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FORMULAE FOR MEAN INTEGRATED SQUARED ERROR OF
NONLINEAR WAVELET-BASED DENSITY ESTIMATORS

By PETER HALL AND PRAKASH PATIL

Australian National University

We provide an asymptotic formula for the mean integrated squared
error (MISE) of nonlinear wavelet-based density estimators. We show
that, unlike the analogous situation for kernel density estimators, this
MISE formula is relatively unaffected by assumptions of continuity. In
particular, it is available for densities which are smooth in only a piece-
wise sense. Another difference is that in the wavelet case the classical
MISE formula is valid only for sufficiently small values of the bandwidth.
For larger bandwidths MISE assumes a very different form and hardly
varies at all with changing bandwidth. This remarkable property guaran-
tees a high level of robustness against oversmoothing, not encountered in
the context of kernel methods. We also use the MISE formula to describe
an asymptotically optimal empirical bandwidth selection rule.

1. Introduction. In this paper we investigate mean integrated squared
error (MISE) properties of nonlinear, thresholded, wavelet-type density esti-
mators applied to both continuous and discontinuous curves. We derive an
analogue of the classical MISE formula familiar in the context of linear,
kernel-type estimators, where MISE admits an expansion with distinct vari-
ance and squared bias components. The reader may recognize this in the form

(1.1) MISE ~ C,(nh) ™' + C,h%,

where n denotes sample size, h is the bandwidth of the kernel estimator, r is
the order of the kernel and C, and C, are constants depending on both the
kernel and the unknown density. The first term derives from variance, the
next from squared bias [see, e.g., Rosenblatt (1971)]. In particular, C, is
proportional to the integral of the square of the rth derivative of the density,
and the MISE expansion for kernel estimators generally fails if f does not
have r derivatives. We show that an analogue of (1.1) also holds in the case of
nonlinear wavelet estimators, at least in the case where the order of % is
sufficiently close to that which minimizes the right-hand side of (1.1). How-
ever, strikingly for people who are not familiar with the properties of wavelets,
(1.1) is also valid for wavelet estimators when the underlying density is only
piecewise continuous.

This result provides an explicit illustration of the extraordinary local
adaptability of wavelet estimators: they do an excellent job of taking care of
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discontinuities in the target function, and in consequence they enjoy very
good convergence rates even if smoothness conditions are imposed only in a
piecewise sense. While this property has been known for some time in the
context of upper bounds for general function approximation [e.g., Mallat
(1989) provides a relatively recent and sophisticated account of upper bounds
to wavelet approximations in Sobolev spaces, which do not demand the
existence of derivatives], the present paper gives the first demonstration that
discontinuities do not affect even concise asymptotic MISE properties of
nonlinear wavelet density estimators, not even to the extent of influencing
the constants C; and C,. By way of contrast, even in the commonly consid-
ered, elementary case of a second-order kernel estimator (where r = 2),
formula (1.1) fails for kernel estimators when f is only piecewise continuous.

To be more explicit, if f has two bounded derivatives and r = 2, the
optimal convergence rate of the right-hand side of (1.1) in the case of kernel
estimators is achieved with a bandwidth % of size n~ 1/ The rate is n~*/5.
However, if f is only piecewise continuous and the assumption that f is twice
differentiable is available only in a piecewise sense, then jump discontinuities
may be shown to reduce the convergence rate to only n~3/%. See van Eeden
(1985) for a more detailed account of kernel estimation in the presence of
discontinuities. By way of comparison, the convergence rate of a second-order
wavelet estimator is preserved at n~%/%, even in the presence of jump
discontinuities of f, and the wavelet analogue of (1.1) is not affected.

Our results lead to other important conclusions about wavelet estimators.
In particular, we show that wavelet density estimators are relatively robust
against oversmoothing, that is, against using too large a bandwidth. The
extent of robustness depends on choice of threshold, but for commonly used
thresholds the robustness is considerable. In particular, in the case r = 2
considered earlier, MISE never rises above the order of (n~! log n)*® through
using too large a bandwidth. This is scarcely greater than the optimal order
of n~%/5 It is in stark contrast with the case of kernel estimators, where the
rate of convergence of MISE can rise to n™%, for any ¢ € (0, %), through
oversmoothing. We show that the degree of robustness is greater for smaller
thresholds.

One consequence of the result announced in the previous paragraph is that
the analogue of (1.1) for wavelet estimators is not available for large band-
widths. That is to say, the traditional MISE formula is valid only for A
sufficiently small. This result is unique in the context of nonparametric curve
estimators. We quantify it by describing the behaviour of MISE for band-
widths that are relatively large.

We also describe how to modify our results in the more general case of
estimation of density derivatives and show that our MISE formulae lead
directly to asymptotically optimal bandwidth selection rules.

Wavelet methods have been introduced to statistics by Donoho (1992),
Donoho and Johnstone (1992, 1994a, b) and Kerkyacharian and Picard (1992,
1993a-c). These authors have demonstrated the virtues of wavelet methods
from the viewpoint of adaptive smoothing, typically in the context of the
achievability of very good convergence rates uniformly over exceptionally
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large function classes. An excellent review of the work of these four authors is
given in a recent discussion paper [Donoho, Johnstone, Kerkyacharian and
Picard (1995)] wherein another seven papers describing their contributions to
wavelet methods are cited. One of these, an unpublished manuscript on the
subject of wavelet-based density estimation [Donoho, Johnstone, Kerkyachar-
ian and Picard (1993)] became available to us after the first version of the
present paper had been submitted. Like the other fine work of these four
authors, it describes upper bounds uniformly over function classes. By way of
contrast, our results discuss the performance of wavelet-based density esti-
mators for a fixed density, rather than for a very large number of candidates
for the density. By narrowing the focus in this way we are able to provide
more detail than has previously been available about the MISE properties of
nonlinear wavelet-based density estimators.

