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ON SOME ANALOGUES TO LINEAR COMBINATIONS OF
ORDER STATISTICS IN THE LINEAR MODEL!

By P. J. BicKEL

University of California, Berkeley
and Princeton University

We consider the general linear model with independent symmetric
errors. In this context we propose and examine the large sample behav-
ior of some estimates of the regression parameters. For the location
model these statistics are linear combinations of order statistics. In gener-
al they depend on a preliminary estimate and the ordered residuals based
on it. The asymptotic efficiency of these procedures is independent of the
design matrix. Specifically analogues of the median and trimmed and
Winsorized means are proposed.

1. Introduction. Linear combinations of order statistics have long been of
interest as estimates of location (and scale) parameters. The reasons for this
appear to be three-fold. First, they are easy to compute ([24]), second, by
a suitable choice of weights they can be made asymptotically efficient if the
shape of the underlying population is known ([2], [17], [8]), and third, suitable
members of the family such as the median and the trimmed mean are robust
estimates of location ([30], [3], [7], [9], [16]). Our aim is to generalize this
class of procedures to the linear model.

Specifically, we consider the problem of estimating the regression parameters
of a linear model as the number of observations becomes large and the number
of regression parameters remains fixed. That is, we want to estimate 8 when
we observe X = (X, ---, X,) where

(1.1) X=pC+E

B = (B -+, B,) is a vector of unknown regression parameters, E = (E,, - .,
E,) is a vector of errors and C = ||c;;||,x, IS a matrix of known regression
constants of rank p. (Of course the coordinates of X as well as C depend on n.
For convenience we suppress n dependence.) Throughout we shall suppose the
E; are independent and identically distributed with common cdf F and density
f with respect to Lebesgue measure. If F is Gaussian with mean 0 the appropri-
ate procedure to use is, of course, the least squares estimate

(1.2) B. = Xcr[ccr.
It is well known that in the location model (p = 1, ¢;; = 1) the sample mean

can be a very poor estimate when F is not Gaussian. For this location submodel,

Received February 1971; revised September 1972.

! This work was supported, in part, by a grant to the author from the John Simon Gug-
genheim Memorial Foundation and in part by Grant N00014-67-A0114-0004 from the Office of
Naval Research.

597

[ [F
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [ 5
The Annals of Statistics. MIKOJAS

®

Www.jstor.org



598 P. J. BICKEL

three different classes of procedures from which good members can be selected
have been considered. The first is the class of (M) estimates (Huber’s [14]
nomenclature). These procedures are the solutions § of equations of the form

(1.3) LaP(X; — B =0.

(As is usual in asymptotic theory we shall speak of an “estimate” when we mean
a rule which produces a number for each possible sample x,, ---, x, and n = 1,
2, -.. and we are interested in the behavior of this rule for n large.) If fis
smooth and ¢ = —f’/f then the maximum likelihood estimate is an (M) estimate.
Obviously, not all maximum likelihood ¢stimates are members of (M) and there
are (M) estimates which are not maximum likelihood procedures for any f.
However, this class seems adequate for all practical purposes.

The asymptotic theory of these procedures has been considered from two
essentially different points of view, f known, and f unknown. If fis known, it
follows from the work of LeCam and others that under suitable regularity con-
ditions the appropriate (M) estimate is asymptotically normal, achieves the
information inequality lower bound, and is efficient in various senses. A good
review of the various notions of efficiency which apply may be found in Hajek
[10]. If f is unknown the optimal choice ¢ = —f’/f is not possible and the
general class (M) is of interest. Under successively milder regularity conditions
on ¢ and F, Huber showed in [13] and [14] that such § were consistent and
asymptotically normal with mean § and variance K(¢, F)/n where

o 2
(1.3 Kig, F) = D220 dFO
[§2< ¢'(r) dF(1)]

The second class of estimates considered in the location problem is that of
linear combinations of order statistics. If X, < --- < X,,, are the ordered
observations, these are estimates of the form
(1'4) lé = Z?=1 ZjX(j) .

If the measures A, assigning mass 2; to j/(n 4+ 1), 1 < j < n, tend suitably to
some probability measure A such that {j F~'(r) dA(r) = 0 and various other
regularity conditions are satisfied ([4], [8], [28], [29], [23]) then n*(5 — f) is
asymptotically normal with mean 0 and variance

1.5 VA, F) = § g3 (G D — D) a9 Ay .
¢ GO = g O

Aoy = _ LITE )
§=- /1Y) dF ()

If F is known then

yields an efficient estimate.

Of particular interest from the point of view of robustness are the a trimmed
means corresponding to A’(f) = 1/(1 — 2a), a < t £ 1 — a, = 0 otherwise and
the median corresponding to A placing point mass at 3.
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A third class of estimates (R) based on rank tests was proposed by Hodges
and Lehmann [12]. (The nomenclature (L) and (R) is due to Jaeckel [16].) It
has recently been remarked by Jaeckel [16] and van Eeden [39] that this class
too can be drawn on for efficient estimates when F is known.

