The Annals of Statistics
1973, Vol. 1, No. 2, 373-379

STATISTICAL INFERENCE IN BERNOULLI TRIALS
WITH DEPENDENCE!

By JErROME KLOTZ
University of Wisconsin at Madison

A model for Bernoulli trials with Markov dependence is developed
which possesses the usual frequency parameter p = P[X; = 1] and an addi-
tional dependence parameter 2 = P[X; = 1 | X;—; = 1]. Sufficient statistics
for the model with p and 2 unknown are found and an exact closed form
expression for their small sample joint distribution is given. Large sample
distribution theory is also given and small sample variances compared with
large sample approximations. Easily computed estimators of p and 2 are
recommended and shown to be asymptotically efficient. With p unknown
the u.m.p. unbiased test of independence is noted to be the run test. An
application to a rainfall example is given.

1. Summary. A model for Bernoulli trials with Markov dependence is de-
veloped which possesses the usual frequency parameter p and an additional de-
pendence parameter 4. Small and large sample distribution theory for the sufficient
statistics of the model is presented. Easily computed estimators of p and 2 are
recommended and shown to be asymptotically efficient. Lastly, with p unknown,
the u.m.p. unbiased test of independence is noted to be the run test.

2. Introduction and model. Consider a sequence of random variables X,, X,, - - -,
X, which each take on the values 1 and 0 as in the Bernoulli model. We consider
the following generalization with Markov dependence between successive obser-
vations and

(2.1 PlX;,=11=1—-P[X;=0]=p, i=1,2,...,n,
(2.2) PIX,=1|X,_,=1]=12, i=2,3...,n.
From (2.1) and (2.2) it follows that

(2.3) PlX,=0|X,.,=1]=1-=2

(2.4) PIX; = 11X, = 0] = (1 — dp/q

(2.5) PIX, = 0[X,_, = 0] = (1 — 2p + Ap)/q

using p = P[X; =1, X;_, =114+ P[X, ='1,X,_, = 0]. Wehave0 < p < land
max (0, (2p — 1)/p) < 2 < 1so that the transition probabilities are between zero
and one. When 2 = p the model reduces to independent Bernoulli trials, when
4 > p clustering will occur among the ones and among the zeros, and when 1 < p
a lack of clustering is present.
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Using (2.1) thru (2.5) and the Markov assumption, the joint distribution can
be written

PIX,=x, X, =X, -+, X, = x,]
= P[X; = x,]P[X, = J‘C2|X1 =x] - PlX, = x,| X,y = X,4]
(2.6) = prgn T (1l — 2501 — 2)plgli=io
X [(1 = 2p + ap)JqJo-revi=ss
= A7(1 — A=Y (1 — 2p 4 Apyr-i-Btarpi=rg-n=i=s+t

= Cp, 07y
where
Coo = (1 =2p + 4p)"~jq""
(2.7) m=A1—=2p+ p)[(p(1 — 4)")
7, = (1 — Aypg/(1 — 2p + 2p)*
75 = (1 = 2p + 2p)/(q(1 — 4))

and r = Y%, X, X, S = >0, X, I = x, + X,. As a check when 1 = p, (2.6)
reduces to p*q"~* for the Bernoulli model.

3. Distribution of the sufficient statistics. From (2.6) using the factorization
theorem, R = Y, X, ,X;,, S= 22, X,;, and T = X, + X, are sufficient for
6 = (4, p). In (2.6) we see that the joint probability is constant for fixed values
(r, s, 1) of (R, S, T) so the joint distribution can be obtained by counting the
number of sequences (x;, X,, - - -, X,) of zeros and ones that give (r, s, 7). In earlier
applications of the model in which p was assumed known [6], [8] this number
was found to be (3)(*;")(:Z:Zi) so that

(3.1 PR =r, 8 =s5,T = 1] = O(7)CZ2)Cram 15’

with the convention (-!) = 1 adopted for the case s = n and C,, and 7, given by
(2.7). A combinatorial argument relating the number of zero runs (W) between
the first and last ones in the sequence (x, X, - - -, X,) was used to prove (3.1) in [8]
(R=S—1—W).

If we write X = (R — (n — 1)A4p)/nt, y = (s — np)/nt then the limiting joint
distribution of (X, Y) and T can be shown to be a bivariate normal N((0, 0), X)
and an independent binomial B(2, p) with the asymptotic variance covariance
matrix

(3.2) z= <l” (I —p) + 22pg'[(1 — 2)) 22%pg} (1 — 2) >
| 2pg(1 — ) paCl = 2p + D)1 — )

This result follows from (3.1) using Stirling’s approximation and a log expansion
when taking the limit as n becomes large.