The estimators that we employ differ from those suggested by Donoho,
Johnstone, Kerkyacharian and Picard [(1995) and other papers], in that they
employ an explicit smoothing parameter, denoted by p in our work. As a
consequence the truncation parameter, which we denote by g, is also differ-
ent in our context. An advantage of introducing p is that it avoids logarith-
mic factors in convergence rates and achieves genuine first-order smoothing,
with variance and squared bias balanced against one another. A disadvan-
tage is that, in practice, p has to be chosen empirically.

It is straightforward to derive versions of our results uniformly over a
large class of r-times piecewise-differentiable densities, achieving the mean
square convergence rate n~2"/#"*1 simultaneously over all elements of that
class.

Our results are described in Section 2. Proofs are collected together in
Section 3.

2. Main results.

2.1. Summary. We begin in Section 2.2 by describing elements of the
basic theory of wavelet methods and introducing nonlinear wavelet-based
density estimators. Section 2.3 discusses our main MISE formulae in the
context of smooth densities. There we expand on the robustness properties
outlined in Section 1, and we also present theory which describes the mini-
mum allowable choice of threshold. The effect of lack of smoothness is
described in Section 2.4, in a way which we feel provides valuable intuition
into the reason why the fundamental MISE formula (1.1) is unaffected by
discontinuities in the case of wavelet estimators. Sections 2.5 and 2.6 address
the issues of derivative estimation and empirical bandwidth choice, respec-
tively.

2.2. Wavelets and wavelet-based density estimators. Let ¢, the “father
wavelet,” be a solution of the dilation equation,

P(x) = ZCJ¢(2x -J),
J
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where the constants c; satisfy ¥ j 2ch:; < o, Y ¢; = 2 and, for a maximal r > 1,
(2.1) Z(—l)jjkcj=0, 0<k<r-—1.
J

We normalize ¢ so that [¢ = 1. Assume too that translates of ¢ are
orthonormal, that is,

(2.2) [b(x)b(x+))dx =8y, —®<j<w,
where 9, is the Kronecker delta, and define

P(x) = L(-1)¢;10(22 +J),

the “mother wavelet.” We suppose that
(2.3) ¢ and ¢ are bounded and compactly supported.

The vast majority of the wavelets used in practice satisfy these conditions
[see Daubechies (1992), Chapter 6].

Conditions (2.1) and (2.2) ensure that, for all integers i > 0 and —» < j,,
j 2 < @,

[¢(x +i) (2% + jp) dx = 80,8, and [ $(x + )¢ (2% +jy) dx = 0,

and that [y*(y)dy =0 for 0 <k <r — 1. [See Strang (1989).] Therefore,
the functions

¢J(x) :pl/z‘f’(Px_j)’ ‘pu(x) =Pi1/2¢(Pix -J)>
for arbitrary p >0, —» <j <, i>0 and p, =p2’, are orthonormal:
[, =65, [¥i, Pinsy = 8,0, 05500 [ P55, = O Furthermore, an arbitrary
square-integrable function f may be expanded in a generalized Fourier series
of the form

(2.4) f(x) = ij¢j(x) + _Z:) Zbij%j(x),

J i=0 j
where b; = [f$; and b,; = [fy;;. The generalized Fourier series (2.4) con-
verges in L?. The wavelet analogue of the bandwidth A of a kernel density
estimator is p 1.

If f is a probability density and X;,..., X, denote independent data
values from that distribution, then Z;j =n"'El_, ¢(X,) and b, ;=
n~'Lr_, ¢;(X,) are unbiased estimators of b, and b;;, respectively. A
nonlinear wavelet estimator of f has the form

Jj?

qg—-1
(2:5) f(x) = EBJ¢J(x) + Z Zgijl(ll;ijl > 5)%]'(35),

i=0 j

where 8 > 0 is a “threshold” and ¢ > 1 is another smoothing parameter.
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(Alternative ways of thresholding will be discussed in Remark 2.5.) The first
series in (2.5) represents an unbiased estimator of the first series in (2.4), and
converges absolutely under condition (2.3). However, if the second series were
not thresholded and truncated in the manner suggested here, or in reason-
ably similar fashion, then that series would not converge. The more terms are
induced in the series, the less is the bias but the greater is the variance. The
parameters 6 and g adjust this trade-off between bias and variance.

2.3. Case of smooth f. We assume initially that f is r times differen-
tiable, and delay until Section 2.4 the case of a piecewise-smooth f. This
approach simplifies both our exposition and proof.

Define k = (r)7! [y"Y(y) dy = (rD~ (= " E(=1))j7c;.

THEOREM 2.1. Assume the conditions on ¢ and  stated in Section 2.2;
assume that {7 exists in a piecewise sense, and is bounded and piecewise
continuous on (—o,®), with finite and well-defined left- and right-hand
limits, and monotone on (—x, —u) and on (u,») for sufficiently large u; and
assume that p — », ¢ = », p 8> - 0, p2"*16* — o and 6 > C(n" " log n)"/?,
where C > C, = 2{r(sup f)/(2r + 1)}/2. Then the following hold:

(1) ifp3r+162 — oo,
B[ (F=f) = (n o owea-2n 7 [of)

=o(n"'p+p7?);
(11) lfp — 0(8—2/(2r+ 1))’

(2.7) gir/@ren - 0{/E(f— f)Z}.

