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EDGEWORTH EXPANSIONS IN NONPARAMETRIC STATISTICS!

By P. J. BICKEL
University of California, Berkeley

This is a survey of recent work on Edgeworth expansions for (M) esti-
mates, rank tests and some other statistics arising in nonparametric models.
A Berry-Esséen theorem for U-statistics which seems to be new is also
proved.

1. Introduction. During the past 25 years various procedures which are not
sensitive to certain departures from normality have been evolved and investigated.
The study of such methods is loosely referred to as nonparametric statistics. One
broad category of such procedures is that of the distribution free tests such as
the permutafion t test, the rank tests of Wilcoxon, Kruskal-Wallis, Spearman
and Kendall, and the omnibus tests such as the two sample Smirnov test. All
of these are discussed in the monograph of Hajek and Sidak [26]. Another major
category is that of the various robust estimates such as those discussed in the
recent Princeton study [2].

Most of the theoretical work done on these procedures has been devoted to
obtaining large sample properties by establishing first order limit theorems for
the statistics on which these procedures are based. In this paper I intend to
discuss what is known about higher order approximations to the distribution of
these statistics. In the main I shall limit myself to discussion of results obtained
since the general review paper by D. Wallace which appeared in this journal in
1958, [57].

Suppose that we are given a sequence of statistics {7}, N = 1, where N usually
denotes sample size. In accordance with [57] we shall say that the distribution
function F, of T, possesses an asymptotic expansion valid to (r + 1) terms if

there exist functions 4,, - - -, 4, such that
A
(1.1) Fox) = A) = Zjmr S8 = o(vr2).
If,
A,
(1.2) up, | Fy() = A4y(x) = Tjm 0| = o(N-r7)
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we shall say the expansion is uniformly valid to (r 4 1) terms. (This is not quite
in accord with Wallace who requires the remainder to be O(N~"*/) but is more
convenient and in accord with [19].) An expansion valid to one term is just an
ordinary limit theorem. It is sometimes convenient to consider expansions in
which the 4; also depend on N. They are then, of course, no longer uniquely
defined.

These higher order terms are of interest on various grounds.

(1) Taking one or two terms of the expansion frequently improves the basic
approximation A, strikingly. Examples of this phenomenon may be found in
Hodges and Fix [28] and Thompson, Govindarajulu and Doksum [55].

(2) The higher order terms give some qualitative insight into regions of un-
reliability of first order results. For instance, when the limit 4, is normal the
higher order terms A4, and 4, typically correct for skewness and kurtosis.

(3) The expansions can be used to discriminate between procedures equiva-
lent to first order, as for example in Hodges and Lehmann’s work on deficiency
[30].

(4) Last but not least the probabilistic problems involved are very challenging.

Expansions of the type (1.1) and (1.2) are not the only ones of interest. Density
functions and frequency functions of lattice random variables can sometimes be
expanded. Extreme and intermediate tail probabilities can also sometimes be
expanded (see for example [21], pages 517-520, [13] and [37]), and as P. Huber
pointed out to me, the approximation to the power function of tests so obtained
can be much more satisfactory than that based on the Edgeworth expansion.
However, at least to date, the principal method used has been that of saddle
point approximation which seems to require more intimate knowledge of the
characteristic function of F than is usually available. In any case few if any
such expansions appear to be available in nonparametric problems. Thus, we
limit ourselves to discussion of expansions of types (1.1) (“Edgeworth”) and the
related expansions of F,~' (“Cornish-Fisher”). We shall deal primarily with
expansions in which 4, is the normal distribution. General results are available
here for linear rank statistics (Section 2) and M estimates (Section 3) and partial
results for linear combinations of order statistics and U-statistics (Section 4).
What is known in nonnormal limiting situations is discussed briefly in Section 5.

2. The Berry-Esséen method and linear rank statistics. Suppose that a se-
quence {T',}, N = 1, of random variables tends to a standard normal distribution.
If we let

(2.1) px(t) = E(e*'V)

then we are asserting that there is a version of log p, such that as N — oo,

2.2) log (1) — _’72 .



EDGEWORTH EXPANSIONS IN NONPARAMETRIC STATISTICS 3
Suppose that we have an asymptotic expansion of log p,, of the form,

I P (it P (it -
(2.3) log px(f) = ==+ —}5;) + o N(m) +o(N7%),
where the P; are polynomials of order < j 4 2 which vanish at 0. Such a devel-
opment is plausible if the T, have cumulants K; ., such that K, , =0, K, ;, = 1,
K;y = O(N-4=27%), j >3, and which themselves admit asymptotic expansions
in powers of N-t. Thus if

K( —r/
(2.4) Kj'N = 2= " A m + o(N7"%)

we should have,

(k+2-3)
k+2K I

2.5) Py(it) = X4t (ir)? .
J!

