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INVALIDITY OF BOOTSTRAP FOR CRITICAL BRANCHING
PROCESSES WITH IMMIGRATION!

By T.N. SRIRAM
University of Georgia

This article considers a case of parametric bootstrap when the observa-
tions consist of generation sizes of the branching process with immigration
together with the immigration component of each generation. Suppose we
estimate the offspring mean m by the maximum likelihood estimator (m.l.e.).

_ It is then shown that the bootstrap version of the standardized m.l.e. does
not have the same limiting distribution as the standardized m.l.e., under the
assumption that m = 1(critical case). In other words, the asymptotic validity
does not hold for the parametric bootstrap in the critical case. In fact, given
the sample, the value of the conditional distribution function of the boot-
strap version of standardized m.l.e. defines a sequence of random variables
whose limit (in distribution) is also shown to be a random variable, when
m = 1. The approach used here is via a sequence of branching processes for
which a general weak convergence [in D*[0, co)] result is established using
operator semigroup convergence theorems.

1. Introduction. The branching process with immigration can be defined
recursively by the following equation

Z;_,
(1.1) CZi= ) &GoatY:,  i=12,....
k=1

The random variable Z; can be interpreted as the size of the ith generation of a
population, where ; _ ; ; is the offspring size of the kth individual belonging to
the ( — 1)th generation and Y; is the number of immigrants contributing to the
population’s ith generation. Assume that {¢;_; .} and {Y;} are independent
sequences of i.i.d. nonnegative, integer-valued random variables (r.v’s) with fi-
nite means m and ) and finite variances o2 and b2, respectively. Throughout the
paper, we assume that the initial size Z; = 1 and the offspring and immigration
r.v’s £ and Y have power series distributions with probability mass functions
(p.m.f’s) pg and g, given, respectively, by

(1 2) pe(u) P[f = u] = a(u)eu/A(e), u= O, 1, .
' q4(y) = PIY =yl = b(y)¢’ /B(¢), y=0,1,....

Here {a(u)} and {b(y)} are known nonnegative sequences, A(§) = £3° ja(u)6*
for 0 < 6 < 6" and B(¢) = X272 (b(y)¢” for 0 < ¢ < ¢*, where 6* and ¢* are the
radii of convergence of the two power series.
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1014 T. N. SRIRAM

Suppose that a sample {(Z;,Y;),i = 1,2,...,n} is available. Then a natural
estimator of the offspring mean m is given by

n -1 n
(1.3) 7 [}:zi-l] > @i -Y)).
i=1 i=1

Note that for power series offspring and immigration distributions given in
(1.2), the estimators 7, and A, = n~137_,Y; are the maximum likelihood esti-
mators of m and ), respectively [see, e.g., Bhat and Adke (1981)]. In the litera-
ture, the estimation of m by 7i,,, based on the full information on both generation
sizes {Z;} and the immigration sizes {Y;},i = 1,2, ...,n, has been considered by
Venkataraman and Nanthi (1982). Using only the partial information on {Z;}
alone, it is possible to estimate m and study the properties of the estimators [see
Heyde and Seneta (1972, 1974), Wei and Winnicki (1990) and the references
therein].

It is well known that the limit distribution of 7, is subject to a threshold
theorem, where m plays the crucial role of a threshold parameter. In particular,
it can be shown that the limit distribution of the pivot

1/2
(iﬁn - m)

(14) Vo= [En:z‘_l
i=1

is normal if m # 1 and nonnormal if m = 1 (critical case). See Sriram, Basawa
and Huggins (1991) for the cases m < 1 and m = 1.

In this paper, we introduce a parametric bootstrap for branching processes
with immigration. We restrict our attention to the critical case, since the limit
distribution of the pivot V,, is nonnormal in this case and is therefore of special
interest in considering the bootstrap approximation for the distribution of V,,.
The performance of the parametric bootstrap for the cases m < 1 andm > lis
of interest as well, but these cases will be considered elewhere.

One way to assess the performance of our parametric bootstrap is to check
whether the conditional limit distribution of the bootstrap pivot, say, V,; [see
(2.4)], is the same as the limit distributions of V,,, whenm = 1, as n — oco. In
other words, does the asymptotic validity hold for the parametric bootstrap in
the critical case? We shall show that the parametric bootstrap is asymptotically
invalid, at m = 1. In fact, given the sample, the value of the conditional distribu-
tion function of V! defines a sequence of r.v’s whose limit (in distribution) is also
shown to be a random variable, when m = 1. It is, however, conjectured that the
parametric bootstrap proposed here is asymptotically valid for the cases m < 1
andm > 1.