(2.6)

Note that the regularity conditions imposed on f imply that any power of
@ is integrable over (— %, ©) and that £ is monotone in the extreme tails,
for any 0 < i < r. Observe too that since we are asking only that (" exist in
a piecewise sense, we do not need [ to be continuous.

REMARK 2.1 (Comparison with traditional MISE formulae). Result (2.6)
is an unusually strong version of the traditional asymptotic formula for
MISE. By taking the expected value on the left-hand side inside the modulus
signs we obtain a wavelet version of the traditional MISE formula:

(2.8) [E(f_f)z ~ n—lp +p—2rK2(1 _ 2_2r)_1ff(r)2,

where “~ ” means that the ratio of the left- and right-hand sides converges to
1 a8 n — . Here, the n~'p term derives from variance, and the p %" term
from squared bias, exactly as in the case of classical formulae for kernel
estimators. To obtain the wavelet formula from its counterpart for kernel
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methods, albeit with different constants multiplying the bias contribution,
simply replace bandwidth A by p~1. See, for example, Silverman [(1986),
Chapter 3] for a detailed account of the kernel case.

Of course, the right-hand side of (2.8) is asymptotically minimized by
taking p ~ an/@"*D where a = {2rx?(1 — 2727)"1 [f(O*}I/@r+D; ang the
minimum size of (2.8) is const.n ~27/Gr+ D,

REMARK 2.2 (Limitations to the applicability of the traditional MISE
formula). Part (i) of Theorem 2.1 makes it clear that the traditional MISE
formula (2.8) is valid for all sufficiently large p, but perhaps not for smaller
values of p. Part (ii) of the theorem states that if

p= 0(8-2/(2;-4-1)) — 0{(n/10g n)l/(2r+1)}

then [ E(f — f)? is at least of size 8*"/@"+D > const.(n ! log n)2"/@"* D, Since
the latter quantity is still of larger order than n~27/@"+D then, despite this
apparent drawback to the validity of (2.8), the overall minimum of MISE
does nevertheless occur at the value p ~ an?/@"*V introduced in Remark 2.1.

Remark 2.3 will demonstrate that the limitations suggested by part (ii) of
Theorem 2.1 are real, not technical artifacts of our method of proof. The main
practical implication of this result is the following. The wavelet estimator is
relatively robust against oversmoothing, that is, against choosing p too
small; and the smaller the threshold, the greater the level of robustness. For
example, taking 8§ = n~1/2(log n)*/?*¢ for some & > 0, produces a ceiling of
n-2r/@r+l)(jog p)d/D+er/@r+1 on the size of MISE which can be obtained
by accidental oversmoothing. This is smaller for smaller ¢, that is, smaller é.
Remark 2.4 addresses the issue of the smallest value of & for which our
results are valid.

REMARK 2.3 [Sharpening of part (ii) of Theorem 2.1]. Here we demon-
strate that, for a class of compactly supported densities, the order-of-magni-
tude result in (2.7) may be refined to a concise asymptotic relation.

PROPOSITION 2.1. Assume the conditions of Theorem 2.1 and, in addition,
that supp f = [c, d], a compact interval. Suppose that " restricted to [c, d]
is bounded away from zero in neighbourhoods of points of discontinuity, and
has only a finite number of zeros, in neighbourhoods of which f"*V exists and
is bounded away from zero; and that p2"*16% -/, where 0 </ < ». Then

fE(f— f)z ~ C(2)84r/@r+ D),



WAVELET-BASED DENSITY ESTIMATION 911

where

yor/ers 1)Ksz(r)2[ Z 2—2ril{(Kf(r))2 S/2(2r+1)i}], if />0,
Cc(/) = i=0
(1= 272) e [ pmprereD, if £ =0.

Proposition 2.1 may be proved under a very wide variety of different
regularity conditions on f. The main difficulty in the proof arises from places
where f(” vanishes. In this respect, the conditions imposed above illustrate
only one of many alternatives. In particular, versions of the proposition may
be proved for infinitely supported densities, where £ might be assumed to
be regularly varying at 4.

REMARK 2.4 (Lower bound to the constant C). In both theory and prac-
tice and parameters ¢ and 8 play interactive roles. Large values of ¢ demand
larger values of 8. Specifically, we claim that if 6 = C(n"! log n)'/2, then, for
each ¢ > 0,

(29) pq82n—(1/2)(1+§)C2/(Supf) — O{I(Ef’\‘_ f)z} n O(n—27‘/(2r+1)).

Therefore, if MISE is to be reducible to O(n~27/?"*+D) by suitable choice of p,
and if p, = const.n?, for some B > 0, then it is essential that 8 — 1 —
1/2)X1 + €)C?%(sup f)°! < —=2r@2r + 1)1, for some &> 0, and hence that
B>1/@2r + 1) and

(2.10) c>[2(B-(2r+ 1) Ysup )]

Note that, for larger values of B, the lower bound to C is larger.

In Theorem 2.1 we demanded that p, 82 — 0, which [if § = C(n ! log n)'/?]
amounts to insisting only that 8 < 1. In this case the lower bound at (2.10)
implies

C > 2{r(sup f)/(2r + 1)}

Except for the possibility of equality here, this condition is identical to the
restriction on C imposed in Theorem 2.1. Thus, that restriction is seen to be
very close to the “best possible.”

When 6 = C(n!log n)!/2, the assumption that p,82 — 0 is also close to
providing a maximal upper bound on g for the validity of Theorem 2.1. To
appreciate why, note that since ¢ is compactly supported then the expected
number of nonzero terms in the series defining b,; is of size np; . Demanding
that p, & 2 - 0 is therefore equivalent to asking that this expected number be
of larger order than log n, which is a very small order of magnitude.

