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IMPROVING ON EQUIVARIANT ESTIMATORS'

By J. F. BREWSTER AND J. V. ZIDEK?
University of Manitoba and University of British Columbia

Techniques for improving on equivariant estimators are described.
They may be applied, although without assurance of success, whatever be
the family of underlying distributions. The loss function is required to
satisfy an intuitively reasonable condition but is otherwise arbitrary. One
of these techniques amounts to a sample space, orbit-by-orbit analysis of
the conditional expected loss given the orbit. It yields, when successful,
a “‘testimator’’. A second technique obtains the limit of a certain sequence
of ‘‘testimator-like” estimators. The result is ‘‘smoother” than a testi-
mator and often identical to a generalized Bayes estimator over much of
its domain. Applications are presented. In the first we extend results of
Stein (1964) and obtain a minimax estimator which is generalized Bayes,
and in a univariate subcase, admissible within the class of scale-equivariant
estimators. In the second, we extend a result of Srivastava and Bancroft
(1967).

1. Introduction. This paper describes techniques for determining for a given
equivariant estimator, ¢, another whose risk function is never larger than
that of ¢”. The loss function must satisfy a natural requirement but may
otherwise be arbitrary. We place no restriction on the underlying family. For
some families and loss functions technical difficulties may make application of
these techniques unfeasible, and, in other cases, the estimator obtained by ap-
plying one of these techniques may be identical to the original estimator! So
our methods cannot be offered with a guarantee that they will always succeed.
But they have been successful in many cases including those discussed in Section
2, and they do provide simple proofs and generalizations of results already ob-
tained by other authors.

Two closely related methods are discussed in this paper. The first involves
conditioning on an appropriately chosen statistic: the second involves taking
the limit of a sequence of “testimators” (a term possibly coined by Sclove) in-
volving tests based on this statistic. In order to illustrate these techniques consider
independent observations X;, X,, ---, X,, from a normal population with un-
known mean ¢ and unknown variance ¢*. Letting §* = ¥ (X, — X)*and looking
only at estimators of the form ¢S$?, it is easy to see that (m + 1)7'S* is the “best”
estimator of ¢* under squared error loss.
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But now consider estimators of the form ¢(Z)S?, where Z = m* X|/S. And
for each 1, o, let ¢, , represent the best choice of ¢. Since E, [($(Z)S* — ¢%)] =
E, [E, [($(2)S* — o*| Z]], ¢,,(z) will be that value of ¢ which minimizes
E, [(cS* — 0%)'| Z = z]. In other words, ¢, ,(2) = E, [S*| Z = Z]/E, [S*| Z = z].

In order to compare {¢,,} with (m + 1)7', we first notice that ¢, (2) <
$0,1(2) = (m + 2)7Y(1 + 2°), for all z, p#, . Moreover, for 0 < z < (m + 1)7%,
$01(2) < (m 4+ 1)7*. And since E, ,[(cS* — 6°)*| Z = z] is a “strictly bowl-shaped”
(in fact, convex) function of ¢, an improvement will therefore be obtained, for
all ¢ and o, if (m + 1)~* is replaced by ¢,,(z), whenever 0 < z < (m + 1)~%.
The resulting estimator
(1.1) min {(m + 1), (m + 2)7Y(1 + Z?%)}$?,
is precisely Stein’s estimator (1964).

Let us look at this problem again, but consider a smaller class of estimators. To
this end, fix 7 > 0, and consider only estimators of the form ¢(Z)S?, where ¢(z) =
¢,0 <z < r and ¢(z) = d, z > r. For such an estimator, E, ,[($(Z)S* — ¢*)*] =
E, [(cS*—0d)|Z<r]-P, [ZZ 1]+ E,[(dS*—0d)|Z>r]-P,,[Z>r]and
it follows that ¢, (r) = E, [S*| Z< r)/E, [S*|Z<r]and d, (r)=E, [S*|Z> ]/
E, [S*|Z > r] are the best choices for the constants, for given p, 0. Here
Cuo(r) = €ou(r) < (m + 1)7, and therefore, letting ¢,(2) = ¢, ,(r), 0z < r,
and ¢.(2) =(m+ 1), z>r, ¢.(Z)S* has uniformly smaller risk than
(m + 1)7'S*. This is precisely Brown’s estimator (1968).

But now select 0 < r’ < r. By repeating the previous argument and noticing
that ¢, ,(r") < ¢,,(r), we are able to conclude that ¢, ,(Z)S* has uniformly smaller
risk than ¢,(Z)S?, where ¢, .(2) = ¢,,(r"), 0=z <15 ¢, (2) = ¢ou(r), 7' <
z<rand ¢, ,(2) =(m+ 1)7", z>r. We can clearly continue to produce
step-function (inadmissible) estimators by selecting successively smaller con-
stants. But notice that the starting point, r, is arbitrary.

Now, for eachi =1, 2, 3, ..., select a finite partition of [0, co), represented
by 0=r,<r,<:--<r, = oo, and a corresponding estimator ¢"(Z)S?,
where ¢V(2) = E, ((S*| Z < 1,,)[Eo((S*| Z S 1), 1y < 2 < 1y;. Then, provid-
ing max, ;.. |r; — Fi;.4| —0and r,, , — oo, the sequence ¢* will converge
pointwise to ¢**, where

(1.2) O**(2) = Ep (S| Z < 2)|E,(S* | Z L 2) .

Although we are, in general, unable to compare ¢ and ¢“”, i # i*, we do
know that ¢‘* is better than (m + 1)7?, for all i. It would not be surprising,
therefore, if the same were true of ¢**, and we shall show in Section 2 that
this is the case. In fact, ¢**(Z)S* is also generalized Bayes and admissible
within the class of scale-equivariant procedures.