The class (M) has been generalized by Relles [26], and Huber [15] in an
obvious way to the model we are dealing with. An (M) estimate B is now any
solution of the system of equations

(1.6) i (X — i B) =0, i=1..p.

Again if ¢ = — f’/f these are maximum likelihood estimates and if f is Gaussian
with mean 0 we obtain the least squares estimate B = XC'[CC']t. Under various
regularity conditions the above authors have shown that B is asymptotically
normal with mean B and variance K(¢, F)[CC’']"'. Thus relative efficiencies of
estimates are independent of the design matrix and all robustness results carry
over from the location problem.

Various generalizations of class (R) have been studied by Adichie [1], Jure¢kova
[18] and Koul [19] and the same property appeared. A simplification of Koul’s
approach closely related to our work has been proposed by Kraft and van Eeden
in [20] [21] and [22].

The procedures we introduce in Sections 2 and 3 generalize the class (L) as
follows. In the location model they coincide with the procedures defined by
(1.4). 1In general they are asymptotically normal with covariance matrices
V(A, F)[CC']™'. Our procedures share with the Kraft-van Eeden estimates and
a simplification of the (M) estimate discussed in [5] the advantage of simplicity.
They also share the disadvantage that they require a preliminary “reasonable”
estimate of B; this will be made precise in Sections 2 and 3. Monte Carlo calcu-
lations (see [5]) suggest that with a fairly robust starting point the price paid is
small. If the least squares estimate is used as a starter several iterations should
probably be performed.

The paper is organized as follows. In Section 2 we introduce the estimates
and state our theorems and regularity conditions for the case p = 1 (regression
through the origin) in which all technical difficulties already appear. The general
case is discussed more briefly in Section 3. Comments and questions are given
at the end of these sections. Finally Section 4 contains the proofs of the theo-
rems stated in Sections 2 and 3.

2. The estimates and their properties for p = 1. Write ¢; = ¢,;. Let{d;} 1 <
j < n be nonnegative constants, »;%_, d; > 0. Define,

2.1) Y,(t) = X; — c;t
and let
1
(2.2) 0.(s, 1) = 251 I[Yj(t)és] :

2314,
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If B* is an estimate of 8 then Q, (-, 8*) is the cdf of the measure which assigns
mass d,/>%_,d; to the residual Y,(8*). Measures of this type arise naturally.
For example, if p =1, all the c; are > 0 and d; = ¢, for all j then equation
(1.6) can be read §>_, ¢(s) dQ, (s, ﬂ) = 0. Define for o<w<l,

(2.3 Q,'(w,t) = inf {s: Q,(s, 1) = w}.

In the location problem (c; = d; = 1), Q,7'(jn', p*) are the ordered X, —
g*, .-+, X, — B* and B* 4 Q,7(jn', B*) is just X;,. Our theory is based on
the behavior of Q,~* for suitable choices of d;. Suppose first that all the c; are
of the same sign, > 7_, |c;| > 0. Let d; = |¢,| in (2.2). The “right” analogue of
X, turns out to be (cf. Propositions 4.1—4.3),

(2.4) gr+ Zinlid g (L ).

Z: 165
This naturally suggests that we define (L) estimates as follows. Let A be the
distribution function of a finite signed measure on (0, 1) such that A(l) = 1.
We say f is an (L) estimate of type 1 if,

(2.5) g=p + Zilsl 0w, p4) Aaw) .
a 1 a
What do these estimates look like? Let Y, < --.- < Y, be the ordered
Y,(8*). Define (D, ---, D,) by,

(2.6) Y, = YD,-(AB*) :
Let
@.7) W, = 0,(Yr 6%) = Z—'Tcl' -
Then, e
28 f=p*+ %’, 1'01' (D00 (X, — B¥e, JIA(W,) — A(W, )]} -

If A has a derivative 2 it is natural to replace A appropriately by the random
measure which has density proportional to A(W,) on the interval [W,_,, W,)
and define an (L) estimate of type 2 by,
(2.9) [é — ?=1 2( W,?')cDjXD

25=1 A(Wj)eh,

If all the c¢; are not of the same sign we can define (L) estimates as follows.
Let ¢;* = max (¢;, 0), ¢;~ = ¢;¥ — ¢;. Let Q,* be the Q, function formed with
d; = c¢;*, 1 < j < n. (Whenever we use the + notation we are giving two def-
initions in one—all the pluses go together as do all the minuses.) For A as above
we shall say § is an (L) estimate of type 1 if

(2.10) p=p+ ZI 2 L(BF=¢7) T [Q. 17 (w) Adw)
- (Zj=1 ¢;7) $o[Qu7T7(w) Aaw)] -
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In general, define W, * in terms of ¢;* as in (2.7). Then,

3 1

@11 f= o (D (K, — e A,

— AWE)(Z5a e — [AOET) — AW )5 e -

If A has a continuous derivative 1 define an (L) estimate of type 2 by
3o led, AW ) — 5,000 )Xo,
5= {led, FAW;*) + [ep, AW}