One of the main causes of failure of the parametric bootstrap at m = 1 is the
fact that the limit distributions of V, are different for the two cases m # 1 and
m = 1. The other reason, which seems to be the crucial one, concerns the rate of
convergence of /1, to 1. The latter reason is explained further in a concluding
remark (see Section 4).
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In a similar situation, it has been shown recently by Basawa, Mallik,
McCormick, Reeves and Taylor (1991) that for a first-order autoregressive pro-
cess the standard bootstrap least squares estimator of the autoregressive pa-
rameter is asymptotically invalid, when the parameter is 1. This paper shows
that a similar phenomenon occurs in our problem as well. Another instance of
the invalidity of the naive bootstrap has been discussed by Athreya (1987) in
the context of estimating the mean of a population when the variance is infinite.

In Section 2 we introduce a parametric bootstrap for the branching process
with immigration and state the main theorem concerning the asymptotic in-
validity of bootstrap in the critical case. In Section 3 we state a general result
about convergence of a sequence of branching processes and prove it in the Ap-
pendix. In Section 4, we prove the main theorem using the results obtained in
Section 3.

2. Parametric bootstrap. Recall the power series distributions given in
(1.2). By the notation introduced above, we have the means m = E(¢) = 04/(9)/
A(9) and )\ = E(Y) = ¢B'(¢)/B(¢) and the variances 02 = var(¢) = 99m/d6
and b? = var(Y) = ¢ 9)\/9¢. Here, prime denotes first derivative and 9 denotes
partial derivative. Since 6, ¢, o2 and b? are all assumed to be positive, we have
that m and ) are strictly increasing functions of 6 and ¢, respectively. Let m =
(@) and A = g(¢), where f and g are known functions. Using the fact that
0 =f~1(m) and ¢ = g~1()), we denote the distribution function of V, defined in
(1.4) by

@.1) Hy(m, \, x) = P{V, <x},

for x € (—o00, 0), m > 0and A > 0.

Now, collect a sample {(Z;,Y;), i =1,2,...,n} and estimate m by m, in (1.3),
and A by X, = n=12".,Y; = Y. Replace 6 and ¢ in (1.2) by their respective
estimates 8, = f~1(#,) and ¢, = g~'(\,). Call the resulting estimated p.m.f’s
pg, and g; , respectively. Note that the values of p; (1) and g () are known
for each u and y since the data values are known. Conditional on {(Z;, Y;), i =
1,2,...,n},let {5* ;} be a sequence of i.i.d. r.v’s having p.m.f. p; , and let {Y}}
be a sequence of i d r.v’s having pm.f. g . The parametric bootstrap sample
{@:,Y}),i=1,2,...n} is then obtained recursively from the relation

z_,
(2.2) Zr=) g oxtY, i=12..,

with Zj = 1. The parametric bootstrap estimator of m is then given by

n _1 n
23 s [zz:_l] S (2 -77).
i=1

i=1
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The parametric bootstrap analogue of the pivot V,, defined in (1.4) is given by

n 1/2
(2.4) Vi= {Zz;_l] (i — ).
i=1

Now, observe that
(2.5) P{Vi <x|(Z,Y),i=1,2,...,n} = Hy(fin, M, %),

where H,, is defined in (2.1). Henceforth, suppose that t}}e true model is (1.1)
with m = 1. We are interested in the limit of H,(m,, \,, x), for every fixed
x € (—00, 00).

For V,, defined in (1.4), it is shown in Sriram, Basawa and Huggins (1991)
that, whenm =1,

W - )}
(Rxwar}”

where {X(¢)} is a nonnegative diffusion process with generator Ah(x) = Ah/(x) +
(1/2)xa%h" (x), for h € C°[0, c0), and is obtained as a weak limit of the process
X, (t) = Zjny /n, as n — oo. Here C°[0, 0o) is the space of infinitely differentiable
functions on [0, co) which have compact supports, and ” denotes second deriva-
tive. Arguing as in Sriram, Basawa and Huggins (1989), it is easy to show that

XM -}
{ [X(@) dt}

If the parametric bootstrap were to be asymptotically valid here, then we should
have

(2.6) Vn —D

=V asn— oo,

2.7 n(m, — 1) —p

sup  |Hp(fin, An, x) — P(V <x)| — 0

—o00<x <00

almost surely, as n — oo, where H,,(m,,, Xn, x)is defined in (2.5) and V is defined
in (2.6). However, we will show that this is not the case. There is a random
limit. To describe this precisely, we proceed as follows. Let X, be a nonnegative
diffusion process with (infinitesimal) generator

(2.8) Aah(x) = axh'(x) + Aoh'(x) + 1xo3h" (x), h € C[0, ),

where )¢ and ag are positive and finite real numbers and « is a finite real num-
ber. For a definition of an infinitesimal generator, such as A, defined in (2.8),
and an excellent presentation of the associated theory of weak convergence, the
reader is referred to Ethier and Kurtz (1986).