The preceding paragraphs, culminating in Stein’s estimator and ¢**(Z)S?,
illustrate the two techniques to be discussed in this paper. Until now, in-
variance has not been mentioned as it is not essential in describing the methods,
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although it certainly plays an important role in the previous examples. How-
ever, the description below is limited to equivariant estimators, because we have
not yet found a broader context in which the methods can be more precisely
formulated and realized. Nevertheless, there are many potential applications of
this work, especially since maximum likelihood estimators are often equivariant.

In a problem which remains invariant under a group & acting transitively
on the parameter space, there is an obvious method for improving on a given
Y-equivariant estimator. For in this case the risk function of any Z-equivariant
estimator is constant. So there is a “best” Zequivariant estimator and it is
better than, if different from, the given estimator.

In some cases, even the best Z-equivariant estimator may be easily improved.
If there is a proper subgroup .% C ¥, which also acts transitively on ©, there
is a best 7 ~equivariant estimator, and it is better than, if different from, the
best L-equivariant estimator. An example wherein the best equivariant estimator
is improved on in this manner is given in James and Stein (1961). Their example
concerns the estimation of the multivariate normal covariance matrix.

Although our methods apply in the situations described above, they are sug-
gested because of their possible value in other situations where improvement
cannot be so simply achieved. They apply when ¥ is exactly transitive on ©
and even when & is not transitive.

Incidentally, since the best Z-equivariant estimator, ¢, is usually a gener-
alized Bayes procedure, our methods indirectly offer a means of assessing certain
improper priors. These priors are obtained from the right Haar measure on &
(see, for example, Zidek (1969)) and are often thought of as expressing prior
ignorance. But this choice of prior is somewhat arbitrary. And if another
estimator, ¢, of uniformly smaller risk than ¢ is found, then since any
“proper”” Bayesian would prefer ¢ to ¢, some doubt is cast on the suitability,
in this case, of right Haar measure as a prior. The method given in Theorem
3.2 has even produced in some cases (see Section 2.2) a ¢, superior to ¢,
which is also generalized Bayes.

Much has been written on the subject to which this paper is devoted (the
most relevant references being cited in the remarks of Section 2). Undoubtedly,
the most interesting example where improvement on the best fully equivariant
estimator is possible is contained in the work of Stein on the estimation of the
multivariate normal mean in dimensions greater than 2 (see, for example, James
and Stein (1961)). Our methods formally apply in this situation but they are
unsuccessful, yielding only the original estimator and not a superior alternative,
like Stein’s. As we show below, our techniques rely, essentially, on orbit-by-
orbit reductions in the expected loss and, as the work of Sclove, Morris and
Radhakrishnan (1972) suggest, any such attempt to improve on the usual esti-
mator is destined to fail.

Our methods apply also to interval estimation (Brewster (1972)). In fact, the
notion of ‘“‘recognizable” or ‘“relevant” subsets which arose in the context of
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interval estimation (see, for example, Buehler (1959)) is clearly involved in our
methods.

The two techniques in this paper appear first (see Section 2) in exemplary
applications. Then they are described (see Section 3) in a fairly general setting
where we reveal features of examples which have enabled them to be treated
by these techniques. These examples include, in addition to those in Section 2,
others given in Brewster (1972) and Zidek (1971, 1973).

Our techniques require that a subgroup, 52 C &, be selected; the search for
an estimator better than a given &-equivariant (or, in some cases, S#-equivariant)
estimator is restricted to a class of ~#Zequivariant estimators. No insight is
offered on the matter of choosing 57 (see Stein (1964) for some remarks in this
connection). We found a suitable #” quite easily in applications where a choice
existed.

The second of the two methods is given in Theorem 3.2 and does provide,
as heuristics suggest it might, a smoother alternative to ¢ than does the first

method. It is technically more complex than the first method and is not so

generally applicable. But where it has been applicable, dramatic results have
sometimes emerged. For example, for each of a variety of loss functions, it
produces (see Section 2.1) a minimax, generalized Bayes estimator for the vari-
ance of the normal law with unknown mean which is different from the usual
estimator.

2. Applications. In each application considered in this section the loss func-
tion is specified in terms of a nonnegative function, W(x), whose domain D,
say, is either (0, co) or (— o0, oo0) and whose minimum is attained at u,, where
u, = 1 or 0 according as D = (0, o) or (— oo, co0). It will always be assumed
that W(u) is continuous and strictly bowl-shaped, that is, strictly decreasing for
u < u, and strictly increasing for # > u,. As a consequence W is differentiable
almost everywhere, and we will assume, whenever necessary for integrals in-
volving W, that interchange of integral and derivative is permissible. Presumably
W need not be continuous and our results could be proved in a more general
setting using the methods of Brown (1968) involving generalized derivatives,
but we have not fully explored this possibility.

We will say that a family of density functions, & = {f(x|7): xe 2 C
(—o0, ), 7€ F C (—o0, 00)}, has the monotone likelihood ratio property
(MLRP) if x; < x, and 7, < 7, implies f(x,|7,)/f(x,| 7)) < f(x,|75)/f(X,|7,). For
such a family it is well known (see, for example, Lehman (1959)) that
z — § h(x)f(x| r) dx has at most one sign change if / has one sign change. We
use this property throughout the following lemma whose proof is immediate.

LeEmMMA 2.1. If f is a density on (0, o) [(—o0, o0)] and {f(xc™"): c > 0}
[{f(x —¢): —oco < ¢ < oo}] has the MLRP, then

¢ §xW(ex)fix)dx  [§ W(x + o)f(x) dx]
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has at most one sign changeand ¢ — § W(cx)f(x) dx [§ W(x 4 ¢)f(x) dx] is strictly
bowl-shaped (or monotone).

2.1. Estimating the normal variance with unknown mean. Here we adopt the
canonical form of the general linear model and suppose X ~ MVN (p, zI) and
U ~ MVN,(O0, ) are to be independently observed. On the basis of these ob-
servations, t is to be estimated, where loss is given by L(%; g, ) = W(%r™!). A
sufficient statistic in this problem is (X, T'), where if ||.|| denotes the usual
Euclidean norm, T = ||U||*. We consider only nonrandomized estimators which
are a function of this statistic.