We conclude this remark with an explicit statement of result (2.9).

PROPOSITION 2.2. Assume the conditions on the wavelets and the density [
imposed in Theorem 2.1. Suppose too that sup f occurs at a unique point
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which is a continuity point of f and that p,q — © and p, 82 > 0, and take
8= C(n"'log n)¥2, where C > 0. Then (2.9) holds for each £>0.

REMARK 2.5 (Alternative forms of thresholding). The thresholding im
plicit in the definition of £ at (2.5) is often called hard, in that the term b;; «//, :
is either included or completely excluded—there are no half measures. An
alternative, more general approach is to replace the term b, I(|b > 8,
appearing in (2.5), by bl Jw(bl i/ 8);;, where the weight functlon w satisfies
w(u) =0for0 < u <cy,w(u) €0, 1] forc; <u <c¢y,and w(u) = 1ifu > ¢y,
with 0 < ¢; < ¢, < © being constants. If the function w is continuous, then
the estimator f is said to be based on “soft” thresholding. Theorem 2.1 is
valid in this context, the only change being that, depending on w, the
constant C may have to take a different range of values. The theorem
certainly holds if the inequality C > C, is replaced by the requirement that
C be sufficiently large.

2.4. Effects of discontinuities. In the previous subsection we described the
performance of wavelet methods for densities with r derivatives. Clearly that
smoothness assumption does have a bearing on our results, not least because
the function f(” appears in formulae for MISE. See, for example, (2.8).
Nevertheless, the failure of the smoothness condition at a finite number of
points does not affect Theorem 2.1, as our next result shows.

THEOREM 2.2. Assume all the conditions of Theorem 2.1, except that we
add the assumption that p2’+ 1n=2"  «, and impose the condition of r-times
differentiability of f only in a piecewise sense; that is, we ask that there exist
points x, = —© <x; < -+ <xy <®=xy., such that the first r derivatives
of f exist and are bounded and continuous on (x;, x;,,) for 0 <i < N, with
left- and right-hand limits; and that f” is monotone on (—», —u) and on
(u,®) for u > 0 sufficiently large. In particular, f itself may be only piecewise
continuous. Then the result of Theorem 2.1 holds.

REMARK 2.6 (Comparison with kernel estimators). This result is strik-
ingly different from its nearest analogues for a variety of other estimator
types, such as kernel estimators. There the presence of discontinuities can
dramatically increase the order of magnitude of MISE. To illustrate this
point, let f be a kernel estimator of f based on an rth-order kernel [see, e.g.,
Rosenblatt (1971) and Silverman (1986), page 66]. Let h denote the band-
width of the estimator. Suppose that, at some point x,, f has just s
derivatives and that f¢*1 exists on the left- and right-hand sides of x,, with
different limits at x,. We assume that 0 <s <r — 1. The usual Taylor
expansion argument may be used to show that in a neighbourhood of x, with
width approx1mately h, f has bias of size h** 1. The corresponding contribu-
tion to MISE is of size

(width of neighbourhood) X (size of bias)? = A(h®*+1)* = h2:+3,
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The contribution from variance is of size A(nh)~! = n~1. Now, if bandwidth is
chosen so that the estimator performs well across “most” of the real line,
where f( is well defined, then A will be of size n~/¢"*D [Rosenblatt
(1971)]. Therefore the contribution to MISE from jump discontinuities will be
of size n~Gs+3/C@r+D 4 p=1 1In particular, if s = 0, meaning that f’ has a
jump discontinuity at some point, then MISE will be of size at least n=3/G7* D,
Taking into account the contribution from intervals where £ is well de-
fined, the actual MISE is of size max(n 27/@7*D 5 =3/Cr+D) which equals
n3/@r+*D when r > 2. This convergence rate is inferior to the rate n~27/@r+D
provided by wavelet estimators (see Theorem 2.2). The reader is referred to
van Eeden (1985) for detailed discussion of convergence rates of kernel
estimators when there are discontinuities in f or its derivatives.

This analysis extends only as far as convergence rates and does not
address the actual trace of estimators produced by wavelet or kernel meth-
ods. There again the wavelet estimator produces more satisfactory results, in
that it more satisfyingly captures the actual jump discontinuities.

REMARK 2.7. Remarks 2.1-2.4 all have analogues applicable to Theorem
2.2,

REMARK 2.8 (Intuition behind Theorem 2.2). While Theorem 2.2 is not
actually a corollary of Theorem 2.1, its derivation may be accomplished
without great difficulty by inspecting portions of the proof of the latter result.
Let us briefly outline the argument. It provides at once an explanation of the
virtues of smoothing locally in the spatial domain, and a proof of Theorem 2.2.