This is typically true although it sometimes requires a separate proof. The proto-
typical such T, are, of course, standardized sums of independent identically
distributed random variables. For more on expansions of the log characteristic
function in terms of cumulants we refer the reader to the discussion in [57]
and on pages 221-230 of [12]. Now, (2.3) corresponds to

(2.6) o) = e (1 + 252 L) ovry
where
Q,(it) = Py(it)
Q,(it) = Pyit) + L‘(zit)]z
and so on.
Normal Fourier inversion suggests that if

Q,(it)y = Xu=ra;(i0)"

then

@7 Py = O = $09| Timr 7 Tewr @ Ner0) | + 0 (V)

Ni~
where @ is the standard normal cdf, ¢ is the standard normal density and the

N, are Hermite polynomials defined by

(2.8) L) = (1N

This formal step cannot, of course, be justified in general. It fails for instance
if T, is the standardized sum of independent identically distributed lattice ran-
dom variables. The passage is valid if the weak (2.6) can be replaced by

(2.9) § {

oat) = e (14 25 B fi} ar = o v-r)
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for every M < oo. An equivalent useful form of (2.9) is

@.10) 5

and

ot = (14 250,49 ko = o7

§iemisimsmnrr % dr = o(N"")
for some ¢ > 0 and every M < co. That (2.9) suffices follows from a famous
lemma of Berry and Esséen whose statement and proof may be found in Feller
[21], Chapter 16, page 510.

The validity of (2.9) and hence of (2.7) to order 1/N (r = 2) has been estab-
lished for linear rank statistics both under the hypothesis of symmetry and under
contiguous location alternatives by Albers, Bickel, and van Zwet [1]. A similar
expansion for the two sample Wilcoxon statistic under the null hypothesis was
established earlier by Rogers [48]. Expansions for general two sample rank
statistics to order 1/N both under the hypothesis and contiguous location alter-
natives are in preparation [6]. Here is a selection of the results of these papers.

Let X, ---, X, be independent identically distributed with common cdf G
and density g. Let Z,., < --- < Z,., denote the ordered |X,|. Define ranks
Rv ey RN by

|Xle = Zj:N .
Let
e; =1 if X, >0
= —1 otherwise ,
and suppose that a,,, - - -, a,, are given constants.
Define
(2.11) Ty =y, %né
Oy
where
(2.12) o) = xnY,ady,.

For simplicity suppose there exists a function J on (0, 1) such that
(2.13) a;y = E(J(U;.y))

where U,,, < --- < U,,, are the order statistics of a sample of size N from the
uniform distribution on (0, 1). All of the usual statistics for testing the hypothe-
sis that g is symmetric about 0, including the sign, Wilcoxon and normal scores
tests can be put in this form. Hajek and Sidak [26] provide an extensive discus-
sion of these procedures as well as the two sample tests we shall mention.

If g is symmetric about 0 the ¢; are independent with Ple; = 1] = 4. The
statistic T, is then a sum of independent nonidentically distributed random
variables, and
(2.14) p(t) = IV, cos I_ZL“L .

N
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If §§J4(t) dt < oo, Taylor expansion of (2.14) yields
- (lf) 1
(2.15) log py(t) = —5- — 20 Ty, o (1)

__r_ (it)‘ §},J4(t) dt 1
= T2 T 2N iy °<N>‘

If J is in addition continuously differentiable and nonconstant it is shown in
[1] that (2.10) holds and hence that

§5J4() dr

®C) + 12N(§3 J*(t) diy?

P(X)Hy(x)

is a uniformly valid expansion for F, to three terms. In particular this proves
the validity of the expansions used by Fellingham and Stoker [22] for the
Wilcoxon test and by Thompson et al. [55] for the normal scores test up to terms
of order smaller than 1/N. Thompson et al. noted that the approximation using
exact cumulants suggested by the first identity in (2.15) is better than the expan-
sion suggested by the second identity while Fellingham and Stoker only con-
sidered the approximation using exact cumulants, with continuity correction.
The exact cumulant Edgeworth expansion in both cases did provide substantial
improvement over the normal approximation for N = 10 — 20 although the
latter seems satisfactory for all practical purposes. It is not yet known whether
the Edgeworth expansion for statistics such as the normal scores is valid to more
than three terms. It seems clear that the expansion to order 1/N? for the
Wilcoxon with continuity correction used by Fellingham and Stoker can be
justified by a local limit expansion and application of the Euler-Maclaurin
formula. Local limit theorems for the two sample Wilcoxon statistic were de-
veloped by Rogers [48].