The problem remains invariant under the transformation group & under
which

X, T) — (eI'X + B, a’T)
(2.1.1) (¢, v) > (@lp + B, a’r)

‘ £ — a’t

where « > 0, Be R? and I' is a p X p orthogonal matrix. It follows that any
nonrandomized “-equivariant estimator of ¢ is of the form ¢T, for some con-
stant ¢ > 0. Since ¥ acts transitively on the parameter space, the risk function
of ¢T,

E, W(cTt™) = E,, W(cT),

is independent of the unknown parameters, and we assume that E, , W(cT) is not
a monotone function of ¢. Then there is an optimum choice for ¢, say ¢,
whose existence is established in the next lemma. The proof is an immediate
consequence of Lemma 2.1.

LemMA 2.1.1. The function, c — E, , W(cT), is strictly bowl-shaped and uniquely
minimized at ¢ = ¢ satisfying
(2.1.2) E, , W (c"T)T =0.

Thus ¢“T is the best “-equivariant estimator.

Let 57 denote the subgroup of & obtained by requiring in (2.1.1) that 8 = 0
and that I" be a diagonal orthogonal matrix. Any S#~equivariant estimator is
of the form ¢(Z)T where Z=(Z,,---,Z,) and Z, = |X,|T}, i=1,...,p.
The risk of such an estimator is

(s o 7) = B, W[H(2)T77]

= E., W[$(Z)T]
= r(¢; )
say, where { = (§,, ---,¢,) and {, = |p|c7}, i =1, .., p. Since we deal here

only with Z#~equivariant estimators we may assume without loss of generality
that = = 1.

We represent X’ by a chi-squared random variable with 1 4 2K, degrees of
freedom, where K, denotes a Poisson random variable with mean 2, = 4{?,
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and the K, i =1, ---, p, are independent of each other and of 7. Let K =
(K, -+, K,), and observe that the joint density of 7 and Z conditional on
K=k=(k,---,k,)is

f(t, 2| k) oc ghmto+k~texp[ — (1 + ||2][)] ]2 2%,
independent of {, where k, = 3 k.

For the model under consideration, we now obtain results analogous to those
described in Section 1 for estimating the normal variance under quadratic loss.
As a simple consequence of Lemma 2.1, we have the following result.

LeEMMA 2.1.2. The function, c — E[W(cT)| Z = z, K = k] is strictly bowl-shaped

and uniquely minimized at ¢ = ¢,(z) satisfying
EW'N¢(Z)TIT|Z=2,K=k)=0.
For any estimator ¢(Z)T define ¢* by
| $*(2) = min {$(2), $o(2)} -
THEOREM 2.1.1. For any {
r($*; C) = (95 €)

with inequality if P[¢*(Z) # ¢(Z)] > 0.

PrRoOF. Observe that

H($; Q) = E.EWI[HZ)T]| Z, K) .

Denote the inner, conditional expectation evaluated at Z = z and K = k by
r[¢(z) | z, k]. Either ¢*(z) = ¢(z), when r[¢*(z) |z, k] = r[¢(2) | z, k], or ¢*(z) =
$o(2) < ¢(2). In the latter case since ¢ — r[c|z, k] is strictly bowl-shaped and,
as is easily shown using Lemma 2.1, ¢,(z) < ¢,(2) for all k, it follows that
r[¢*(2) |z, k] < r[¢(2) |z, k]. The conclusion of the theorem now follows.

CorOLLARY 2.1.1. If ¢(2) = ¢, then for any {,
r(@%8) < (g5 8) .
Proor. Let r[c|z, k] be defined as in the proof of Theorem 2.1.1. Then
rlc|z, 0] oc § W(ct)tt+r-texp[ —1t(1 + ||z||*)] dt oc EW(c'T)T??

where ¢’ = ¢(1 + ||z])~*. Since r[c|z, 0] is strictly bowl-shaped in ¢, so is
EW(c'T)T* in ¢’ and its minimum is attained at ¢’ = ¢,(z)(1 + ||z|*)* = c*,
say. But EW/(c¢"T)T - T* > (1/c)t» . EW’(¢"T)T = 0 (see Equation (2.1.2)).
So ¢o(2)(1 + |]z]])' < ¢ and ¢(Z) < ¢ with positive probability for each (.
The conclusion now follows from Theorem 2.1.1.

Note that with c¢* defined as in the proof of Corollary 2.1.1, ¢4(z) =
c*(1 + ||z|*) with ¢* a constant and ¢* < ¢”. Moreover,

$*(Z)T = min ¢, c*(1 + ||Z|])}T .
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ExampLE 2.1.1. Let Wy(x) = |x — 1|. If U, denotes the random variable
with density oc ut®e~#*, ¥ > 0, and median (U,) denotes its median value, then
it is easily seen that ¢* and ¢! are given by

c* = [median (U,, )], ¢ = [median (U,)]*.
ExXAMPLE 2.1.2. Let Wy(x) = (x — 1)’. Then
c*=((m+p+2)7*, ¢ =(n+2)".
ExampLE 2.1.3. Brown (1968) has shown that the usual unbiased estimator

is obtained when W(x) = x — 1 — Inx = W, (x), say. For this case, where
under-estimation as well as over-estimation is heavily penalized,

C* — (ﬂ + P)—l s c(“) — n—l .

ExampLE 2.1.4. Brown also looks at W(x) = (In x)* = W,,(x), say. Here,
under-estimation is rather more heavily penalized than over-estimation and,
using the notation introduced in Example 2.1.1,

c* =exp[—EInU,,, ], ¢ =exp[—EInU,_].

Note that (n + p)' < ¢* < (n + p — 2)7%, while n7* < ¢ < (n — 2)~'. Com-
paring these results with those obtained in the last two examples reveals
the expected result that the size of the estimate increases with the cost of
under-estimation.