Observe that, by the orthogonality properties of ¢ and ¢,

[(F-1) =12.2,...),

where Z denotes the set of all integers and

q-1
I(F,S,-0) = X (3j - bj)Z + X X (Bij - bij)2I(|8ij| > 5)
jeS i=0 jes

q-1 o
+ Y X o3I(lbl<s)+ ¥ X b2
i=0 je i=q je,

Let 2 denote the finite set of points where f® has a point of discontinuity
for some 0 < s < r. If supp ¢ € (—v, v), then, unless

jeF ={k:k € (p;x —v,p;x+v) for some x €2},

both b;; and l;,- ; are constructed entirely from an integral over or an average
of data values from an interval where f(” exists and is bounded. Likewise, if
supp ¢ € (—v,v), then, unless

jex={k:ke(px—v,px+v)forsome x €2},



914 P. HALL AND P. PATIL

b; and 5j are also constructed solely from such regions. We may write
A 2 ~
f(f_f) =Iq(‘%7‘%1"")+Iq(‘%"%17"')’

where . denotes the complement of . in Z. The methods in the proof of
Theorem 2.1 may be employed to prove that Iq(ﬂf 55/1, .) has precisely the
asymptotic properties claimed for f( f f)? in Theorem 2.1. Furthermore,
noting that both .# and .% have no more than (2v + 1X(#2) elements, for
each i, and that q = 0(10g n) and p,' = o(n?"/¢"*V), we may show that
E{I, (% H,... )t =o(n"'p + p~?") in the context of part (i) of Theorem 2.1, or
= 0(64’/ ‘2’“)) in the context of part (ii). Combining these results we obtain
Theorem 2.2. [The condition p,! = o(n2"/®"*D) is used to establish the
neghglbllhty of the series ¥, , Z bZ; “; note that, at discontinuities, b2 is of
size p; ']

2.5. Estimators of derivatives. If f, ¢ and s have s > 0 derivatives, then
the generalized Fourier coefficients of f(*) are given by

b}(s) - ff(s)¢j — (_l)sps+(1/2)ff(x)¢(s)(px _J) dx,

b = [ 1O = (=1)"pi O/ [ f(2) 4 (pix = J) .

Therefore, unbiased estimators of these quantities are provided by

n
b = (=1)"pPn7 L ¢(pX, — ),

m=1
by = (-1 ps+<1/2>z:«/f<s>(pl -J).

The corresponding estimator of f* is

f@ = Zb% + Z LOPI(161 > pis) vy
i=0 j
Versions of Theorems 2.1 and 2.2, and Propositions 2.1 and 2.2, may be
established for f. In particular, if ¢ and ¢ satisfy the conditions of
Theorem 2.1 and have s bounded derivatives; if f has r + s bounded
continuous derivatives in a piecewise sense, with well-defined left- and
right-hand limits; if f¢*® is monotone on (—«, —u) and on (u,®) for
sufficiently large u; and if p > », ¢ > », p 62— 0, p? *2:*1%§% > o and
8 > C(n"'log n)'/2, where C > 2{r(sup f)[4®?)/(2r + 1)}*/?; then

Elf(f(S) _ f<s>)2 _ { —1p23+1f¢(s)2 +p¥k?(1— 2—2r)_1 [f<r+s)2}

— O(n—1p23+1 +p—2r).

This result represents an analogue of part (i) of Theorem 2.2.
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2.6. Empirical smoothing parameter choice. The value of p may be se-
lected emplrlcally using a plug-in rule, as follows. Let J denote an estimator
of J=[f ("? weakly consistent in the sense that J — ¢ in probability. Let a
be as defined in Remark 2. 1, and define @ = {2r«x*(1 —27%")" 1fy/@r+)
belng no more than the deﬁnltlon of a with J substituted for J. Write p, and
Po for an'/®*D and Gn'/C® 7+ D, respectively, let fp denote the estimator
previously defined by £ [see (2. 5)] and set I(p) = [(f, — f )2. We claim that,
assuming the conditions of Theorem 2.2 and that ¢ and ¢ are both Holder
continuous,

(2.11) I(po) = I(po) + 0,(n27/E" D).

It then follows from (2.8), which is a consequence of Theorem 2.2 in precisely
the same way that it was of Theorem 2.1, that

I(ﬁo) — bn—2r/(2r+1) + Op(n-—2r/(2r+1))’

where the constant b > 0 is defined by

inf {n p +p-2r 2(1 2—27‘)_1 ff(r)z} — bn—2r/(2r+1).
p>
Therefore the empirically chosen bandwidth p, asymptotically achieves the
mean 1ntegrated squared error associated with p,.

Since J is weakly consistent for J then if g, 10 sufficiently slowly,
P(J - J|> &,) = 0. Therefore, to establish (2.11) it sufﬁces to prove that, for
each sequence g, converging to zero,

(2.12) sup [I(p) —I(py)l = op(n_zr/@’”)).
p:lppgt-1ll<e,

To do this, let A > 0 be a very large positive constant, let % denote the set of
points kn 4 for integer £ > 1 and, given p > 0, let m(p) be that value in &
which minimizes |p — w(p)|, with any tie broken in an arbitrary manner.
Then (2.12) will follow if we show that, for A sufficiently large,

(2.13) sup lI(p) — {=(p)}| = Op(n—Zr/(ZrJrl))’
p:lppgt-1ll<e,
(2.14) sup |I(p) — E{I( p)} = Op(n—Zr/(2r+ vy,

PEP:|ppst-1l<es,

E{I(p)} - <n1p +p~¥k?(1 — 2—2r)_1 /f(r)z}

sup

(215) pEP:|Ippgl-1ll<e,
— Op(n—Zr/(2r+ 1)) .

Result (2.13) may be proved using the Hélder continuity of ¢ and ¢, and

approximating the estimator very closely using a soft thresholding rule. [In

the context of deriving (2.13) it is actually simpler, but not essential, to treat
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soft thresholding.] Result (2.14) may be derived by showing, using large
deviation arguments, that, for each n, A > 0,

sup P[II(p) — E{I(p)}| > nn=27/@+D] = O(n™%).
PEP: Ippgt-1li<e,

Finally, result (2.15) follows from Theorem 2.2.

Cross-validation also produces an asymptotically optimal value of p. A
more detailed account of theory for smoothing parameter choice is given by
Hall and Patil (1993).