If g is not symmetric about O the ¢, are no longer independent. However by
conditioning on | X}, - - -, | X,;| Albers, Bickel and van Zwet arrive at the following
representation for p,,

(2.16) ox(t) = E{I] )., [Py explita;yfoy] + (1 — P;y) exp[—ita;yfoy]]}

where
— g(Zj:N) .
9(Z;.n) + 9(—Z;.5)

From this representation it may be shown that if {}J*(f)dr < oo and J is con-
tinuously differentiable and nonconstant then

§25t Llow(t) — Bx(Ol/lt]} di < eN-

for b, ¢ depending on g where

@17y py(1) = E {exp[itKlN - _’22_1{”}( <”)3 L+ (;’I K, + (”)° K2, )}

iN
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and
K,y = 2% 1__(2P — 1)
Oyn

2N—4ZJ 1J£P,7N(1"'P )

Oy

Kszv =38 ZJ 1J PJN(l - PjN)(l - 2szv)

N

Ky =163, ‘Z“f Poy(1 — Pyy)(1 — 6P, + 6P,
N

are the cumulants of 7',

Further expansion for fixed alternatives appears to depend on the development
of the theory of Edgeworth expansion for linear combinations of order statistics.
However, if we permit g to depend on N in such a way that g is contiguous to
a symmetric density, then K, is to first order a constant, and further expansion
is possible. Specifically suppose that

(2.18) 9u(¥) = flx = by)
where f is a fixed density symmetric about 0 and ¢, = 6/N*. It is then shown

in [1] under some regularity conditions on f, as well as the previously specified
conditions on J, that for some 4, ¢ depending on f and J

(2.19) 681 (16,3(0) — 7a(Olle]) dr < N

where

@20) 700 = exp|ieky — SR [ (14 Bk, 1+ g,
and

Ky = —0 Z ]N Eo(¢1(Z; N))

Oy

- 32’ 2i-195x Ef394(Z50) — 3019 Z;.0) + 39:%(Z;.4)]
Ry =1—-0 %7 lﬂEo(sb (Z;0) + 5 Vafo(Zl SLHTACINY)

K3N = 20 Z] =1 “'ZN E0(¢1(Z] N))
oy

Ry = —230, %

gt

where

¢m:§m

and the subscript 0 indicates that calculation is carried out under f. The K,
may be shown to be the leading terms in the expansion of the cumulants of T,
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under g,. Berry’s lemma can be applied to yield as a uniformly valid expansion
for F,(t) to three terms

@21) () — 60 B W) + S wr) where
_ - KIN
TR

This is not strictly speaking an expansion of the type we have been considering
since N enters into the approximation in a complicated fashion. However, the
expansion can be used in this form, for instance, to study power under normal
alternatives since in this case

$i(x) = (=1)7H(x)
and moments of order statistics from the half normal distribution are available
(cf. [34]).

If J’ is defined and continuous on [0, 1] and f satisfies some mild regularity
conditions, integral approximations to the K ;v can be shown to hold, and a uni-
formly valid expansion to three terms as defined in Section 1 can be provided.
This is adequate for the Wilcoxon but not the normal scores test. If we consider
the distribution of the latter under normal alternatives it turns out that the K,
term does not admit an expansion of the form 4 4+ B/N with 4, B fixed, but
rather requires a term of the form (Bloglog N)/N. As noted by Wallace, ex-
pansions of the type (2.7) can validly be inverted to yield expansions for percen-
tiles (Cornish-Fisher) and hence expansions for the power functions of the rank
statistics Ty. Agreement between the power function expansions for the normal
scores and Wilcoxon tests obtained from (2.21) and (2.15) for normal and logistic
alternatives appears to agree well with the Monte Carlo figures of Thompson
et al. [55]. However, agreement with the Monte Carlo figures of Arnold [3]
for the power function of the Wilcoxon test under Cauchy alternatives seems
unsatisfactory.

In [30] Hodges and Lehmann introduced the notion of deficiency of a procedure
with respect to an equally efficient competitor. For tests of equal level a, the
deficiency is crudely defined as the limit of the difference in sample sizes required
to reach equal power for the same alternative. The power functions expansions
obtained in [1] are used to calculate the deficiency of the normal scores test with
respect to the ¢ test for normal alternatives. This turns out to be infinite but of the
order of loglog N. The results of [1] can also be used to establish that the permu-
tation ¢ test has deficiency 0 with respect to the ¢ test under normal alternatives.