We now present another method for improving on ¢®T. We select the class
of sets, &~ = {C(r): 0 < r < oo}, where C(r) = {z€[0, c0)?: 0 < ||2||* £ 1}.

Lemma 2.1.3. The function, c — E[W(cT)|Z e C, K = k]is, foreveryk,Ce &,
strictly bowl-shaped and uniquely minimized at ¢ = ¢ ,(C) satisfying

E[W' (¢ (C)T)T|ZeC,K=k]=0.
Proor. E[W(cT)|ZeC, K = k] oc § W(ct)h,(t; C)dt where h(t; C) =
§of(t, z| k) dz. For simplicity let A(f) = h,(t; C). According to Lemma 2.1, the

required result will be obtained when we show that {A(tz=*): ¢ > 0} has the
MLRP. But

hOr) oc 17e40 §, [exp(— ezl )] TT 2% dz

and if 6, < 0,, h(6,1)h~*(0,¢) must be shown to be increasing in . This is
easily accomplished by differentiation and by exploiting the monotonicity of
0 — (Vo0 112]1°9(2) dz) - (Y40 9(z) dz)~* for any positive function, g.

The following result is an application of Lemma 2.1.

Lemma 2.1.4. ¢, (C) < ¢y(C) for all k, and if C is a proper subset of D,

Po(C) < Po(D).
Note that ¢[C(c0)] = ¢, 50 ¢,(C) < ¢ for each C e =" with C # C(c0).

LemMma 2.1.5. Suppose ¢(Z)T is such that ¢(z) = a > ¢(C), ze€ C. Define
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00(2) as ¢(z) or ¢o(C) according as z¢ C or ze C. Then ¢,(Z)T has everywhere
smaller risk function than ¢(Z)T.

Proor.

(¢; Q) = E[EW[H(2)T]| ZeC, K) - P(Ze C|K)
+ EW[g(2)T]|Z¢C, K) - P(Z¢ C|K)]

and the first of the two inner expectations evaluated at K = k is, since
$(C) = ¢(C) < a,

E(W[aT]|ZeC, K = k) > E(W[¢(C)T]| Ze C, K = k)

by the bowl-shaped property established in Lemma 2.1.3.
The following theorem is a simple consequence of Lemmas 2.1.4 and 2.1.5.

THEOREM 2.1.2. Let C, C C, C C(co), C, € &, with both inclusions being proper,
#(2) = ¢, and ¢V (2) = ¢V (z2) or ¢o(C,) accordingas z¢ C,orze C,, i = 1, 2.
Then r(¢™; ) < r(¢™; &) < r(¢; §), for all §.

Define ¢** by

(2.1.3) $**(2) = ¢ C(|12|[)] -

We shall show that the risk function of ¢**(Z)T is never larger than that
of ¢™T, and also that, in a sense which will be made precise, ¢**(Z)T is
generalized Bayes. For the loss functions introduced in Examples 2.1.1-
2.1.4, ¢** is easily computed. If V is the positive random variable whose
joint density with Z is oc vf, ,(v, z|{), then the respective ¢**’s are found
to be mediang_, (V||| Z| < 1|21}, Eceol TI|ZI] < |2/ Ecao T*| 121] < 1121])
EZL(T || Z]] = ||2]]), and exp{—E._(In T'|||Z|| < ||z||)}. The condition K = 0 is
replaced by { = 0 because the joint density of T and Z is the same under either
condition.

LEMMA 2.1.6. ¢**(z) is strictly increasing in ||z||* and continuous.

Proor. The monotonicity is a direct consequence of Lemma 2.1.4. Fix
r, > 0, and suppose r, —r,, r, > r,,,. Notice that ¢C(r,)] is a strictly de-
creasing sequence, which therefore has a limit &« = ¢,[C(r,)]. From the bowl-
shaped property established in Lemma 2.1.3, it follows that

§ Wianef(t| ZeC(r,), K=0)dt < 0.
So, if the interchange of limit and integral is justified,
§ Wanifir| Ze C(r), K = 0)di < 0.

It follows that a < ¢[C(ry)], that is, a = ¢[C(r,)]. The required interchange
is justified' by the dominated convergence theorem. This requires the regularity
assumptions on W which entail the existence of a function H(t) = |W'(at) - 1|,
which is integrable with respect to the conditional density, f(t| Z € C(r,), K = 0).
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Also required is the inequality, f{(r|ZeC(r,), K = 0)/f(t|ZeC(r), K =0) <
P(|Z|* £ | K = 0)/P(]|Z|* £ r,| K = 0). A similar argument can be used to
demonstrate the continuity from below.

THEOREM 2.1.3. For any {,
r(@**; &) = r(¢"; ) .

Proor. Let{r,;:i=1,2,..-;j=1,2,...,n} be any double sequence for
which

(a) O=r,<r<-- < P, = 00,
®) {ry:j=12, -~ ,n}C{rn;tj=12, -+, )
(€) 7ig,_,— o0 asi— oo, and
(d) lim,_, max,g;g,.  |r; — ri; =0.
Define
$(2) = G [C(r:)] z2eC(ry) ~ C(ry,;-1) -
Proceeding inductively from Theorem 2.1.2, r(¢®; {) < r(¢*”; {), for all {. But

lim, ., ¢9(2) = ¢**(2),

for all z, by the continuity of ¢**. On applying Fatou’s lemma, the desired
conclusion is obtained. '

Now let & denote the scale subgroup of & obtained by requiring in (2.1.1)
that 3 = 0, and that T" be the identity matrix. Any S*equivariant estimator
of 7 is of the form §(Y)T where Y = XT-%. The risk function for such an
estimator, r(d; n), depends on g, r only through » = pr=t. Thus, if a (possibly
improper) prior measure is given on the range of », R?, the (possibly generalized)
Bayes procedure among .S~equivariant estimators may be determined. Such a
procedure is obtained by setting 6(Y) = ¢**(2).