4. Asymptotic estimation theory. The model (2.6) is a particular case of the
general Markov models discussed by Billingsley [2] and the general theory de-
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veloped there can be applied. In the notation of [2], we have
Sy x5 0) = Zimami(1 — A)mt=so(1 — Apfg]o=ri-vss
X [(1 = 2p + 2p)q]o-mivo=so.
If we call & = (1, p) a root in the region® = {(4,p): 0 < p < 1, max (0, (2p —
1)/p) < 2 < 1} that simultaneously satisfies the two partial derivative likelihood
equations, it follows from Theorem (2.2) of [2] when (2, p) is in the interior of

© that n(1 — 1, p — p) hasa limiting bivariate normal distribution N((0, 0), A)
with variance covariance matrix

_ (A1 —=2/p g4
@D A= < g2 pg(l —2p 4+ /(1 — 1)>

obtained by inverting the information matrix. The derivative likelihood equation
derived from the partial derivatives of (2.6) are

(4.2a) L_(Z(S—I‘)—t)_'_(n_1_23+t+r)],:0

4 12 (1 —2p+ 2p)
490 s—r (n—2—542)  (n—1—-25414+n@A@—2)_,
o " 1 i (1 —2p+ 4p)

It is apparent from (4.2) that closed form expressions are difficult to obtain and
unrewarding although numerical solutions can be computed. However, from
(3.2) we note that the asymptotic variance of X = S/n is the same as that of p
given in (4.1). When p is known, the maximum likelihood estimator A(p) can
be shown [8] to be the positive radical root of the quadratic equation derived
from (4.2a),

@3 A(p) = r9@s=D+(p]+([r—g(2s— )+ (mpP+4r(1—2p)(mp)?
2(m)p

where m = n — 1. Because of the simplicity of computation, the estimators

6 = (A(X), X) are recommended in view of the following.

THEOREM. The estimators 6 and 6 are asymptotically equivalent and asymptotically
efficient for @ in an open subset of ©.

Proor. For our simple Markov model, regularity conditions can be verified
and, in particular, Theorem 1 of Roussas [11], page 254 gives local asymptotic
normality as required in Assumption (3.1) of Hajek [5]. Asa consequence,
Theorem 4.2 of [5] is valid and Conditions (4.15) and (4.16) of this theorem hold
for both estimates pand X. Thus p — lim n#(p — X) = 0 and we have asymptotic
equivalence. To show large sample equivalence of 4 and 1 = A(X) where 1))
is given by (4.3) we note from (4.1) that R/(n — 1) —,4p, X —, pand T/n — 0.
Substituting X for p in (4.3) and using Slutsky’s theorem we have 1 = A(X) —, 4
as n becomes large. Next, denote the log of (2.6) by L(€) = L(4, p) and the
partial derivatives by g,(4, p) = 0L/d4,g,, = 0°L[(04)*, g,, = °L/04 dp. Expand-
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ing g,(1, X)/n* about (4, p), we have

4.4 9:(4, X)[nt = (g,(4, p)[nt) + n¥(X — P)g;,(2*, p*)/n
+ n}(2 — g (2%, p*)/n

where (1%, p*) is between (1, X) and (4, p). The left side of (4.4) and the first
term on the right are zero since 4 = 4(X)and {are both solutions to the derivative
equation (4.2a). Since (4, §), (4, X) are consistent so is (2%, p*). It follows that
—92,(A%, p¥)n =, 11 —922(2%, p*)/n —, 71, the corresponding terms of the in-
formation matrix

p(1 —2p 42 1
.5) r_ A —=21—2p+ ) L=2p+ap | _\on
—1 1— 2
1 —2p+ 4p pq(1 — 2p + 4p)

Using n#(p — X) —, 0 we conclude from (4.4) that n}(1 — 4) —, 0. Asymptotic
efficiency of (4, X) follows from that of (4, p) and the equivalence.