An interesting special case is obtained by taking 2,(f) = 1/(1 — 2a) if a <
t <1 — a and 0 otherwise where 0 < @ < 1/2. This gives “trimmed means,”
describable as follows. “Order the residuals and associate with Y, a “position
index” W,* where the choice of 4 or — depends on the sign of ¢, . (For
location W, = r/n.) Trim off all observations corresponding to residuals with
W,t < aor >1— a. Form the usual least squares estimate with the remain-
ing observations.” If we make the replacement

2.12) §=

Wt
e A(s) ds

for ¢, A(W,*) we obtain an interesting variation in which observations cor-
responding to residuals with Wr, < a < W,* are weighted by >7_,¢5, —
a 3 "_, c;£. This modification is significant for small sample sizes even in the
location problem. The type 1 estimates can be thought of as corrections to the
initial estimate 8* by a trimmed linear combination of residuals with weights
appropriate to the least squares estimate. An interesting special case of type 1
is the “median”. Determine m* by Wi. , < § < Wi.. The median M is given
by,

2.13) M=pt L —

. ([2%- 1 Xp, v — cDm+AB*)

— [Z5a 671X, - — €5, -]
Another solution (for general ¢;) and F symmetric about 0 was proposed by
J. W. Tukey (personal communication). Let,

(2.14) Y (1) = Y,(r)ysgne;,

1
(2.15) Q.55 1) = o, Lialeilliyposa -

F=lesl
Define (A4,, - - -, A4,) by
@.16) ISP 6
where Y§, < ... < Y}, are the ordered Y *.

(2.17) W .* — ZZ:I |CA,,.|

Xl

J
Define § of type 1’ and type 2’ by replacing Q,* by [Q,*]™ in the definition of
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type 1 (with ¢; > 0) and replacing (D,, - --, D,) by (4,, - -+, 4,) and (W, ...,
W,) by (W*, - -, W,*) in the definition of type 2.

We turn now to the statement of the asymptotic properties of these procedures.
We shall need the following conditions.

Define,
(2.18) b(n) = (N7, ¢t
G Suppose
@19 max {e;*: 1 < j < n} = o(L1. [¢,*F) -
(2.20) b(n) » oo . (By convention 0/0 = 0.)

F, The density f is uniformly continuous, positive, and bounded.
F, §=. 1] dF(t) < oo.

We are given a preliminary estimate S* (usually based on the same data)

satisfying,
B (i) B* is invariant, i.e.,

(2.21) BX(x ety oy X, ) = BR(xy, -, x,) 2
(ii) B* is b(n) consistent, i.e.,

(2.22) B = 0, (b7Y(n)) .

(The subscript 8 here and in the future indicates calculation is carried out
when g is true.) Note that the usual least squares estimate satisfies B if Var
(X)) < o and G holds.

THEOREM 2.1. Suppose that B, G, and F, hold and 0 < a < 3. If either,

I. Bisatype | estimate corresponding to A concentrating on [a, 1 — a] such
that \3 F~'(w) A(dw) = 0, or

II. B isa type 2 estimate corresponding to 1 satisfying a first order Lipschitz con-
dition on [a, 1 — a] such that the measure A with density A satisfies the conditions
of 1, then,

(2.23) Lyb(n)(B — B) — 1(0, V(A, F)).
(7(, 0”) is the normal distribution with mean y and variance %)

THEOREM 2.2. If the conditions of Theorem 2.1 hold appropriately and F is in
addition symmetric about O then (2.23) holds for type 1’ and 2' estimates as well.

REMARKs. (1) If F is symmetric about 0 and A is symmetric about { then
s F7(w) A(dw) = 0.

(2) The analogues of the median, trimmed and Winsorized means, systematic
statistics, etc. all come under the provisions of these theorems. For example M,
given by (2.13), is asymptotically normal with mean 3 and variance 1/4f*(0)b*(n)
if F is symmetric about 0.

(3) Theorems 2.1—2.2 continue to hold if we permit A or 2 defining the
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estimates to depend on n or even on the data. For instance, suppose that § is a
type 1 or 1’ estimate defined by A, where the A, concentrate on [a, | — a]and
there is a meaure A on [a, | — «a] such that

(i) §4 A,(s)ds — \! A(s) ds in probability for each 1.
(ii) The total variations of the A, are bounded in probability.

(iii) {1 F-i(w)A,(dw) = 0.

Then, (2.23) holds provided the appropriate conditions of Theorems 2.1—2.2
hold. This remark becomes important when we want to use the trimmed mean
in an adaptive way. If one follows the prescription of Tukey-McLaughlin [30]
and Jaeckel [16], « is to be chosen optimally on the basis of the sample.

The theorems we have just stated deal adequately with trimmed and Win-
sorized means, percentiles, etc. However, there are estimates which may be
reasonable placing some slight mass on all the order statistics. For example,
the efficient estimate corresponding to F(s) = 1/(1 4 e~*), the logistic distribu-
tion, has,

(2.24) Aw) = 6w(l — w), o<w< 1.

The conditions for our theorems dealing with such situations are awkward
and much too stringent. The methods and conditions are variations and com-
binations of those appearing in [18], [19] and [25].