"'Define

12 1 1/2
2.9) v(a,ro,02) = { / I)Ca(t)dt} [xa(1)-A0]-a{ /0 I)Ca(t)dt}
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and let
(2.10) H(a, Mo, 03, x) =P[u(a,)\0,a§) gx].

For X, defined above, let X,(0) = 0 for every real number «. The following
arguments show that H(a, Ao, 02, x) is continuous in « for every fixed o, o2
and x. Suppose {a,} is sequence of real numbers such that o, - a asn — oo,
for some real number «. Then, for A € C°[0, c0), it is easy to show that

sup |Agh(x) — Aghlx)| — 0

—o00<x< 00

as n — oo, where {A,, } is a sequence of generators corresponding to {ia"}
and defined as in (2.8) with « replaced by c,. Therefore, from Ethier and Kurtz
[(1986), Theorem 2.1 of Chapter 8, Theorem 6.1 of Chapter 1 and Theorem 2.5

of Chapter 4] and the fact that X, (0) = X,(0) = 0, we conclude that

xa,, —D :’ia

as n — oo. From this and the continuous mapping theorem, it follows that
H(a, N\, ag, x) is continuous in o for each fixed Xg, ag and x. Therefore, w —
H(Vy(w), Ao, og, x) defines a random variable for V; defined in (2.7). Our main
result is the following theorem.

THEOREM 2.1. For every real number x, the sequence of r.v.’s H,(fin, A, %)
converges in distribution to the rv. H(Vy, )\, 02, x), where H is defined in (2.10)
and Vy is defined in (2.7). :

Before we prove the main result we obtain a general result about convergence
of a sequence of branching processes and a corollary. The corollary is then used
to prove the main theorem.

3. Sequence of branching processes. Consider a sequence of branching
processes {ZE")} given by

zZ |
(3.1) ZP =3P L HYP, i=12,..,
k=1

where, for each n, Zg‘) =1, {.Efnj)} is a sequence of i.i.d. r.v’s with mean p, and
variance o2 and {Ylf”)} is a sequence of i.i.d. r.v’s with mean ), and variance b2.
Also, assume that {53‘;} and {Yf")} are independent.

Let X,(¢) = Z([:;] /n,t > 0. It is clear that {X,} is a sequence of random ele-
ments that take values in D*[0, co), which is the space of nonnegative functions

on [0, co) that are right continuous and have left limits. Using operator semi-
group convergence theorems [see Ethier and Kurtz (1986)], we prove below a
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weak convergence theorem for the sequence of random functions {X,}. The
following assumptions are made, as n — oo:

(C) pp=1+an"'+0(1/n);
(C2) 02 — o3;
(C3) An — Ag and b2 — b2;
3.2) (C4) for any sequence {x,} such that x, — x, 0 <x < oo,
limy — co 07 2EJ€l"s = | Tgew, ) 3e0, vz, = O for all
€ > 0, where \g, 02 and bZ are positive and finite real num-
bers and « is a finite real number.

THEOREM 3.1. Assume conditions (C1)—~(C4)in (3.2). Then X, —op ia, where

~

X is the diffusion process with generator defined in (2.8).

The arguments used to prove Theorem 3.1 are similar to that of Theorem 1.3
in Ethier and Kurtz [(1986), Chapter 9]. We only indicate the necessary steps
in the Appendix.

REMARK 3.1. There is a rather large literature on the diffusion approxima-
tion for a sequence of branching processes with or without immigration. See,
for instance, Grimvall (1974) and some of the relevant references listed under
“notes” at the end of Chapter 9 in Ethier and Kurtz (1986).

For model (1.1) with m = 1, Wei and Winnicki (1989) showed that X,, —p X,
where X;,(t) = Zj,; /n and X is a nonnegative diffusion defined in (2.6). The proof
of Wei and Winnicki (1989) uses operator semigroup convergence theorems as
done here.