5. Small sample variance comparisons. If we write out the transition probability
matrix using (2.2) thru (2.5) we have

(5.1) pP— ((1 —2p+4p)g (- 2)1?/61) .
1 —2 A
We can diagonalize P using its right and left eigen vectors and its eigen values
1 1 0

5.2 P :( P ( (61 P
(>-2) 1 —q) 0 (l—p)/q) 1 —l>
and so

1 1 0
5.3 | S I q9 Py,
(3-3) <1 —q> <0 [(2 —p)/q]"> <1 _1>

Using this kth step transition probability matrix we compute
(54) COV( +k) = EX. Xz+k P2 = P[Xz = 1, Xi+k = 1] — PZ
= p(p + 49l — p)[9]") — P* = pql(2 — p)q]*

and, after some algebra,

oo 2= D)y _ G =p) oyl
(5.5) VarS_npq+ﬁ[(n 1) — 12 (I —1¢ p)/q])]-

Similar computations give Cov (X, X,,,, X, X,,,) = A*pq[(4 — p)/q]~* " and
(5.6) Var R = (n — 1)Ap(1 — 4p)

24%pq* o . . n—t
e [ R O LTINS

Both (5.5) and (5.6) give the corresponding entries in (3.2) when n becomes large.
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The distribution of T is given by

PIT = 0] = ¢* + pql(2 — p)/q]"
(.7) PIT = 1] = 2pq — 2pq[(2 — p)/q]"

PIT = 2] = p* + pql(2 — p)/q]"
which approaches the binomial B(2, p) when n is large.

6. Testing the hypothesis of independence. For the hypothesis H: 2 = p, cor-
responding to independent trials, we have a complete sufficient statistic for the
unknown parameter p given by $ = X; + X, + ... 4+ X,. Thus unbiased tests
are similar with Neyman structure and are conditional tests with conditional
level a given S ([9] page 130). For a one-sided test of H: 2 < pagainst A: 2 > p
the conditional likelihood ratio given S is equivalent to 7,7y, = 5,7,5A(u, v)
where 7,, p;are givenby (2.7),U =S — R — T + 1, ¥V = S — R, and A is defined
by Lehmann ([9] page 156). By showing that A is essentially a decreasing func-
tionof Z=U + V = 2(S — R) — T + 1, the total number of runs, Lehmann
shows that the most powerful similar test coincides with the run test at its natural
significance levels. This test rejects for small values of Z where

(6.1) PulZ = 2k|S = 5] = 2(:2) (")) ()
PulZ =2k + 1|8 = s] = [ + GEHCEHIE) -

This distribution is well known [9], [14] and tabled in [12]. A minor modification
obtained by neglecting T, rejects for large values of R given S. This modification
is asymptotically equivalent and has the hypergeometric distribution

(6.2) PR = r|S = s] = (7H("=/G)

[7] with more comprehensive tables [10].

7. An example with rainfall data. We consider an application of the model to
rainfall data as do Gabriel and Neuman [3], [4] who use different methods of
Markov chain inference. June days with measurable amounts of precipitation
(at least .01 inches) at Madison, Wisconsin are given in the table for the years
1961 thru 1971 [13]. Assuming that the model holds between consecutive days
in June and that independence holds between different years, model (3.1) is
modified [8] for K independent samples, each of length n,, to

(7.1) PIR=r,8=5T=1= (CHOIZOC) Crnni 0574 5

s—r—t

where R = DK, R, S= N, S, T= X, Ty n= N n, Cyp = 115, Cry s
and C,, and 7, are given by (2.7). Using the same motivation as before, the rec-
ommended estimator 4 is modified for K samples by takingm = 3% (n, — 1) =
n — K and p = S/n in(4.3). Thus for the rainy month of June, the estimated
conditional probability of rain given rain the previous day is increased to nearly
one-half from the unconditional probability estimate of approximately one-third.
This estimate is in agreement with others [1] for nearby locations.
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TABLE 1
June days with measurable precipitation at Madison, Wisconsin

Year June Day Number Ri, Sk, Tk
1961 1, 7, 8, 10, 12, 13, 19, 22, 24 2, 9, 1
1962 3, 4, 8,10, 11, 17, 18, 22 3, 8, O
1963 5, 7, 8, 9, 13, 19, 26, 27 3, 8, O
1964 2, 11, 12, 14, 15, 17, 21, 22 3, 8, O
1965 1, 5, 6, 20,.22, 23, 27 2, 7, 1
1966 2, 3, 6, 7, 9, 11, 12, 15, 20, 26, 27, 28 S, 12, O
1967 6, 17, 9,10, 11, 12, 13, 15, 16, 17, 19, 24, 28, 29 8, 14, O
1968 1, 9, 10, 11, 14, 15, 18, 21, 23, 24, 25, 26, 27, 29, 30 8, 14, 2
1969 1, 2, 4, 6, 7, 11, 12, 17, 18, 25, 26, 27, 29 6, 13, 1
1970 1, 2, 12, 16, 17, 20, 26 2, 7, 1
1971 1, 7, 11, 18, 19, 20, 22, 24 2, 8, 1
1= 462, p = .327, n = 330, m = 319. Totals 44, 108, 7

R, S, T
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