For simplicity we restrict to estimates of all types generated by a fixed A, with
derivative 2. We impose the condition,

P The derivative 4 has a bounded derivative 2’ on [0, 1].

THEOREM 2.3. Suppose that conditions F,, F,, B and G hold. Suppose that ﬁ
corresponds to A satisfying (P). If, in addition, \{ F~'(1)A(t)dt = 0, V(A, F) < oo,
and either,

(i) Bisoftypel or2, or

(ii) F is symmetric about 0, and B is of type 1’ or 2', then (2.23) holds.

Comments on the section.

(1) We have stated the theorems to reflect our primary interest in the case
F unknown but symmetric about 0. In general, the asymptotic bias of a type
1or2fis,

(Z3=1¢9) g1 F-3w)A(aw

i A )
and f§ suitably centered has the limiting normal distribution of (2.23). Note
that the bias vanishes if 3}%_, ¢; = 0. This corresponds to the fact that we can
efficiently estimate the slope of a regression line even if the errors are asymmetric
if the design is symmetric. The behavior of type 1’ and 2’ estimates is more
complicated. Rather than giving general formulas we note that if 3}7_, ¢, = 0,
1 [e;tP = Xt le; 7} and A is symmetric about § then type 1’ and 2’ esti-
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mates are also asymptotically normal with mean 8 and variance V/b*(n) where
(2.25) V(A, F) = §i§iK(s, t, F) dA(s) dA(r)

and
K(s, t, F) = [min (s, t) — %(F(F‘l(s))F(F‘l(t))

+ F(F-(s)) F(F-(1))1/4()4(1)
Fx)=1-F(-x), F=§F+F, g§=fF

and f= F'. There seems no clear cut choice between type 1 and type 1’ esti-
mates. For example, the ratio of the asymptotic variance of the type 1 to the
type 1’ median is f*(0)/f*(F~(4)) which ranges from 0 to oo as F ranges over
asymmetric distributions.

(2) It seems natural to ask what happens if we iterate the procedure of form-
ing an (L) estimate. Is there a fixed point under a trimming, for example, and
does it behave properly for n large? For p = 1 the answer can be shown to be
yes at least for type 1 and 1’ estimates if A is a probability measure. This
follows from the fact that [Q,*]*(w, ) are continuous and monotone in t. Two
special cases are of interest. If A(f) = 1 the least squares estimate is the fixed
point and is reached after one iteration. The fixed point type 1’ median is the
left-hand endpoint of the interval of medians of the distribution which assigns
mass proportional to |c;| to X;/c;, 1 < j < n. (This procedure, the (M) estimate
for the double exponential, was suggested to me by J. W. Tukey.)

(3) These techniques can be applied to nonlinear functions of Q,~* processes.
For example, the natural estimate of the unknown factor in the variance of the
“a trimmed mean” is a “Winsorized variance.” In our case this is

(l_l—za)a (5 10,7 (v, BT dw + af[Q, (@, 64T

+[2.7 (1 — a, 9T}
where Q, is the empirical cdf of the residuals. It follows readily by our methods
that s*(a) — V(A,, F) uniformly for 0 < @, < a < a, < 1 where A, is the uni-
form distribution on [a, 1 — a]. Thus, the results of [16] carry over to the
linear model.

and

sz(a) =

3. The general case. In analogy to the case p = 1 define

(3.1) Yi(t) = X; — 2l
fort = (t, - - -, t,) and, for d; as in Section 2,
1
(3'2) Q'n(s’ t) = — Z;=1 dJ'I[Yj(t)és] .

n
i=1 di

Ifd; = ¢;; 2 0,1 < j < n, weshall denote Q, by Q,;. If we define c; naturally
and d; = ¢, 1 < j < n, we shall denote Q, by Q;;. Finally we define,

(3.3) Yi(t) = Y(t)sgnc,;,
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and

1
(3.4) Qn(s, ) = o—— Lia l€ii Tiv} s 500 -
F-1 16l
Inverses are defined and denoted as before. For general p we state B and G as
follows.

cc

G (3.5) — A4
b(n)
where A is positive definite and b(n) — oco.
(3.6) max {ct: 1 £j < n} = o((B3=a[cE5P)Y) -

A fortiori, max {|c;;|: 1 £ i< p, | <j < n} = o0(b(n)).
We are given a preliminary estimate 8* such that,
B (3.7) B*(x + tC) = B*(x) + t
for any x, t.
B* = 0, (b7 (n)) .
Again the least squares estimate satisfies B if G holds and E(X/’) < . We

now define the estimates. Given A as in Section 2 B is of type 1 if f = B — B*
satisfies

(3.8)  [Z3a el L% (w, B4)A(dW) + [ X5 655)
X $5[Qm]7'(w, BY)A(dw) = Zioi Bu(Z5-1 €5 i) » l<sisp.
Equivalently, if
(3.9) Lt = (25- ¢5] B QA (W, BOA@w), -+, [Dhar
X §310%,17(w, B*)A(dw))
then,
(3.10) B =p*+ Lt —L)CcCTt.
Type 1’ is defined more simply by replacing L* — L~ in (3.10) by the vector
whose ith component is [ Y]%_; |¢;;]] §5 [Q%]7' (W) A(dw).
To define type 2 we introduce,
3.11) W = DS,
n_y L

where (D, - - -, D,) are defined as in Section 2 with the Y;(8*) playing the role
of Y,(8*). Then B is the type 2 estimate for 2 as in Section 2 if B satisfies