THEOREM 2.1.4. Within the class of equivariant estimators, ¢**(Z)T is gener-
alized Bayes with respect to the prior on 7 € R® with density

(2.1.4) n(n) = {§v*271(1 4 v)~texp(—v||7|[*/2) dv .

Proor. Let Il be any o-finite measure on R? and g(1, y) = § o f7.4(t, y|7)dIL(n).
If, for each y, ¢;(y) minimizes and makes finite

§ W(ct)gy(t, y) dt

as a function of ¢, then ¢ (Y)T is the Bayes or generalized Bayes procedure
with respect to Il among S~Zequivariant procedures.
If we ignore factors depending on y, we are led to search for a Il which
satisfies
2 9u(t y) o< friwsin(f]0) oc rrpmiemdt R yir=tg=itn gy
But

9u(t, y) oc ¥ m=lett § oy exp (— 4ty — y|f") d11(y) .
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Thus on setting d&(y) = e~#17? 4TI(y) and x = r}y, we obtain
§ 2o €77 dE(n) oc §5 (1 — v)ir—letliel® gy |

Observe that the quantity on the right is a mixture of moment generating func-
tions for normal distributions. This observation readily leads to the choice for
& and hence II.

REMARK. It follows that ¢**(Z)T is also generalized Bayes (see, for example,
Zidek (1969)).

THEOREM 2.1.5. Suppose p = 1, and W(u) = (u — 1)*. Then ¢**(Z)T is ad-
missible within the class of Sequivariant estimators.

Proor. It is easily shown that for = as in Theorem 2.1.4,

§7 [2()n'] ™ dy = 2o [2(n)7'] 7 dy = oo .
The theorem is now an immediate consequence of a result of Brewster (1972).

REMARKs. It may well be unnecessary to introduce the Poisson variables
K, K,, ---, K, as we have done. In fact, all of our analysis can be done by
conditioning only on Z if the loss function is convex or one of those introduced
in Examples 2.1.1-2.1.4. For general bowl-shaped loss functions we are pre-
vented from proving our main results by conditioning on Z alone, only because
of our failure, due to technical difficulties, to obtain the necessary analogues
of Lemmas 2.1.2 and 2.1.3. The proofs would follow the lines of the argument
suggested in the introduction and since the joint densities of 7" and Z given
K = 0 and given { = 0 are identical, the same estimators would be obtained.
The introduction of the auxiliary Poisson variables is objectionable because it
means that we have exploited fortuitous special features of the normal law and
in doing so have departed from the general methods described in Section 3 which
call for conditioning on Z alone.

The choice of & is somewhat arbitrary. We could as well have taken
@ ={C(r): 0 < r< oo} where C(r) = {z€[0,c0): 0 < 2, <1 i=1, -+, p}
and obtained a result analogous to Theorem 2.1.3. But our results for varying
¢ are too incomplete for inclusion here.

We could have treated without additional difficulty the problem of estimating
79, ¢ being a known constant, but have declined to do so to avoid the notational
clutter which would have ensued.

The estimator, say 7, obtained from Theorem 2.1.1 when quadratic loss is
assumed, is obtained by Stein (1964). Stein confines his search for # to the
class of scale—orthogonal—equivariant estimators, that is, those of the form
F(||Z||)T for some function F; here # emerges from the larger class of estimators
of the form ¢(Z)T, although we also could have introduced orthogonality from
the outset.

To prove the superiority of # over the usual estimator, Stein represents ||Z||*
in terms of a central chi-squared random variable with p 4+ 2L degrees of



IMPROVING ON EQUIVARIANT ESTIMATORS 31

freedom for a certain Poisson variable L, and then conditions on L alone; in
our proof (for quadratic loss, at least) we condition on Z alone.

Inspiration for our work is also found in that of Brown (1968). Brown in-
troduces, in the context of estimation, the notion of a bowl-shaped loss func-
tion and reveals the role played by the MLRP, when loss is bowl-shaped. His
work applies here formally, in the case p = 1, and yields a result similar to
that of Lemma 2.1.5. This is not the best possible result as our Theorem 2.1.2
goes on to show, but, as Brown suggests, his goal was not to obtain the best
possible result for particular families but rather, to show that for a wide class
of families, the best affine-equivariant estimator is inadmissible.

Recently, Strawderman (1972) obtained, when p = 1 and loss is squared error,
a class of estimators which are superior to the usual one. These estimators are
of the form ¢(Z)T where ¢ is required to satisfy certain properties, and Stein’s
estimator (1964) is a member of this class. Strawderman shows that, for certain
¢ and a, the generalized Bayes rule corresponding to the prior measure on (g, 7)
with density given by

7§, 7) dr df oc T4 §ivi=(1 — v)~texp[—30(1 — v)7Y] dv(de/7) dC ,
is a member of this class. It can be shown that if ¢ = 0 and @ = 1, then the
estimator obtained is that given by equation (2.1.3) when loss is quadratic.

Looking, for simplicity, only at quadratic loss, it is perhaps instructive to
compare Stein’s estimator, ¢V"(Z)T, and ¢**(Z)T. Notice first that ¢**(0) =
$°(0), and for all z = 0, ¢**(z) < ¢°(z). Therefore, looking at the best esti-
mator when { = 0, it is clear that r(¢"", 0) < r(¢**, 0). Of course, in view
of Theorem 2.1.5 and the scale-inadmissibility of Stein’s estimator, there exists
€o # 0 such that r(¢**, {)) < r(¢"", {,), at least when p = 1.