Suppose now that we have two samples X,, ---, X,,, Yy, -+ -, Y,, N=m 4 n,
the first sample being distributed with common density f, the second with com-
mon density g. Let Z,,, < --- < Z,,, be the order statistics of the pooled
sample and define
e; =1 if Z,,=Y, forsome k

=0 otherwise.
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A two sample linear rank statistic standardized under the null hypothesis is then
given by

(2.22) Ty =279,y (5,‘ - %)/TNz
where the a;, are specified scores

- mn
(2.23) Ty’ =[5 (e — ay)’] W_:T)
and

- 1
ay = N iy

Suppose again that the a;, are given by (2.13). Using a representation of the
characteristic function p, of T related to one due to Erdos and Rényi [20] and
the Berry lemma, Bickel and van Zwet [6] obtain a uniformly valid expansion
for the distribution function Fy of T to three terms if f = g, n/N stays bounded
away from 0 and 1, {J%7) df < oo, and J is nonconstant and has continuous
derivative. In this case,

K3y

() + i ) 4+ BT )

@24)  Fof) = O(9) — 63 |

1
+o(y)
where the K}, are the cumulants of 7',. Essentially this result was obtained by
Rogers in [48] for the Wilcoxon statistic. Formal expansions were previously
considered by Hodges and Fix [28]. A Berry-Esséen bound was obtained by
Stoker [53]. Expansions of the power function and deficiency calculations are
in progress [6]. Formal expansions of the power function were considered by
Witting [58] using moment expansions due to Sundrum [54]. More Monte Carlo
studies of the power functions of the two sample tests are desirable. Figures
are available for the Savage test [17] when fand g are exponential densities and for
the Wilcoxon and normal scores test under normal alternatives [34], [35], [41].
There are several open problems in this area. Two which I find interesting are:
(1) The extension of these results to tests of independence such as Spearman’s

o and Kendall’s <.
(2) The establishment of valid expansions for fixed alternatives.

3. Multivariate Edgeworth expansions and (M) estimates. A significant de-
velopment in the theory of asymptotic expansions occurred in 1961 with the
appearance of Ranga Rao’s thesis on Edgeworth expansions and Berry-Esséen
bounds for sums of independent random vectors. Since then there has been con-
siderable development in the field. Some results typical of the most recent state
of the art and many references to older work may be found in Bhattacharya’s
paper [5] in which the following theorem is announced.
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Let {X" = (X,, - -+, X,'")} be a sequence of independent identically distri-
buted k dimensional random vectors. Suppose that

3.1 E(X*) =0, =1,k
E(X,"X,%) = d,,;, I<i<jzk.

Let

3.2) o(u) = E(emx™)

where u = (u,, - -+, u,) and uX" is the inner product of u and X“’ As usual
consider the formal expansion of p¥(u/N*)e™*? where |u|* = ¥ i, u;*, as a power
series in N—*

w2z v [ H O _ w Pj(in)
(33) e rp (‘m) =14 2% ]j\/j/z

where the P; are polynomials whose coefficients depend on the cumulants of
X, Define polynomials Z; on R* by the property that (2z)~*%e~""*P (1) has
e~'"?*2P (iu) as its Fourier transform For any 4 C R, let (0A)° be the set of
all points within a distance ¢ of the boundary of A4, i.e.,

(3.4 (04 = {xecRF:3yed,z¢Ad|x — )| <& |x — 2] < ¢}
Let &7(®: d, ¢,) be the class of all Borel sets 4 such that
Q((0A4)) < de 0<e<g

where @ is the standard multivariate normal product probability measure on RE,
We need Cramér’s condition

©) lim sup,, ., [o(#)] < 1.

Tueorem (Remark 1, page 255 of [5]). Suppose that E|X;V|* < oo, 1 < j < k,
for some s = 3, the X9 are as above and that condition (C) holds. Let Sy =
DY, X9, Then, for every d>0,

3.5) sup ”P [% € A} (27)~* S . § et
P (t)

[ I :| l Ae /(@ d, eo)} — o(Nu-7)

By making a linear transformation of the variables this result can obviously
be extended to the case that X' has a specified nonsingular covariance matrix.
These results have been applied in a variety of problems involving expansions
of multivariate distributions connected with normal variables. An interesting
paper along these lines which also faces the problem of computation of the P(r)
is that of Chambers [10].

In this section we review the work of Linnik and Mitrofanova [38], [56] and
Cibisov [11] who employed results of this type to obtain asymptotic expansions
for maximum likelihood estimates, and the related work of Pfanzag] [45], [46]
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and Michel and Pfanzagl [40]. The work is of interest from the point of view
of robust estimation since the same technique yields expansions for Huber’s (M)
estimates [32], [33].
Let
X; =0+ E;, I<jEN

where the E; are independent identically distributed with density f. An (M)
estimate (scale known) of 4, for given ¢, is by definition, any solution § of the
equation

(3.6) (X, — ) =0.
For the estimation to make sense we suppose
(3.7) E($(X, — 0)) = 0.