(3'12) ";=l [C'?-Djz( - 1D]2( J)]
= Zk 1 IBk Z] lckD,[c'tDJ'z( ) 'D,]( Wl_J)] .
To define type 2’ we need to introduce (D}, - - -, D},) given by,
(3.13) Yfp:,(ﬁ*) =Y,
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where Y},) < ... < Y}, are the order statistics of Y% (8*), 1 <j < n. Then,
if

1
Gl
the estimate B of type 2’ corresponding to 4 is defined to be the solution of,
(3.15) 215=1 Xp};Cin}; AWE) = 2w ﬁk(Z’}ﬂ C‘iD:jckD:;jz( w5 -

(The solution is well defined for n sufficiently large.)
We shall prove,

(3.14) Wi = Sicilein, |

THEOREM 3.1. The assertion,
(3.16) 3 ((m)(B — B) — 7(0, V(A, F)4™)
holds for appropriately defined B of types 1 and 2 under the conditions of Theorems
2.1,2.2 and 2.3. If we add the requirement that A is symmetric about % it holds

for types 1" and 2’ estimates under the conditions of Theorems 2.2. and 2.3. In all
cases G refers to the condition of Section 3.

REMARKs. (1) The type 1’ and 2’ estimates require p orderings of the Y*(8*)
rather than the single ordering of types 1 and 2.

(2) It is possible to drop the requirement of a rate b(n) but statements become
unduly complicated.

(3) It is easy to see that the bias of type 1 and 2 estimates is,

(§s F'(w)A(dw))A, [CC'T? where
A, = (Z5ar6 o5 i) -
Again if }%_ ¢;; = 0 for all i then (3.16) holds even if {; F~*(w)A(dw) = 0.
More significantly if, as usual, ¢;; = 1, 1 < j < n, 217_,¢c;; = 0fori > 1, then
the estimates (f,, ---, §,) are asymptotically unbiased and have the right
covariance structure. The problem of bias for types 1’ and 2’ is complicated
and not of great interest.

(4) Whether fixed points in the sense of comment (2) of the previous section
exist in general is not known to me. However, the (M) estimate for the double
exponential is the “median” fixed point.

(5) A disadvantage of these procedures is that they are not invariant under a
reparametrization of the vector space ¥ spanned by the rows of C. If the rows
of a matrix M form another basis of V' we may define new parameters (y, - - -,
7,) = 7 related to 8 by yM = BC. If we now apply our theory to the model
X = M + E it would appear that the estimates # do not in general satisfy,

(3.17) #M = BC.

I do not know whether (L) estimates having this property (in general) can be
defined. (M) estimates and Koul’s (R) estimates do have this property.

4. Proofs. We begin with the theorems of Section 2.
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Let the constants d; defining the Q, of Sections 2 and 3 depend on n in such
a way that they satisfy the following assumption.
D Let r(n) = (X3, d;*)!. We require that

4.1) max {d;: 1 < j < n} = o(r(n))
(4.2) r(n) = O(b(n)) .
For convenience, define 0, = }7.,d;, 7, = X%, ¢,d;, 1, = 2%, |cd,|.

Theorems 2.1 and 2.2 are based on the following propositions which are of
independent interest. For simplicity we state them for p = 1. Because of
invariance considerations we can and ‘shall make all calculations under the
assumption 8 = 0.

PROPOSITION 4.1. Suppose that G, D, and F, hold. Then for every M < co,
0<a<

(4.3)  sup {g,, [(Q,,‘l(w, 1) — F(w)) + (Qn(F“(;()V;)O) — W)]

+ |1 < Mjp(n)a S w < 1 — a} = 0,((n),

where q(w)y = f(F(w)).
PROPOSITION 4.2. If B* satisfies B and G, D, and F, hold then,

(4.4) sup {

Bea + o] (@700, 5) = Fi(w)

_ (w—0Q,(F'(w), 0)
q(w)

The next proposition is essentially contained in [19].

]’:a§w§1—0}=op(r(”))-

ProposiTION 4.3. If D and F, hold, 0 < a < %, and,

(4.5) Z,(w) = 0, (W — Q.(F'(w), 0)) ,

r(n) q(w)
then the processes {Z,(+)} converge weakly in the Skorokhod topology on D[a, 1 — a]
to a Gaussian process Z with mean O and covariance structure,
(1 — w)
q(v)q(w)
This is the Brownian bridge divided by q(cf. [4] for instance).

(4.6) Cov (Z(v), Z(w)) = ifv<w.

|
ProoFr of ProposITION 4.3. This is a straightforward weak convergence result
and holds under the sole assumption that F is continuous. It may be argued as
in [19] page 1968 or [6] page 106.