Now, it is evident that the origin is not important in the problem. Therefore,
if £ is an arbitrary vector in R?, then an estimator possessing properties similar
to ¢**(Z)T is given by ¢.**(X, T)T, where

B (X, T) = g**(T|X — ] .
Moreover, ¢.**(X, T)T has an obvious interpretation. First notice that the

natural (minimax and admissible) estimator for z in the analogous problem with
known mean ¢ is given by

XT3 8) = (n+p+2)7(T + ||X — <€)
In the problem with unknown mean x, we now let & represent a preliminary
estimate of 4, and use estimator ¢.**(X, T)T to estimate r. If we find, in fact,
that X = £ (supporting our prior suspicion), then our estimate will agree with
that given by ¢(X, T; §). Otherwise, the estimate is modified, depending on the
(normalized) distance, T-#||X — &||, between X and . As the distance becomes
infinite the estimate approaches (n + 2)~'T.
This interpretation is similar to that of Stein’s estimator,

$OTNX — €INT = min{§(X, T; §), (n + 2)7'T} .
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This estimator may thus be regarded as the result of first testing the hypothesis
¢ = & at a particular significance level—using ¢(X, T; &) if the hypothesis is
accepted, and (n + 2)7'T if the hypothesis is rejected.

Finally, it is interesting to observe that the method of proof used to construct
¢** enables us to demonstrate the minimaxity of a number of other estimators.
That is, if ¢(z) is a non-decreasing function of z, and ¢**(z) < ¢(z) < (n + 2)7,
for all z, then ¢(Z)T is a minimax estimator of z. Moreover, in view of Theorem
2.1.1, if we wish to obtain a minimax, admissible estimator using this method,
then we should also have ¢(z) < ¢*(z), for all z.

2.2. Estimating one of a set of normal means with prior information. Assume
X ~ MVN,(¢, Z) where £ > 0 is known. Let p = (g, fty, -+, pt,) € R?. An
estimate of p, based on X is required, where the loss function is given by
L(gy; 1) = W(ay — ).

The problem remains invariant under the translation group, &, whose action
is described as

(2.2.1) XoX+8, pop+pB, m-oh+b,

where 8 = (8, B, ---B,) € R*. Any Zlequivariant estimator has the form
X, + ¢, and a risk function, E,_,W(X, + ¢), which is independent of y2. The
function ¢ — E,_,W(X, + c¢) is easily shown to be strictly bowl-shaped, and so
there is a best “-equivariant estimator, X, 4 ¢, where

E, WX, 4+ c?) =0.

Now suppose it is known that », < p,, i = 2,3, ---,p. In this case it is
possible to find an estimator of uniformly smaller risk than that of X, 4 ¢.

To this end let ©#” denote the subgroup of & obtained from (2.2.1) by re-
quiring that 8 = a(1,1, - -, 1), for some scalar a. Any ~#-equivariant esti-
mator has the form X, 4 ¢(Z), where Z = (X, — X,, ---, X, — X}). The risk
of any such estimator, r(¢; {), is a function of { = (¢, — py, - - +» p£, — ;) alone,
so that since only Z#~equivariant estimators will be considered, we may assume
m=0.

It is easily shown that X, | Z = z ~ N[¢*({ — z)d’, ¢*] while Z ~ MVN [{, A7'],
where, if D =X = (d,)), d;, = d,;, = 2,d;;, d,, = Z,d,., and Dy, = (d;);, 551>
then ¢* = d7}, 6 = (d,,, - -+, d.,), and A = D,, — ¢%'6.

Assume d,, = 0, for all i > 1.

Let € = {C(r): r £ 0, r = oo}, where C(r) = {z: ¢z0’ < r}. Using MLRP’s
in the manner of Lemmas 2.1.2 and 2.1.3, it can be shown that ¢ —
E[W(X, 4+ ¢)|Z = z] and ¢ — E[W(X, + ¢)| Ze C] are strictly bowl-shaped
for each { € [0, c0)*~!, ze R*~!, and C € &°. Denote their respective minimizing
values by ¢.(z) and ¥ (C). Proceeding as in Section 2.1, we can show that
6u(2) < o(2) = ¢* + 0%20’, for all {, z, and for a constant c* satisfying
EW'(X,* 4 ¢*) = 0, where X,* ~ N(0, ¢%). Moreover, ¥.(C) < ¥(C) for all
¢, C and if C is a proper subset of D, ¥(C) < ¥ (D) < .
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For any estimator X, + ¢(Z), let

(2.2.2) $*(2) = min {§(2), ¢y(2)} -
Also, let
(2.2.3) ¢**(z) = ¢, z0' >0

= ¥ [C(d%20")], 20" £ 0.
We now present the counterparts of the main theorems of Section 1.
THEOREM 2.2.1. For any {
r(¢*; Q) = r(¢; C)
with inequality if P [¢*(Z) # ¢(Z)] > 0.
COROLLARY 2.2.1. Let ¢(z) = ¢. The risk function of X, 4 (¢)*(Z) is
everywhere smaller than that of X, + ¢.

THEOREM 2.2.2. For any {
r(@**;0) = r(¢75 Q) .

Moreover, X, + ¢**(Z) is equal, for Z3' < 0, to a generalized Bayes procedure
within the class of S#-equivariant estimators; the prior is Lebesgue measure on the
range of {, [0, co)?~1.

EXAMPLE 2.2.1. Suppose W(u) = u*. Then ¢ = ¢* = 0, the best Z-equivariant
estimator is X, and if g, < p;, i = 1,2, ---, p is known, a superior estimator
is given by X, if Zé' = 0 or X, + ¢°Z¢’ if Z&' < 0. The function ¢** defined
in (2.2.3) is in this case

$**(z) =0, 20" =0
= —o'/M(0%20'[0’) , 20’ <0
where ¢’ = ¢*(0A729")}, M(2) = §%., 9(1) dt/g(z) and g(r) = exp(—3t?).

REMARKS. The first of the superior alternatives to X;, presented in Example
2.2.1 for quadratic loss, is, in a special case, a result of Srivastava and Bancroft
(1967) which is discussed by Arnold (1970). The special case is obtained by
requiring that p = 2 and that ¥ be diagonal and the proofs given by these
authors are different from those described here. The result in this special case
can be described as follows: test x, — p, = 0 against g, > p, with X, — X, as the
test statistic—use X, if the null hypothesis is rejected, and the pooled estimate,
(0,72X, + 0,72 X,) (0,72 + 0,7%)7", otherwise.

