Y,))]}, and the latter
term equals {1, since F,(X,) and F,(Y;) are uniformly distributed on [0, 1]. []

We now consider the question of sharpness of the bounds provided by
Theorem 3. For a given pair of absolutely continuous df’s (F, F}), let & be
the class of all bivariate df’s with marginals F, and F,, and let £* be the class
of all absolutely continuous bivariate df’s in ¥. As we have assumed that F is in
Z* (to avoid the possibility of X = Y ties), the most appropriate (for this paper)
sharpness property for bounds on y(F) would be that they are sharp for F in
Z*. Sharpness in the larger class & can be seen as follows. Let G(x,y) =
max (0, Fy(x) + Fy(y) — 1) and Gy(x, y) = min (F,(x), F,(y)). Fréchet (1951,
1957), in investigations of the possible behavior of a joint distribution F with
given marginals F,, F,, has shown that G,(x, y) < F(x, y) < G,(x, y). Both G,
and G, are in &, and a direct calculation yields »(G,) = } and »(G,) = 4. The
distinction here between & and £* is somewhat academic since, within &*, v(F)
can come arbitrarily close to § or 4. To see this, let F(x, y) = ¥ (O} (Fy(x)),
®-'(Fy(y))), where ¥, is the bivariate normal df with standard normal marginals
® and correlation p. Then F is absolutely continuous with marginals F, F,
and y(F) = § — Cov (D(V), ©(W)) where (V, W) have joint df ¥, Hence
v(F) = + + (2z)'arcsin (—p/2) and y(F) >} or fas p —» +1 or —1.

Better bounds than those of Theorem 3 can be established for a class of
bivariate df’s with fixed marginals considered by Morgenstern (1956). Let H
be a continuous df and, for —1 < ¢ < 1, define

(6) F(x,y) = H)H(){1 + [l — Hx)J[1 — H»)]} -
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Then F, = F, = H, F is positively quadrant dependent for 0 < ¢ < 1, and
v(F) = } — ¢/36 so that y(F) is bounded between £ and 5.

Note that when n is known and the pairs (X}, Y)), ---, (X,, Y,) can be
identified, v(F) can be consistently estimated from the data. One such consistent
estimator 3, say, for the special case F, = F,, is the proportion of quadruples
(X Z;, Z, Y,) for which the inequalities X; < Z;, and Z, < Y, hold. Here i
ranges from 1 to n and both Z; and Z, range over the s + ¢ “unpaired” X’s and
Y’s, with Z, + Z,. Then an asymptotically exact test of F, = F,, for our
dependency model, is obtained by referring 7”/G to a standard normal distribu-
tion, where T’ is obtained by replacing p, by 4 in (3), and ¢* is obtained by
replacing 4, by n/N and y(F) by o in (5).

Acknowledgments. We are grateful to the referee for many improvements
and a reference to Fréchet’s investigation. Ingram Olkin has called our attention
to an article by Whitt (1973) where it is pointed out that the Fréchet bounds
were also obtained by Hoeffding (1940).

REFERENCES

EsAry, J. D. and ProscHAN, F. (1972). Relationships among some concepts of bivariate
dependence. Ann. Math. Statist. 43 651-655.

FRECHET, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Ann. Univ.
Lyon Sect. A Ser. 3 14 53-77.

FRECHET, M. (1957). Sur la distance de deux lois de probabilité. Publ. Inst. Statist. Univ. Paris
6, 183-198.

HoerFDING, W. (1940). Masstabinvariante Korrelations theorie. Schriften des Mathematischen
Instituts und des Instituts fiir Angewandte Mathematik der Universitat Berlin 5 179-233.

HOEFFDING, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math.
Statist. 19, 293-325.

LenMANN, E. L. (1966). Some concepts of dependence. Ann. Math. Statist. 37 1137-1153.

MORGENSTERN, D. (1956). Einfache Beispiele zweidimensionaler Verteilungen. Mitt. Math.
Statist. 8 234-235.

SERFLING, R. J. (1968). The Wilcoxon two-sample statistic on strongly mixing processes. Ann.
Math. Statist. 39 1202-1209.

WHiITT, W. (1974). Constructing bivariate distributions with extreme correlations. Ann. Proba-
bility (to appear).

DEPARTMENT OF STATISTICS DEPARTMENT OF MATHEMATICS
FLORIDA STATE UNIVERSITY UNIVERSITY OF TEXAS
TALLAHASSEE, FLORIDA 32306 AUSTIN, TExAs 78712

DEPARTMENT OF STATISTICS
FLORIDA STATE UNIVERSITY
TALLAHASSEE, FLORIDA 32306