PROOF OF PROPOSITION 4.1. We begin by stating a lemma proved in [9]. (The
conditions stated in [19] are not quite correct but it is evident that G, D and F,
suffice.) A similar argument is given in some detail for Theorem 2.3.
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Lemma 4.1. If G, D and F, hold then,

(4.7) 7, SUp {|Q,(5, 1) — F,(5, 1) — Qu(5, 0) + F(s)|: |s| < o0,
|t = Mjr(m)} = o,(r(m)) ,

where,
(4.8) F.(s,0) = E(Q,(s, 1)) = 0,7 215..d,; F(s + ¢;1).
To complete the proof of the proposition begin by noting that by D,
(4.9) .‘(L) > r(n)jmax {d;: 1 <j < n}— .
r(n

Therefore by Lemma 4.1 and Proposition 4.3,

(4.10)  sup{[Qu(s, 1) — Fo(s, )]t |s] < oo, [f] = M[b(n)} = o,(1) .
By F,, D, and (4.9),

(@11)  sup{|F.(s, 1) — F(s)| 2 |s] < oo, [1] < M]b(m)}

=0<#¢(»n)>=o<f:(f'i)>=o(1).

n

Since

(4.12) 104(Q,7 (W, 1), 1) — w] = s — o ("))
g

g

n n

(4.13) sup{|Q,7'(w, 1) — F!W)|:a<w <1 —a,|t| £ M/b(n)} -, 0
for0 < @ < §.
Now, arguing as in [25],

(@, 7w, 1) — F7Y(w))

(4.14) = (Q,7'(w, ) — F”—l(.w, 1) + (F, 7w, 1) — F-Y(w))
—1 . ) .
= Row, ) {(Q(Q,7(W, 1), 1) — F(Q,7(W, 1), 1))

+ (v — Qu(Q, 7w, O} + (F7(w, 1) — F7' (W)

where F,7'(., 1) is the inverse of F,(, 7) and

(4.15) R,(w, 1) = @7, 0, 1) = Fy(F, (W, 1), 1)
m 0,7 (w, 1) — F,7(w, 1)
Note that,
(4.16) aFa(_x’) s f(x)
X

uniformly in |¢| < M/b(n) and x bounded. In view of (4.13),

(4.17) sup {|R,(w, 1) — fIF'(W))|: 1| = M[b(n),
a<w<l—a}—,0.
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Consider F,~}(w, ). Since,

19 = R e

it is easy to show that,

(4.19) 0, P00 - o to(r)

uniformly in @ < w < 1 — a, |f| £ M/b(n). Therefore,

(4.20) ou(F, 7w, 1) — F7H(w) + 17,) = 0(7,/b(n)) = o(r(n))

uniformly ina < w < 1 — a, [f| £ M/b(n).
By (4.13), Lemma 4.1 and Proposition 4.3

sup {¢,[Q,.(Q,'(W, 1), t) — F,(Q,'(w, 1), 1)
(4.21) — Qu(F7'W), 0) - wli:a = w <1 — a, |t| £ M/b(n)}
= 0,(r(m)) -
By applying (4.12), (4.16), (4.20) and (4.21) to (4.14) the proposition follows.

PROOF OF PROPOSITION 4.2. This follows immediately from Proposition 4.1
in view of property B.

Proor oF THEOREM 2.1. If, using G, we apply Proposition 4.2 to Q,+ and
Q.7 (d; = ¢;*) we get,

FH (L5 [e®]D) £ (T35 ¢%) T Q. 17 (w, B*)A(dw)
— n k= 1 -1 1-«a (w - Qni(w)’ 0))
(4.22) = (B3 ) PN + 3o 0= 2010 pn |
+ 0,(b(n)) -
Adding the two equations of (4.22) and dividing by b*(n) we get,

@2 =] Bt |gpe = QI O) pa) 4 0,571,

The first part of the theorem now follows from Proposition 4.2. To prove the
second part begin by writing,

B = B* + (Do c;) §ELQ. T (ws B¥) dA,H(w)
(4.24) — (D71 ¢;7) Q.17 (W) dA, (W)}
X (D3 lles FAW;*) — [eg AW, )]

where A, * is the random measure with density 2,* given by,

(4.25) AEw) = (W% on (Wi, W], l<j<n.
Now,
(4.26) SUP,sisms (1) — 2,5(1) < M" max _ "

n CAi

j=1%"3
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where (I — a) is the largest W,;* < 1 — a, and M"” is the Lipschitz constant for
A. Therefore in light of Propositions 4.2 and 4.3 it is easy to see that,

(4.27) ZZ—C 158 Q.17 (w, 8*) — F(w))d(A, — A)| = o,(1/b(n))

2
i=1€;

and
(4.28) L=t E7 |3 Fow) dA ()] = o,(1/b(n)) -
i=1€j
(The Lipschitz condition (rather than just continuity) is needed for (4.28) only.)
Finally, note that,

(4.29) W = Q%Y B%) .

Therefore,

(4.30) sup, [A(W;*) — A(F(Y ;)| = o,(1) .