It is interesting that our analysis requires that d,, > 0, i > 1. Actually this
can be relaxed and instead the d,, required to be of the same sign. Otherwise
neither of our methods produces a superior alternative to X,. The reason for
this failure is most apparent when reconsidering the first method involving ¢.(2),
which is easily shown to be ¢* + ¢*(z — {)d’. Then, unless the d,,, i > 1, are
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of the same sign, { — ¢(z) is neither bounded above nor below and it is not
possible for either {X, 4+ ¢ > X, + ¢ (Z) all {}or {X, + ¢” < X, + ¢(Z) all {}
to occur with positive probability. So the method must fail. The condition
that the d,,, i > 1, be of the same sign is not easy to interpret. When p = 2,
it must hold. If p = 3, this condition can be stated in terms of the correlations,
p.;» between X, and X;. For example, d,, < 0and d;, > 0 if and only if p,; < py,
o < ppandl — p,, < p,; — p5. Thus if the X are quite dissimilarly correlated,
for example, if p,, is near O while p,, is near —1 and p,, is near +1, the condition
fails and the prior information g, < g,, i = 2, 3 cannot be used by our methods
to produce superior alternatives to X;.

Other forms of prior knowledge about { could be used in conjunction with
our methods to produce superior alternatives to X;. In the case of method
1, for example, if it is known that {e A C (—o0, c0)?~! and that either
{sup;.r Z0' < oo} or {inf, ., Z0’ > — oo} or both occur with positive probability,
then improvement on X, is possible. We will not pursue this matter any further
here.

It is possible to treat the problem of estimating one of several normal law
variances, ¢ i =1, ..., p, in a manner analogous to our treatment in this
section of the problem involving normal law means. It is not necessary to as-
sume the means are known. We conclude our remarks by stating the answer
obtained by applying the first of our methods to the problem of estimating o,
when the loss function is given by L(6/% a2, ---, 0% 1y, - -+, pt,) = (InG,%0,7%).

Data consists of independent random variables X,, ---, X, T, ---T, where
T,0,7% has the chi-squared distribution with n, degrees of freedom and X, ~
N(y,, 0%). If 3,* denotes the chi-squared random variable with r degrees of
freedom, it is easily shown that the best fully equivariant estimator of ¢,* is given
by ¢T,, where ¢ = exp[t(n,)] and #(r) = EIn y,~*. Assume now that¢;* < ¢,
i > 1 and consider the class of estimators having the form ¢(Z, V)T, where Z
is as defined in Section 2.1 and V = (1, T,T,7, ..., T, T,™'). For any estimator
in this class let ¢*(Z, V) = exp[min {In ¢(Z, V), t(n + p)Z(V, + Z})}], where
n=n + --- 4+ n, Thenife? < ¢? i > 1, the risk function of ¢*(Z, V)T, is
never larger than that of ¢(Z, V)T,. In particular, if ¢(z, v) = ¢, it follows
that ¢*(Z, V)T, has a uniformly smaller risk function than that of ¢'T;.

Added in proof. The choice of ” in Theorem 2.2.2 was motivated by ¢*. If & =
{C(r): —oo < r £ oo}, then ¢** would be replaced by the generalized Bayes esti-
mator ¥ [C(¢°20")]. For admissibility considerations see Cohen and Sackrowitz
[Ann. Math. Statist. 41 (1970) 2021-2034].

3. Techniques for improving estimators.

3.1. Preliminaries. . will denote in this section a possibly unbounded subset
of R", m = 1.

DerINITION 3.1.1. f:.5”— [0, o0) is called symmetrical-bowl-shaped if there



IMPROVING ON EQUIVARIANT ESTIMATORS 35

exists m(f)e & and an inner product (., +), on R™ such that (¥ — m(f),
u—m(f)) > (v — m(f), v — m(f)) implies flu) > f(v), u, ve &

DerFINITION 3.1.2. If “C R, f: & — [0, o) is called strictly bowl-shaped
if there exists m(f) e & such that f is strictly decreasing (increasing) on
(=00, m(f)] N (0 [m(f), ).

The following lemma concerns any family, .5, of symmetrical-bowl-shaped
functions on & for which the (-, «), fe & are identical; let («, «) = (=, *);.

LemMMA 3.1. Assume for a given we.S” there exists a hyperplane, {x e R™:
(x, a) = b} such that (w,a) > b, and (m(f),a) < b, fe .. Then fw) = f(v,),
fe S where v, =w + (a, a)7'[b — (w, a)], if v,e &

Proor. Observe that (w — m(f), w — m(f)) > (v, — m(f), v, — m(f)), fe F .
The conclusion follows immediately from this observation.

3.2. The statistical model. 77, ©, and .o denote, respectively, the sample
space, the parameter space, and the action space for the statistical problem
under consideration. The observable random variable is X. A loss function
L: o7 x ©® — [0, oo) is specified.

The problem remains invariant with respect to homomorphic transformation
groups &, &, and < acting on .77, ©, and %/ respectively. This means that
L(ga, gf) = L(a, ) and, if the distribution of X has parameter #, that of gX
has parameter gf. Here e < and § e < denote the homomorphic images of
ge.

To obtain a convenient representation of equivariant estimators, it is assumed
that

Z=[¥x %,

where [£] = &2 denotes the space of left cosets of some subgroup .oz c &
while 2" = 2°/% denotes the space of ZL-orbits in .27 (circumstances giving
rise to such a representation are described, for example, by Koehn (1970)). &
acts on [&]; if [g*] € [¥] labels g* 77 g[g*] means [gg*]. ¥ leaves points of
% invariant.

The above representation of .27 enables us to write

X=(Y,2), Ye[¥], Zez.

< is required to be transitive; for every pair §, € ©, i = 1, 2 there is at least
one ge ¥ for which 0, = gf,. As is easily shown, the marginal distribution
of Z is known. Our analysis is conditional on Z; to simplify notation no ex-
plicit reference to Z is made.