3. Proofs of Theorem 2.1 and Propositions 2.1 and 2.2.
ProoF OoF THEOREM 2.1. The proof is broken into five parts. Symbols

C,,C,,... denote positive constants.
Step 1. Bound for

s= T S((6, - b 10> 8))

l

Let a and B denote positive numbers satisfying « + 8 = 1, and set
A 2
sy= Y ZE{(b,.j ~b,) }I(|bij| > ad),

S12 =

|
™
N
R
—_—
—_——
S
~.
S
~.
~——
_

b — byl > /35)}.

Since I(|6,;| > 8) < I(|b,;| > a8) + I(|b;; — b;;| > &), then
(3.1) §; <811 t Sqg.

We shall bound s;; and s;,, in turn.
Set f;; = SUDP, c suppy Ay +j)/p;}. Since ¢ is compactly supported and f
is bounded and monotone in the extreme tails, then

(3.2) ‘ sup p; ' Y fij <.

n;i=0 j
Now,
nE(Bij - bij)2 SpiE{‘/’(piX _j)z}

(3.3) ;
- fw(y)“‘f{y%’—} dy <1,
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and, by Taylor expansion,

p;

1/21p | = o2\ po L
ptng o S (2] w2

(34) 1 Y ! 1 r—1 j+ty
_ | ~ _ (CO) S,
+H(r - 1Y} (pi) fo (1-t)"'f { - }dt]dy
<Cip;’;
g-1
sp<nt ) ZﬁjI(Czpi_(”(l/z» > )
i=0 j
g-1 2/(2r+1)
(3.5) gn‘l( sup p;t Ef”) Y pil{pi < (%2—) }
0<i<q-1 j i=0

= O(n—18—2/(2r+ 1)) — O(n—Zr/(2r+ 1))’

since nl/25 — », The second-to-last identity uses (3.2).
Let @ and b denote positive numbers satisfying ™! + 5~ = 1. By Rosen-
thal’s inequality [Hall and Heyde (1980), page 23],

A 2 2 “
Elb; — b, < Cs(a)[{E(bu ~byj) } + nt"29E| p}/%(p; X ~j) — byl

< Cy(a, ¥, F)(n~¢ + nt -2 1),

The summands of nlsi ; are bounded by Cy p;/ 2 uniformly in i and j, and by
(3.3) the sum of their variances does not exceed nf;;. By hypothesis, p, 8 250,
and so in view of Bennett’s or Bernstein’s inequality [Pollard (1984), pages

192-193] we have, for any 0 < & < 1 and all sufficiently large n,

P(1b;; — bl > BS) < 2exp{—3(1 - &) B%f;;'n82)
uniformly in 0 < i < q — 1 and j. Hence, by Holder’s inequality,
)l/b

(3.6) .

o| Y. (n‘1 + n(l/“)_zpil_(l/“))Zexp{—%(l - 3)B2b_1ﬂ‘jln82} .
i=0 j

q-1 . 1/a o
S12< X Z(Elbij - bij|2a) P(Ibif = byl > B3
i=0 j ‘
q

Recall that, by assumption, 8 > C(n ! log n)/%, where C > 2{r(sup f)/(2r +
1)}/2. Choose & € (0, ) so small, B < 1 so close to 1, and a > 1 so large (or,
equivalently, > 1 so close to 1) that 3(1 — 3&X BCRb Ysupf) '=>d=
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2r2r+ 1) + a1 Then (1 — 3¢)B2b (sup ) 'n6% >dlogn, and so,
uniformlyin 0 <i <q — 1,

Zexp{—_l_(l — 3)sz_1fi—jln52}
J 2
= O[Zfij(naz)_lexp{—%(]_ _ 28)sz—lﬁ—j1n62}]
J
) O[Zﬁj(n82)_lexP{_% 1-38¢)B%b(sup f)_lnéz}]
J

- o{ zﬁj(nﬁz)_ln_d} =O0(p;n~97167%),

the last identity followmg from (3.2). Therefore, by (3.6), and since p, 250
and n'/% — « imply n"'p, — 0,

g—-1
312 = O{ Z (n—lpi + n(‘l/a)_zp?)n_d_la—z}
i=0
= 0{(p, + nt/® 1p2)n- %)
= O(n(l/“)‘d‘15‘2) — O(n(l/a)—d) _ o(n‘2’/(2’+1))’
Combining (3.1), (3.5) and (3.7), we deduce that
(3.8) s, = o(n"27/@r),

Step 2. Bounds involving

g-1 .
sy =L LbEI(Ibl < 5).
=0 J

(3.7)

~

Let £ > 0, and define

So1 = i Z 2I{lb;l < (1 + &) 8},

=0
g—-1

Sgp = ] szl{lbul <(1-¢)8},
i=0 j
q-1

s;m= L L b5I(1b,l < 38),
=0 f
q-1

A= X Y2116, — byl > £8),
i=0 j
g-1

A, = Z X 621(1b,; — bl > 1b,),
i=0 jef
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for any set _# of indices. Since

1(18,;1 < 8) < I{ib,;| < (1 + )8} + I(Ib;; — b, > &5)

and

(bl < (1 - &)8) < I(1b,; < 8) + 1(1B,; — b, > 3),
then
(3.9) Sgg — A <89 <891 + Ay;
and since

(16,1 < £8) <I(Ib;| < 8) + I(1b,; — byl > 18,

then
(3.10) 323 - Az < 32.