Condition for consistency and asymptotic normality of such estimates are given
in [32] and [33].

Linnik and Mitrofanova [38], in the tradition of Cramér [12], obtained ex-
pansions for a solution of (3.6) when ¢ = —f’/f. It is easy to see in the light
of [33] how their conditions should be modified to yield expansions for (M)
estimates. It should be noted that [38] has many obscure points and, in par-
ticular, it seems to me that the appeal to Ranga Rao’s theorem [47] at a crucial
point in [38] is inadequate. However, I believe application of the more so-
phisticated theorem of Bhattacharya that was stated above will carry the proof
through.

The main idea which was already used by Haldane and Smith [27] and
Shenton and Bowman [9] for formal cumulant expansions of maximum likeli-
hood estimates is to expand the likelihood equation beyond the customary two
terms.

(.8 0= NF R — 0) — [T R — 0} MG = 0) 4 -

k A
+ N—(k_l)/2 (_k!l) {% ‘11Y=1 ¢(k)(Xj _ 0)} Nk/2(0 _ 0)1: + RNk .
Using the expansion to two terms and suitable conditions on the derivatives of
¢ the first step is to show that large deviations of a suitable root of (3.6) are
very unlikely and hence that R,, which is governed by N#@ — #)*+' can be
bounded by something only slightly larger than N=*2. The next step is to con-
sider the equation

(3.9 0=NPTL Y —0) — [ L DL - O N —0) + -
—(k—1)2(_1)k 1 N (k) _ k/2(¢ _ A\
N ST S g, — o) Ko — o

The solution ¢ = 4, of this equation can be expanded in an asymptotic expansion
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in N~ whose leading term is N~} 317, ¢(X; — 0)/E,(¢'(X, — 0)) and whose

coefficients are polynomials in &, ---, §, where
1
(3.10) & = i Tial97(X; — ) — E$(X; — 0)].

Then one shows that  and 671"", the sum of the first k terms in the expan-
sion of @, differ to an order that matters only on a set of relatively negligible
probability. Then one applies a theorem such as Bhattacharya’s to the event
[N¥,» — 6) < x] which indeed depends only on (&, - - -, &,). Finally there is
the problem of expanding the multivariate integrals appearing in the multivariate
Edgeworth theorem since these depend on N (since §,* is a polynomial in
powers of N~t as well as in the ;). The result is an expansion of the type (2.7).
It is formally clear that the coefficients should agree with those obtained by
using the formal expansions of the cumulants in powers of N-* from [27] and
then proceeding to get a formal Edgeworth expansion from the formal Charlier
expansion as in (2.4) and (2.5). However, this has not been checked to my
knowledge.

Mitrofanova [42] extended the work of [38] to maximum likelihood estimates
of a vector parameter. Unfortunately, as was noted by Pfanzagl [46], her proof
contains very serious gaps. A salvage operation however seems both possible
and worthwhile. In particular this should yield valid expansions for (M) esti-
mates when scale is estimated (as it normally would be). Cibiov’s announce-
ment [11] is essentially an extension of the work of [38] to maximum likelihood
estimation of a single parameter under rather simple conditions.

Pfanzagl [46] and Michel and Pfanzagl [40] have used a different approach
which though much simpler for the case of a single parameter does not appear
to generalize. The idea similar to that used by Huber in [32] and earlier by
H. E. Daniels [14] is to compare the events [§ < x] and [ZFo(X; — x) < 0]
For increasing ¢ the two events are essentially the same. In general even for
functions of the form ¢(x, #), under suitable conditions, one can argue that the
difference of the two events has negligible probability for x = ¢ + a/N* with
|a] bounded. Butto P[3_, ¢(X; — x) < 0] one can apply the classical univari-
ate expansions for sums of independent identically distributed random variables
and then use suitable expansions in (x — #)/N* of the cumulants of ¢(X; — x).
This method has the advantage of enabling one to deal with ¢ functions which
are not very smooth such as those introduced by Huber [32]. There seems at
present, however, to be no way of dealing with (M) estimates in which scale is
estimated simultaneously when the functions defining the estimates cannot be
expanded along the lines of [33].

Pfanzagl [46] gives a variety of applications to parametric models of the uni-
variate expansions mentioned above. There have been hardly any numerical
studies of the applicability of these expansions. An interesting example, however,
is Barnett’s work [4] in which he shows that the (formal) expansion is relatively
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poor when applied to the maximum likelihood estimate of location for a Cauchy
sample.