Let
n -1 5

@ e || (@ -v)

i=1 i=1
and

n 1/2
(3.4) Up = [sz"_) 1] (Bn — pn)-
i=1

COROLLARY 3.1. Assume conditions (C1)—(C4) in (3.2). Then for v, defined
in(3.4) and v(a, Ao, 02) defined in (2.9) we have

(38.5) vn—pv(e,X,08) as n— co.
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Proor. By (3.3) and (3.4),

- -1/2, ,
wer|Sa| S - man, -y
Li=1 i=1
. -1/2 ¢ , n -1/2
- (o] S -z v} - o[ San
L i=1 i=1 i=1
( n -1/2 n n 1/2
= |n~2 szn_) 1:| {n’l(Zf,") _Zgz) _ ZYl(n))} - npn — 1) |:n-2 zzﬁ’-l-)l]
L i=1 i= i=
g -1/2 : ' 1/2
= / x,.(t)dt] [,.(n Xn(0) - -IEYW] —n(,un—l)[ / x(t)dt]
L 0 i=1

2
- CDV(av AO; 00)’

where we used Theorem 3.1, the continuous mapping theorem, (C1) and the
fact that n=1x2 Y — X in probability as n — oo, by (C3). O

4. Proof of the main result.

PrOOF OF THEOREM 2.1. By (2.7) and the fact that M=Y, = A a.s., we
have

(4.1) (0 — 1),2s) —=p (Vo, ) as n — co.

Therefore, by Skorohod’s theorem [see Billingsley (1979), Theorem 29.6], there
exist random vectors (m,,, A )and (Vo, ) on a common probability space (Q F, Q)
such that the following hold: (m,.,A ) has the same distribution as (7m,, ,,)
(Vo, \) has the same distribution as (Vp, \); and, for each & € Q,

(4.2) n(fn@) —1) - Vo@) and X@) — X
as n — oo. Now, for each @ € Q estimate 6 and ¢ in (1.2) by Gn(w) Y (m,(@))

and ¢,(@) = =g l(/\,.(w)) respectively, as done in bootstrapping. As in Section 2,
call the resulting estimated p.m.f’s p; (;, and g4 (), respectively. For each &

or, equivalently, for each pair (m, (), (@), a sequence of branching processes
{ZE")} can then be constructed recursively from the relation

Z(n)
(4.3) zZm = }: &V LAY, =12,
k=1

where (for each & € € and n) {7")} is a sequence of i.i.d. r.vs having p.m.f.
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Dé, ) and {17}")} is a sequence of i.i.d. r.v’s. having pm.f g; (), and Zg‘) =1.Set

n -1 n
[z See-we
(44) i:l 1/2i=1
= [2 nyll (n — Fa(@)).
i=1
For each & € ﬁ, observe that
(4.5) P{V, < x| (@), (@)} = Hy, (i (@), Mn(@), %),

where H, is defined in (2.1). Then, for each & € 2, we can apply Corollary 3.1
to V,, provided conditions (C1)~(C4) are satisfied by the process {Z(n)} defined
in (4.3). To this end, recall from Section 2 that m = f(6), o2 = 6f'(9), A = g(¢)
and b2 = ¢g’(¢), where f and g are smooth functions. So, when m = 1 (which is
the case we are interested in), o2 = f~}(1)f'(f~1(1)). By (4.2) it is clear that, for
each @, m,(w) satisfies condition (C1) [with a = Vo(w)] and )\ (W) satisfies the
first part of (C3) [with )¢ = \] in (3.2). Also, from the above discussion and (4.2),
we have for each @ that

72(o ) ~ o\ o1 (el (~ ' _
(4.6) 7@ = var(g ) =f (M @) f (f l(mn(w))) — o2 (whenm = 1),
8

B2@) = var(¥) =g~ (@) &' (g7 (@) ) — b2

as n — oo. Hence, 52(&) and 5,%(&3) satisfy condition (C2) (with 02 = ¢2) and the
second part of (C3) (with b2 = b2), respectively. As for condition (C4), it suffices
to show that, for each @,

4.7 n"V2E €7, — 7 @)|° — 0 as n— co.

Use theinequality |x—y|® < 4(|x|2 + |y|®), the exact value E(E"” = 2D (6n(@))
+0,(@) f'(0,(@)) + 36, (@) (B (@))f'(,@)) + F3(6,(@)), the fact that 6,(@) — £~1(1)
since m, (@) — 1 and the fact that f is smooth to conclude that (4.7) holds. Hence

(C4) is also satisfied by {Z(")} Therefore for each & € ), we have by Corollary
3.1 that

(4.8) Hy (@), M(@), ) — H(Vo@), A, 0%, %) as n — oo,

where H is defined in (2.10). However, note that the constructions of {ZE")} in
(4.3) and the bootstrap process {Z}} in (2.2) are similar and, furthermore, that