Hence,

(4.31) T {led, PAW, %) + [ep,PAW,; )} = Lo eb A(F(Xp)) + 0,(b(n))

= 3 A(?) dt + o,(b*(n)) .
Theorem 2.1 follows since (4.27), (4.28), and (4.31) show that the type 1 and
type 2 estimates are equivalent.

Proof oF THEOREM 2.2. This result follows if we apply our preceding results
to the new model,
(4.32) Xj* = (sgney)X; = le;|p + E;sgne; .

Of course if F is symmetric about 0 the E,;sgnc;, 1 <j < n, have the same
distribution as the £;, 1 < j < n and the type 1’, 2’ estimates are seen to be
type 1 and type 2 estimates based on the X *.

Remark (3) following Theorem 2.2 can easily be established with the use of
a stochastic version of the theorem on page 120 in [27].

PROOF OF THEOREM 2.3. We begin with an elementary lemma which we state
without proof.

LEMMA 4.2. Let G and H be the distribution functions of probability measures,
with G concentrating on [0, 1]. If Z has distribution function G(+) then H-\(Z) has
distribution function G(H(+)).

Write,

T.(0) = §5[Q,'(w, 1) — F,~(w, )]A(w) dw
(4.33) = §3[Q,7'(w, 1) — F,"(w, 1)]A(dw)
= §22 2{A(Q,(dz, 1)) — A(F,(dz, 1))}
by Lemma 4.2. Integrating by parts we obtain,
(4.34) T, (t) = §2 [A(F (2, 1)) — A(Q,(2, 1)) dz .
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LeMMA 4.3. If A satisfies (P) and conditions G, D, F, and F, hold then,
(4.35) (T(1/b(n)) — T,(0)) = o,(r(n))
for each fixed t.

Proor. By (4.34) and (P),

49 )= g e )
(o)

where

(4.37) IR, = M”52 (0, (2, _5(”'_)) - £ (2 _g(f,)» dz

and M" is the upper bound on |4’|. Now,

E°< - <Q” <Z’ b(tn)> — (Z’ ﬁ))z dz)

(4.38) = §=. E0<Q,, (z, ﬁ) _F, (z, 3(%»2 dz
B (g:tzjf ST”F<Z - b(tn) cj><1 B F<z + b(tn) c")) e
< [E0(1X1|) + ’“;t:)lcjl]%z_) _

Therefore, in view of G, D, F, and (4.9),

(4.39) b‘(’;) W(R,)) > 0.

Now, let A™(z) = {7 A(F,(s, t/b(n)) ds, A®(z) = {2 A(F(s)) ds. (The finiteness
of A, n = 0, follows from (P) and F,.)

(4.40)  §=.2 <F,, <s, b_(”S»(Q <s, ﬁ) —F, <s, 7)(’7)» ds
- ) m(n (- )]

In view of (4.39) a simple L, calculation shows that the lemma follows pro-
vided that,

4.41 E,(A™ (X. — % ) _ Aoxy)) —o.
( ) max; 0( J b(n)> ( J)> g
Now

t
(4.42) A™(z) = S}«"nu,z/b(m)z(w) dF, <W, b(n)>

= 21 (Fu (2 505)) = Shamanmn P (s ) K0



612 P. J. BICKEL

It is easy to see that,

4.43)  |A™() — AO@)| < M §=_|F, (s, b(’n )) — F(s)| ds
< M max, §=.. F(s n b’(ﬁ:)) _ F(s)|ds .

Assertion (4.41) and the lemma now follow by the dominated convergence
theorem and an application of the theorem on page 64 of [11] to the integral
on the right-hand side of (4.43).

LemMA 4.4. If A satisfies (P), and G, D, F, and F, hold then,

T (565) T.0)|: 1 = M} = o,(r(m)

Proor. Without loss of generality suppose A is 1. Let —M=¢=<<"---<
tys = M be a d partition of [— M, M]. If t, < 1 < t,,, then

T. (Z{E) - T"(béf;))’

= 1% {A (Q" (s’ b(tn) )) -4 (Q" (S’ b?;z) ))
(4.43) +A (F” (s’ b(tn) )) —A <F” (s’ bé;) >>} ds
wse (e (s 5i) = & (5 5)

+ F, <s, t"“) —F, (s, e )} ds}
b(n) b(n)
where M’ is an upper bound on |4|. But the right-hand side of (4.45) equals

2M'" ¢, /o, b(n) = o(r(n)/o,).
Therefore,

(4.46)  lim,_, lim sup, P, [max {r‘(’;) |T,(1/b(n)) — Ta(1;/b()]

(4.44) o, sup {

IA

<1< tj+1,0§j§N(5)} ;ejzo,
for every ¢ > 0. The lemma follows from (4.46) and Lemma 4.3.
Finally we have,

LemMa 4.5. If (P), (G), D, F, and F, hold then,

sup {‘[Sé[Qn‘l (w, b(’n)> _ F—‘(w):l A(dw)

(4.47) 4§20 A(FE))(Q.(s5 0) — F(5)) ds] P
= op(r (n)) .