An estimator ¢ : 2 — %7 is called equivariant if ¢(gx) = §¢(x) for all g and
x. It follows that

$(x) = ¢((g]) = gé([e])
where e is the identity transformation. But ¢([e]) is not arbitrary because [9,] =
[9,] implies §,$([e]) = G, #([e]), so that ¢([e]) € ., = {a: ae A and “Fa = a}.
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The risk function of ¢,

(3.2.1) "4, ) = E,L(Gg((e]), 0) »

is easily shown to be independent of #. It follows that (g, f) is a function of
#([e]) € .57, alone and if that function achieves its infimum, say at a, € %/, an
optimal equivariant estimator, ¢y(X) = ¢,([G]) is defined by

(32.2) 4(IG)) = Ga, .
¢, is well defined because Ga, depends on G only through [G].

DEerINITION. The rule defined in equation (3.2.2) is called a best Z-equivariant
estimator.

The search for a superior alternative to ¢, is restricted to a subclass of esti-
mators equivariant under a subgroup #” C ¥. Let

(&1 =[]
and
w=[lc]]
where [[¢]] labels the SZ~orbit of [g] e [Z”]. The class of estimators considered
are those of the form

(3.2.3) $(G)) = Go(W)
where ¢: [[Z]] — 7.

It is easily shown that the risk function of any ~#~equivariant estimator de-
pends on 6 only through w = w(6), the maximal S#-invariant labelling the 57~
orbits of ®. Equivalently, the distribution of W depends only on w.

3.3. Main results.

DEFINITION 3.3.1. Any subset, &, of the g-algebra of [[£]] is called a test-
class. If [[¥]] € € and & is both well-ordered and completely-ordered by in-
clusion, & is called an ordered test class.

For any test-class, &, let <8(%") denote the smallest g-algebra containing
& . Another convenient notational device is [x; y, z]—which is defined as y, x,
or zaccordingas x < y, y < x < z,0r z < x.

Define for all w, w, f, ,(+) = fu..(+ |Z): 5 — [0, c0) by

for9) = E[L(GS, 0) | B(Z))(W) -
AssuMPTION 1. %7, C R. For all o, w, f, , is strictly bowl-shaped on .%7;.

THEOREM 3.3.1. Assume & is such that Assumption 1 holds. Then the risk
function of Go*(W) = G[a,, inf, m( fow)s SUP, (fu.w)] is never larger than that of
¢, and smaller at any o for which

P[g*(W) # a] > 0.
Suppose %, C R and & is an ordered test class. Let C:[[¥]] > & be
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defined as
CW)y=N{c:wece¥F}.

Assume (€7, 77) is a measurable space where .7 is a o-algebra containing the
intervals (a, 0] = {c: a < ¢ < b,ce &}, a, be & chosen so that C = C(W) is
a random variable. Denote by P,°, the induced distribution of C.

We now consider as a class of possible alternatives to ¢,, estimators of the form

(3.3.1) #(G]) = GY(C),  ¢P(c)e 7, ceZ.

¢ is called approximable if there exists a double sequence {c(i, n); i = 1, - -+, k
n=12,...,ck,, n) = [[Z]], c(i, n) e €} such that

PA$(C) = lim, .4, (CO)] =1, all o

no

where if [, denotes the indicator function of 4, 4 — .7,
$alc) = 2t Plels M ciotm e, mn(€) -
&): ¥, — [0, o), all ce € and w, by
90,49 |F) = E[L(GY, 0) | Wec].
For simplicity, set g, ,(+) = g,..(+ | ).

Define g, (-

ASSUMPTION 2. %, C R. ¥ is an ordered test-class such that P,(Wec) > 0
for all ce # and o, g, (+) is strictly bowl-shaped on .27, and either

(i) sup, m(g,,.) is approximable and strictly decreasing on & or
(ii) inf, m(g,,.) is approximable and strictly increasing on & .

THEOREM 3.3.2. Assume & is chosen so that Assumption 2 holds with condition
(i) [(ii)]. Then the risk function of G sup, m(g, ;)[G inf, m(g, ¢)] is never larger than
that of ¢,.

ASSUMPTION 3. %, C R™, f, , is symmetrical-bowl-shaped. (., «);, . = (+, )
all o, w. For some B C [[¥]], w e B implies that there exists a hyperplane,
{x e R™: (x, a(w)) = b(w) such that (a,, a(w)) > b(w) and (m(F, ,), a(w)) < b(w)
all w}.

If 2 is such that Assumption 3 holds, define ¢* by

(W) = ap, weB,
= 4 + (a(w), a(w))7'[b(w) — (a5 a(w))]a(w) , weB.
THEOREM 3.3. Assume & is chosen so that Assumption 3 holds and that

¢*(w) € %, for all w. Then the risk function of Gg*(W) is never larger than that
of ¢, and smaller at any w such that P,(W ¢ B) > 0.

REMARKS. To achieve uniformity in our exposition certain simple extensions
of our results were not included. For example, if prior knowledge restricts o
to a subset of its original range, the inadmissibility of the best equivariant
estimator is anticipated. Obvious extensions of Theorems 3.1—3.3 might prove
useful, as they did in Section 2.2, in finding an alternative.
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Both Theorem 3.1 and Theorem 3.3 can be extended to yield conclusions
about Z#~equivariant estimators and Theorem 3.1 is used in its extended form
in Section 2. Such an extension of Theorem 3.2 is not possible. ¢,([G]) = Ga,,
rather than G¢(W), is required, because then a,, being constant, is measurable
with respect to all sub-g-algebras of [[ Z7]].

For m > 1, it has been necessary to require symmetrical-bowl-shaped func-
tions because of the geometric nature of the methods. When such symmetry
is not present, it may be possible to look at a reduced one-dimensional problem,
instead. For example, such a procedure was adopted by Brewster (1972) in
interval estimation problems.

4. Acknowledgment. We are indebted to Dr. R. Shorrock for his helpful sug-
gestions concerning the work of Section 2.1.
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