4. Other classes of asymptotically normal statistics. There has been little
success so far in validating expansions or even establishing Berry-Esséen bounds
of order 1/Nt for general classes of statistics known to be asymptotically nor-
mally distributed, other than the ones we have discussed.

Mr. S. Bjerve in work towards a Berkeley thesis has shown that trimmed
means admit valid Edgeworth expansions and is in the process of explicitly
calculating the coefficients for comparison with the published distributions of
the Princeton project [2]. His method employs special properties of the trimmed
means and does not carry over to more general estimates. Further work on
systematic statistics which can also be handled by elementary means is intended.
Even formal work seems surprisingly scarce here. In this connection I would
like to mention [16] in which expansions are obtained for the cumulants of single
order statistics.

The only theoretical result on rates of convergence for general linear combi-
nations of order statistics known to me is due to Rosenkrantz and O’Reilly [43]
who establish various bounds of Berry-Esséen type for the error committed by
using the normal approximation to the distribution of a linear combination of
order statistics. None of these bounds is of smaller order than N-t where N is
the sample size. This limitation appears due to the Skorokhod embedding method
which they employ. This order is, of course, incorrect for all cases in which sharp
bounds are available, i.e., trimmed means (including the mean) and systematic
statistics. I conjecture that under mild conditions the “right” order is N~%.

In 1948 Hoeffding [31] introduced the interesting class of U-statistics, which
includes among its members the Wilcoxon two sample statistic. As another
illustration of the power of the Fourier technique in a nonstandard situation
we shall prove under rather strong conditions that the normal approximation
to the distribution of a U-statistic of order 2 is valid to order N~*. Our method
can be adapted to yield the N~* bound for the one and two sample Wilcoxon
statistic as well as Kendall’s z. (In fact fixed alternative asymptotic expansions
for these statistics can be obtained using a combination of the methods of the
appendix and those of [1].) The method should also extend to von Mises statis-
tics [56] of order 1 and hence to linear combinations of order statistics. How-
ever we are unable to get N~* bounds for U-statistics with unbounded kernels.
Bounds of order N="%, r < 1, have been obtained by Grams and Serfling in [25]
by a different technique. Asymptotic expansions in general seem out of reach.
Here is the statement of our theorem. The proof is given in an appendix.

Let R, - - -, R, be a sample from the uniform distribution on (0, 1). Let ¢
be a measurable real-valued function on the closed unit square such that |¢| <
M < oo (say). Suppose moreover that ¢ is symmetric, ¢(u, v) = ¢(v, u) and that

4.1) §o $s &(u, v)dudv =0.



EDGEWORTH EXPANSIONS IN NONPARAMETRIC STATISTICS 13

Let

(4.2) Ty = i $(Ra R)

where '

@3 o= YD Gg g o) dudv + NV = 1N = 2) §37°06)
and

(4.4 ) = §g(u ) do.

THEOREM 4.1. If the preceding assumptions hold and y does not vanish identically,
then there exists a constant C depending on ¢ but not N such that

C
sup, [P[Ty < ] — O] < —

where @ is the standard normal cumulative distribution function.

A new approach has recently been advanced by Stein [52] which does not rely
on Fourier analytic methods. Using his method he is able to show that the error
committed in applying the normal approximation to the sum of the first N of a
stationary sequence of bounded m dependent random variables is of order N~%.
The possibility of applying his method to some of the classes we have considered
should be investigated.

5. Expansions for statistics with nonnormal limiting distributions. The omni-
bus goodness of fit and two sample tests such as those of Kolmogorov-Smirnov
and Cramér-von Mises and the Pearson y* test do not have limiting normal
distributions. The Russian school of probability theorists has had considerable
success in obtaining expansions for the distribution of the Kolmogorov-Smirnov
test statistics under the null hypothesis. The methods employed at first used
explicit representations of the null distribution. An account of results of this
type due to Chan Li-Tsien may be found in Gnedenko, Korolyuk, Skorokhod
[23]. The most definitive expansion for the one-sided goodness of fit statistic
was given by Lauwerier [36]. Subsequently, the problems were treated as special
cases of more general problems of first passage times of random walks (cf. for
example Borovkov [7] in which the two sample Smirnov statistic is treated). An
account of the latest results and extensive references may be found in Borovkov
[8]. Since none of the first order limiting distributions under contiguous alter-
natives for these statistics have been tabled or extensively studied it is not sur-
prising that there has been no work on asymptotic expansions for the power.