Set g;; = f"(j/p;). In view of the identity at (3.4),

L (r+(1/2
b;; = kp; A/ (g, + ),
where

sup In;l = 0.
O0<i<qg-1;j

We shall assume that
(3.11) pitis? >/,

where 0 </ < . (The case where such convergence is only along a subse-
quence may be treated similarly.) Suppose first that # < «. Let Cg,C; > 0 be
such that the set _#’, of integers j with |g;;| > 2|k| "' Cq, has at least 2C; p;
elements for all i > 0 and all sufficiently large n. Then a certain subset # of
7' consists entirely of integers j such that |b;;| > Cop; */?, and has
between C, p; and 2C, p; elements for all i > 0 and all large n. We shall use
this _7 in the definition of s,; and A,. Note too that, for some Cg > 0 and all ;
and j, |b;;| < $C§/%p; "+ /?). Therefore,

q-1
S352 Y L C&p @ VI(Cypi @D < 8%)
i=0 jeg
(3.12) a-1 1/@r+1)
‘ > 06207 Z pi—ZrI{pi > (08/82) / +1}

i=0
> 0984r/(2r+ 1)’
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the latter inequality requiring our hypothesis that p = O(6~2/@"*D), Fur-
thermore, by Bernstein’s or Bennett’s inequality,

qg-1
E(Ay) = ¥ ¥ b%P(lb; — byl > 1b,)

i=0 jef
<2 E 2 b} eXp{ Cyon min(b ”,|bu|p—1/2)>
i=0 jef
g-1
=0| ¥ p;*" exp{~Cy;n min(p; @7, Pf('”))}]
i=0

(3.13)

O{p—Zr Z 2—2ri exp(_Cunp—(r+ 1)2—(r+ l)i)}
i=0
— 0{p—2rfwx_2r—1 exp(_Clznp—(r+1)x—(r+1)) dx}
1

— O{n—Zr/(r+ l)fwx(r—l)/(r-(» 1) exp( _C12x) dx}
0

— O(n_z’/(’“)).

Combining (3.10), (3.12) and (3.13) and noting that by hypothesis 6 >
C(n~!log n)*2, we deduce that, for sufficiently large n,

(3.14) E(s,) = 895 — E(Ay) = 2Cy8%7/@r+D,
Suppose next that, in (3.11), / = «. Then, using (3.4),
Suplbijl < Cl-pi—(r+(1/2)) < Clp—(r+(1/2)) <5,
J

whence it follows that, for all sufficiently large n,

g-1
So1 = Spa = 2, X bl =1t(),
i=0 j
where
t(u) = 2 T k%p; @ V(g + my)n
i=0 |]|<upz
For any finite © > 0,

q-1
2 —@r+1),2
Y X «Pp Vgl +o

g-1
t(u) = YD pf(z’“))
i=0 |jl<up; i=0 |jl<up;
q 1
= ( K?p f Fo +0( Y’ )
i=0

— K2(1 _ 2—2r)_1p—2r[u f(r)2 + O(p—Zr)’
—u
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and since ) is monotone in the extreme tails then, by a similar argument,
for sufficiently large u > 0,

() = t(u) = (=270 ([ [ o).

Therefore,

(3.15) Sp1 = Spp ~ k(1 - 2_2r)_lp_2rff(r)2~
By Bernstein’s or Bennett’s inequality and for all sufficiently large n,
q—1
E(Ay) = X Lb2P(1b; — byl > d)
i=0 j
q—-1
(3.16) <2 ZO L bl exp(—56°f;;'nb?)
i=0 j
q-1
=0( E Zblzj) = 0(831),
i=0 j

the second-to-last identity following since n6% — «. By (3.9), (3.15) and (3.16),

(3.17) E =o(p™%),

sy — k2(1 — 2_2’)_117_%/10(”2

as n — o,
Step 3. Bound for

™ s

S3=
i

X b3
q J

Observe that, for large n,

— _ 2
sg= 2 L K’p; (2r+l)(gij + ;)

i=q j
< 2K2 Z pi_(2r+1)2gi2j
(3.18) i=q j
= 0( > pi_zr)
i=q

— 0(pq—2r) — O{min(p—Zr’ 84r/(2r+1))},

using the fact that p2"*' 6% - ® and g — .
Step 4. Bound for
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Observe that
A 2 9 ) )

nE(b; — b)) = [ () A(y +J)/p} dy — b,

so that, since [¢2 = 1 and the extreme tails of f are monotone,
A 2
(3.19) ZE(bj - bj) =n"'p +o(n " 'p).
J
Set Y, = p'/%p(pX, — j) — b;. Then

(320) nZZ(l;j - bj)2 = Zn: ZY;I% + EZ Z Jk1 sz'

k=1 j 1<k, ky<n j
kyvhs
Now,
n 2 2
n-lE{ Y X(vi —EYJ.,‘%;)} =E{Z(Y EY )}
k=1 j J
and
%EY,%SpM(le —i)’+ Lo}
J
< p(sup ¢2)(supp & + 2) + [ 2
Therefore,
(3.21) Var(n Z Y, ) = 0(n"%p?) = o(n"?p?).
k=1 j

Furthermore, if supp ¢ C( v,v), then

E( LY LYY,

1<k, ky<n j
ki#ky

= Z Z ZE ZZ E( Jik1a .]2k12 .]2k21Y12k22)

J1 Jo 1<kij,kia<n 1<k, , ko<n
kii#kis ko1 # koo

= O{ Z Z ZZ E( kl J1» sz.]2leJZk )

J1 Jo 1<ky ka<n
ki#ky

(3.22) Jr e

x{pYV%(pX; — j5) — bjs)

x{pY%(pX, — J;) — )] |)

- o(n22 CIE[{p % (X, - j1) - bu}{p/ % (X, — 1) — bj1)
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= O[nzZ Y {PEl¢(pX; —j) $(pX; —Jjo)| + |bjlbjz|}2]

J1 Ja:lji—Jel<2v
2
— 2 2
= O{n + ij )}
J

= 0(n%p).
Combining (3.20)—(3.22), we deduce that

"a‘"{ X (6 - bj)2} =o(n""p%),

J

L[ AG+im

which together with (3.19) implies that
(3.23) sy =o(n"'p).