(#1n, \x) has the same distribution as (ﬁ‘zn,xn) and that (170, A) has the same
distribution as (Vy, A\). Therefore, from (2.5), (2.10) and (4.5) we have, for each
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fixed x, that

Pw: Hy (fn@), Mn@),2) <3| = @
P[w:H(Vo(w), \o?x) <yl =@

52 H, (7n(@), Ma(@),%) <3,

(4.9) 7
5:H(Vo@, ), 0%) <),

for every y, where @ is defined below display (4.1). Clearly, (4.8) implies that,
for each x,

1im Q[ H, (72n(@), 34(@), %) <3] = Q[#:H(Vo@), A, 0%2) < ’],
for every y. Hence, by (4.9), we have for each x that
lim P[w:H,, (W), An(W), %) < y] - P[w:H(Vo(w), A, 02,%) < y] ,

n— oo

for every y. Hence the theorem. O

CONCLUDING REMARKS. Conditional on {(Z;,Y;),i = 1,2,...,n}, one can
view the bootstrap model in (2.2) as a sequence of branching processes defined
in (3.1) with g, = Mg, Ay = An, 02 = var(¢} ;) and b} = var(Y}). Now, when
m = 1 we have that 7, — 1 almost surely (a.s.) as n — oo [see, e.g,, Sriram,
Basawa and Huggins (1991), display (8.3)] and A\, = Y — X a.s. Therefore, for
eachw € {f, — 1and )\, — A}, arguments similar to (4.6) and (4.7) imply that
conditions (C2)—(C4) of Corollary 3.1 are satisfied by the bootstrap model with
0% = 0% (whenm = 1), o = A and b2 = b2 Suppose for the moment that i,
satisfies condition (C1) in (3.2) almost surely with o = 0, that is, n(m, — 1) — 0
a.s. Then Corollary 3.1 could be directly applied to the bootstrap pivot V; in
(2.4), and it would imply that the parametric bootstrap is asymptotically valid,
that is, H,(i,, A, x) converges a.s. to H(0, A, 02, x) = P[V < x] for H in (2.10)
and V in (2.6), since (0, A, ¢2)in (3.5) has the same distribution as V. However,
by (2.7) we have that n(#i, — 1) does not converge to 0 a.s. Thus, the estimator
1, not having the desired rate of convergence to 1 seems to be the main cause
of failure of the parametric bootstrap.

APPENDIX

PROOF OF THEOREM 3.1. Observe that {Z(/n,i = 0,1,...} is a Markov
chain with values in E,, = {£/n:£=0, 1, ...}. Define for each h € C°[0, o)

(A.1) T.h(x)=E [h{n"l [ & + Y§n>] }] ,  x€En.
k=1

Since X,(0) = Zg‘) /n=1/n — 0asn — oo, by Ethier and Kurtz [(1986), Theorem
6.5 of Chapter 1 and Corollary 8.9 of Chapter 4], it suffices to show that

(A.2) lim sup |n[T,h(x) — h(x)] — axh'(x) — Xoh'(x) — (08 /2)xh"(x)| = O,
n— 00 xeE,
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for h € C°[0, ). For x € E,, define
(A3) en(x) = n[Tph(x) — h(x)] — oxch'(x) — Aoh'(x) — (08 /2)xh" (x)

and

(A.4) Sps = { i (& —1)+ Y§">} / Vnx.

k=1

Note that /(x/n)Sn: = {35~ 1(£§”‘}a -+ Yi”)}/n. Then

Toh(x) — h(x) = h'(x)E { \/%Snx}

(A.5) . 1 -

Q2 _ " ol

+E [nsm/O (1-0) lx . v\/;s,,x] dv] :
Since
A
E{\/gsnx} = (tn — D + ;"
and
2 2, bR+ 2.2
E{x8%} =x02+ —'—‘—;l——'l +n(un — 1222 + 2(un — Dx)s,

we have from (A.3) that

en(x) = h’(x){ [Alun — 1) — a]x + (A, — )\0)}
1
(A.6) +E [xS,z,x/ (1 — v) [h" (x + VA /x/n Snx) _ h"(x)]dv]
0
+(x/2)h" () [0 — 03] + %h" () [(b,2, +22)/n + np, — 1262 + 2(uy, — l)x)\,,] .

Suppose the support of 4 is contained in [0,c]. Now, argue as on page 389 of
Ethier and Kurtz (1986) and use the fact that for any sequence {x,} such that
x, — x, 0 < x < o0, conditions (C1)-(C4) in (3.2) imply

(A7) Sns, 2o N, as n — oo,

where N is a N(0,02) r.v. The required result in (A.2) now follows from (A.7)
and conditions (C1)—~(C3). O
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