There has recently been some interest in obtaining Berry-Esséen type bounds
for the difference between the distribution of the Cramér-von Mises goodness of
fit statistic under the null hypothesis and its well known limit distribution. How-
ever, the methods used by Rosenkrantz in [49] and Sawyer in [50] (cf. also Orlov
[44]) use the Skorokhod embedding and not surprisingly obtain bounds which
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are of order strictly worse than N~* where N is the sample size. In an announce-
ment of results without proofs [15] D. Darling obtained a representation for the
characteristic function of the von Mises statistic which he employed to get an
asymptotic expansion of the characteristic function to two terms for fixed argu-
ment. Ido not know whether this approach can be refined to yield the kind of
estimates which permit us to apply Berry’s lemma.

Finally, I want to mention the recent Chicago thesis of Yarnold [59] in which
he obtained asymptotic expansions for the distribution of Pearson’s y* statistic.
Since y? is a smooth function of the multinomial frequencies we might expect that
the theorems on multivariate Edgeworth series should apply. Unfortunately the
vector of multinomial frequencies is a normalized sum of independent identically
distributed random vectors taking their values in a lattice, Cramér’s condition
(C) does not hold and in fact the formal Edgeworth expansion is invalid. How-
ever, it is possible to use the well-known local limit expansion for the multi-
nomial probability and then sum up over all points in the appropriate region.
This is an improvement over the y* approximation but almost as complicated as
calculation of the exact probabilities. Moreover, it does not yield a form which
is sufficiently tractable analytically to settle long outstanding questions about
the relative performance of the y* and likelihood ratio tests. Results which are
manageable in this area would be interesting but seem hard.

6. Appendix (Proof of Theorem 4.1). Let

(6.1) se =T =D mr )

(6.2) A, =T, — S,

(6.3) Pu(t) = E(e"7V)

©4) o) = Ee'rm)

(6.5) Bu(t) = E(e"Sv) = 5 (i@’—_l)> .
Oy

The crux of the argument is to show that there exists ¢, > 0 and a constant
D, both independent of N such that

(6.6) sslzvi |¢N(t) ¢N(t)| dt < D,N- b,

Y 17
Since it is well known that there exists ¢, > 0 and a constant D, both inde-
pendent of N such that

e __ p—t22
§2ky —|¢N(t)|t| " 4 < DN,

it follows that if ¢ = min (¢, ¢,), D = D, + D,,

6.7 fed, wd; < DN-#,

and the theorem follows from (6.6) and the usual Berry-Esséen argument.
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To prove (6.6) we need the following lemmas.

LEMMA 6.1. Let {§;}, 1 < j < n be a sequence of martingale summands, i.e.,

E(Sjl&p'"a&j_l)zo, lgjgn.
Let W, = Y7_, &;. Define m,, = max,_,., E(€*), k = 1. Then, for k < n,
(6.8) E(W,*) < n*m, ,(4ek)* .

REMARKS. (1) Anestimatesimilar to(6.8)has been obtained by Dharmadhikari,
Fabian and Jogdeo [18] with m, , replaced by (1/n) 3;»_, E(¢,*). However, their
bound grows with k as 2¢* which is quite inadequate for our purposes. We note
that our technique readily establishes,

E( ank) g nkmn,k(k)2k

for all k, n but even this is inadequate.
(2) The example of §; i.i.d. normal random variables with mean 0 shows that
our bound is comparatively sharp. Also see the remark on Lemma 6.2.

Our main interest in Lemma 6.1 is in its application to

LEMMA 6.2. Under the conditions of Theorem 4.1, if k < N,

(6.9) E(A*) < 0, N*(3M ) (4ek)™ .
REMARK. The order of magnitude of the coefficient of ¢¥~*N? in (6.9) is
quite sharp. Thus if ¢(x, y) = 3 if x and y are both > 1, = —1 otherwise
1 N
(6.10) oyby = Tic;mim; = —2'|:(va=1 7" — —4“:'

where the 7, are independent and equal +4 with equal probability . Itis easy
to see that

(6.11) E(oyAy)%* = 82 %HE(U %) — N*}
where Uy = 31 ¢, and ¢, = +1 with probability }. Since,
4k!
E(UN4’°) = Z¢1+"'+tN=2" W s

EU = (V)3 2 agenys (11— GEo DY (AY

for some universal constant 4 and hence,
(kN)=E(oy Ay)™ = cp*

for all N and k < aN, a < 4 where ¢ and p depend on a but not on k and N.
Then the ratio between E(s, A,)* and the estimate given by (6.9) is (relatively)
negligible. ‘