:|t|§M}
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In view of Lemma 4.3 and (4.36) we need only check that

4.48) o, {;3 [F,;l (w, b(’ﬂ)) — F*l(w)} A(dw)} — 1z, + o,(r(n)) -

But the second factor on the left of (4.48) equals,
o t
4.49)  —§=. [A <Fn <s, o )) — A(F(s)):l ds
= = 2514 §% AFEF(s + ¢5t/b(m) — F(s))ds | g

g

n

where R,’ is bounded in absolute value by,

M 2 coo et 2

(4.50) o T d % <F<s + b(ﬂ)) F(s)> ds .
Now,

(4.51) lim,_, §=. |7+ ”})1 —F) _ pslas=o,

and since f is bounded

(4.52) lim,_o §=.. (F(s + ’2 - F(s)>2 ds = §.. f(s)ds < oo .

Applying (4.51) and (4.52) to (4.49) and (4.50) it is easy to see that,

4.53) o, z(F(s))(F(s n ;(i)) _ F(s)) ds — 1,

= 1 e { g2 2 FOH GO = F6) _ g Tas)

c;t
= ° ( b(r;; )
= o (r(n)),

and that,

Ry = o (7).
g}
Lemma 4.5 follows. .
The validity of Theorem 2.3 for § of type 1 or 1’ follows readily from Lemma
4.5. To prove the result for estimates of type 2 and 2’ we need only show that

they are equivalent to the type 1 estimates. This will follow from

(4:58) s S0, 0w B 4 1,00 BIAW) = 20w —p O

where as in (4.25),

(4.55)  A(w) = HQ.(Y;), B¥)  on [Q (Y B%), Qul(Yisy B)] s
1 éjén,(y(o)-: —oo)
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By construction,

(4.56) 2,w) — A(w)] < 2% s

aﬂ
By D (4.54) will follow if, §5(|Q,~Y(w, 8*)| + |F,~(w, 8*)|) dw are bounded in
probability. But,

(4.57) 0310, (w, f¥)| dw = L X1, d, |X, — ¢, B¥]

n

< $81Q.7(w, O)f dw + T ).

Therefore §; |Q,~'(w, 8*)| dw is bounded in probability. A similar argument dis-
poses of {3 |F,~*(w, 8*)| dw and (4.54) and Theorem 2.3 follow.

REMARK. Even for location this elementary technique yields Moore’s [24]
result under slightly weaker conditions than the ones he assumed.

Proor oF THEOREM 3.1. The basic step in proving this result is a generali-
zation of Theorem 2.1. Write,
(4.58) Ous,t) = 1

n_.d

i=1%j

21514 Iy ;501
where the d; satisfy D.
LemMA 4.6. If G and F, hold then for every M < o0, 0 < a < 4,

@59 swp {[ @wt) = From) + @ _1(%;;,) =M,

n . M
+ Dkt Do Ciidg) It §F(;S’a§w§ 1 *“0(}

= 0,(r(m)) -
The proof of this lemma is essentially the same as that of Proposition 4.1 and
will not be given. Upon substituting d; = ci;, we readily obtain parts I and II
of Theorem 3.1 for type 1 estimates.
Showing the equivalence of type 1 and type 2 estimates for these parts is also
straightforward. For example, if all }he c;; are = 0 then,

(4.60) (X5 cM{§a[Qai(w, B*) — FH WA — A,i)(@w)} = 0,(b(n))
where A,; has density 4,; with
(4.61) (W) = A(Wy;) for W,y <w= W, l<j<n.

1

Now, the type 2 estimate in this case satisfies

(4.62) Zz—z;;;—f §6 Ql (w, B*)A,;(aw)
1
b¥(n)

= TabmBe — B (G T onyun, AWi))
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It is easy to show that,

1
(4.63) b2( ) J =1 1D]cka2(WJ)_’ a
the ijth element of A4, and
(4.64) ( Zg( 1)0”) §3 F{(w)A,;(dw) —, 0

Therefore equations (3.15) are soluble for n large and the solutions are equivalent
to order 1/b(n) to the appropriate type 1 estimates given by (3.10).

To obtain the results of the theorem for type 1’ estimates apply Lemma 4.6 to
each row separately using as observations in the ith row, X} = [sgn c,;]X;, and
putting d;, = ]c We then get,

-

Sy LS 021700, 89 = (0] A@)

 (QA(F(0),0) — W) 4 0
(4.65) s P A(d )] " le

+ i B D1 Chj c«;j] —50.

i4]

Now, by the symmetry of A and F,

@.66) 53 Q). 0) = %) gy e ]

q(w)
= (S (F7'(w),0) — w 3151 ¢45) A(dw)
q(w)
where
(4.67) S,i(s, B*) = D¢y iy s -

The rest of the argument for the 1’ and 2’ estimates is essentially a recapitulation
of that for Theorems 2.1 and 2.2. Note that the symmetry of A is not required
for p = 1 but becomes necessary to preserve the right covariances between rows
of the random matrix defining the “primed” estimates. The proofs of the ana-
logue of Theorem 2.3 employ a suitable analogue of Lemma 4.5. The arguments
are straightforward and we leave them to the reader.
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