ProoF oF LEMMA 6.1. The proof is by induction on n for fixed k. Note first that

(6-12) E¢ + -+ + &)< kakmk,k
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and hence the induction hypothesis holds for n = k. Suppose it is true for
n=1[02>= k. Then

(6.13) E(Wi) = E(W™) 4+ Tk, CHE(W ™ &,)
by the martingale hypothesis. By induction and the Holder inequality we obtain
(6.14) E(W™=3],)) < [e Iomy (T my ]

< (e lomy g ) (e o)~

where ¢, = (4ek)*. By elementary estimates (6.13) and (6.14) yield

E(Wffl) <c, Ika_l’k( I S Zak ~2 (21: %)(c, 1/21:1;) >

(6.15) < cutmn, (145 (14 Wlw-))

S limy,, <1 + —];—>

for k < 1. Since (1 4 k/I) < ((I 4 1)/I)* the hypothesis is verified forn =1 4 1
and the result follows.

ProoF oF LEMMA 6.2. Begin by noting that

(6.16) oydy = 2,6 where
(6.17) £, = Lid [¢(R, R)) — 1(R) — 1(R))]

and that the §; are martingale summands. Moreover, note that

(6.18) E(§ ™) = E(E[ 2z (4(Ry, Ry) — 7(R) — 7(R)™ | R;])

and that given R; the summands 7, = (¢(R,, R;) — 7(R,) — r(Rj)), i =1,
Jj — 1 are also martingale summands (in fact i.i.d.). Since

(6.19) E(P(Ry Ry) — 7(Ry) — r(Ry))*™ = (3M)™
we can apply Lemma 6.1 twice in succession to obtain Lemma 6.2.

LEMMA 6.3. Under the conditions of the theorem,

(6.20) [Besra,)| < 3me N N g =< LN — 1)>
(6.21) |E(e"S¥A %) < <0N> (3§4> I <(N— 1)_> for j=1.
Proor. To prove (6.20) we calculate
itSy) — N(N_ 1) v ! —
(6.22) Byen) = MO =y (E; (N 1))
x E(exp[ "N =D r) + 1(R) |

X (@(Ry R) — 1(R) = 1(Ry)) -
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Since ¢(R,, R,;) — r(R,) — 7(R,) and 7(R,), 7(R,) are uncorrelated we can write

E(exp | "M =D (r(R) + 1R | 9(Re R) = 1(R) — 7(R))

N

= [E[ (exe [" =D ) + 1ery | - 1)

N

(6.23) X @R, R) = 1(R) = 1(R) |
= - A= BGR) + rRIVIPR R) = 1(R) — 1(R)]

N

and (6.20) follows.
Similarly,
(6.24) o E(A,7e'SN)
= Ziaptp.ajio EE VI (U(R,, Ry) — 7(R,)) — 7(R,))]) -
Applying elementary inequalities we obtain
oy E(A 7€)
(6.25) < 27 (V= 1) D) Elg(Ra R) = 1(R) — (R

N
< (3_M>J N2i|,/|N—2j<(N - 1)’) .
—\2 av

The lemma follows.
We proceed with the proof of (6.6). Since

|B2(1) — Pu(D)] = |E(e"¥ (e — 1))

we have for any k,

+ ).

_ & 2%—-1 \*%)" (it) itSy A j
626 Io) = a0 = | i G B a4 2

From (6.26), (6.9) and (6.20),
©27)  1gu(0— Fu(0] = (34 Xy ( (N —1) 1+ e Moar) e,
O'N N

Since there exists § > 0 such that ¢,? = 62N? for all N we conclude that

(6.28) §Mhy |65(1) — Sx(D)] dt
|1

< M b appy=s (N a4 3N s

< FN-#

where F is a constant depending on ¢ but not N.
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Let

(6.29) R p<1

24Me’
=]

If |f| £ «N?%, by Lemma 6.2 for this k and N sufficiently large,

(6.30) 2 EAM) <

eZka
(2k)! (2k)!
< (27 <N

k
N fr(12e My
O.N2k

To complete the argument note that for p sufficiently small, there exists = > 0
such that for [f| < eNt,

(6.31) tog ) (M=) < 7.

N

Applying (6.31) and (6.21) we conclude that for Nt < |7] < eNt, j < 2k,

(6.32) E(eS8A,9)| < 9-3IN” (3TM>] exp [_be ( - %‘)] .

Hence for N* < |#| < eN* with k, ¢ given by (6.29),

(6.33) s (7 pensa,)
A

< eN (%4)% exp [—TN *( - %ﬂ
o(l

i=1

uniformly for |¢| as above. Combining (6.28), (6.30) and (6.33), (6.6) and the
theorem follows.
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