Step 5. Conclusion. Observe that

n 2 N PR R 2 A
[(F=£) = E(b;=b) + L L(b,—b,) 1(16,1> 9)
- Pyt

(3.24) ! oot S
+ ¥ LopI(lbl<8)+ X LbZ.

i=0 j i=q J
Combining this formula with (3.8), (3.17), (3.18) and (8.23), we deduce that,
provided p? *%62% — o,

E‘/(f—f)z - {n_lp + k%1 - 2—2f)'1p-2rff<r>2}

If p27*152 is bounded, then, by the same sequence of results but with (3.14)
replacing (3.17), we obtain

=o(n"'p+p7?).

fE(f—f)z > nlp + 10, 847/GTHD 4 o(n"2r/@rHD 4 gir/@rDy,
When p?7+1 82 is bounded,
p= O( 5—2/(2r+1)) — 0{(n/log n)l/(2r+l)}’
so that n™1p = o(n~27/@7+D) and
fE(f*_ f)2 > 10, 84/@r+D 4 o(n 2r/@r+D) 4 gér/@reD)y,
It follows that

inf /E(f“_ f)2 > 01484r/(2r+ 1)’

p:p27'+182scl3

for all C;3 > 0. O
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ProoF OF PROPOSITION 2.1. We refer to parts of the previous proof for
estimates of various quantities. In particular, by (3.8), (3.16), (3.23) and
(3.24),

fE(f—f)z =n'p+ss+o(nlp+ s4r/@r+y,

where
q-1
ss= L LbEP(1b,l < 8).
i=0
[Note that n=27/@r+D = o(§47/@+ )] Since p = o(n'/@"* D), then
(3.25) JE(f - )" =85+ o(84/2D),
Let £ €(0,1) and set

0
851 = Z Zbizjl{|bij| <(1+ 8)_18>’
J

i=0
q—1
s= L Lb3I{Ib,l < (1-2)"5),
i=0 j
Since
Klb,l < (1+ &) "6} <I(1b, < 8) + I(1b,; — by, > ¢lb,)
and
1(1bl < 8) < {1bl < (1 — £) '8} +I(1b; — byl > elb),
then
(3.26) s5; — E(Ag) <s5 <s5 + E(A3).
Arguments similar to those leading to (3.13) may be used to prove that
(3.27) E(A;) = o(847/@r+h)y,

Set a =(1 + &) and let B = |k|a~!. Tedious but straightforward calcula-
tions may be used to prove that, under the conditions of Proposition 2.1,

q-—1 g-1
. —(r 2
Y Yb2I(Ibl < ad) ~ X Y AxfO(i/p;) pi /D)
=0 i=0 j
X I{|Kf(r)(j/Pi)Pi_(r+(l/2))| < a8}
q-1
~ kY p ¥ [ FO(x) I B8N FO(x)] < pf /D) dx
i=0

= S53,
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say. If p?7*%62 - /> 0, then

qg-1
S5z = K2/f(r)2 Z pi—-er{( Ba—llf(r)|)2/(2r+l) Sl%}]
i=0

~ sz—zrff(r)z y 2—2n’I<( Bf(r))2 S/2(2r+1)i}>,
i=0
while if p?7*15% - 0,
S3 ~ Ksz(r)z(l _ 2_2,)—1(Ba_llf(,)l)—u/(zfn)
= K2(1 _ 2_2r)_1(5/3)4r/(2r+1)f|f(r)|2/(2r+1).

The proposition follows on combining these two results with (3.25)-(3.27) and
taking & arbitrarily small. O

ProOF OF PROPOSITION 2.2. Let 0 < £ <1, let s; be as in the proof of
Theorem 2.1 and define

Se1 = qf ZE{(BU - bij)z}z(lb,.,l > &8),

i=0 j
g-1 o 2 A
S0 = ¥ LE|(by— by {16y — byl > (1 + a)a}].
i=0 j
Since
Hlb; = bl > (1 + )8} < I(1b;1 > 8) + I(1b| > £3),
then
(3.28) Sgg < 81 Tt Sg1-

The argument leading to (3.5) may be used to show that
(3.29) sgp = o(n~2r/@rrhy,
More simply,

q-1
(3.30) s 2 82 L LP(lb; — byl > (1 +2)8}).
i=0 j

We shall provide a lower bound to the probability on the right-hand side.
Let p denote the model of £, and choose 1 > 0 so that f is continuous and
bounded away from zero on the interval (u — 27, u + 27). Set 7 = {j:
[w — jp; | < m}, which set has at least Cy; p; elements for some Cy5 > 0. By
selecting n sufficiently small we may ensure that var(b;;) > n 1 +
&) 2supf for all j€7 and 0 <i <q — 1. If b;; — b;; were normally dis-
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tributed, then it would follow that, with N denoting a standard normal
random variable,

P{lb;; — byl > (1+£)8} = P{IN|> (1 +¢)*(sup £) /> n'/%)
~2(1 + &) *(sup )"/ *(n'/%) "
X exp{—3(1 + &)*(sup f)—lnﬁz}
> Cy(log n) " '/? exp{—%(l +&)*(sup £) " 'C? log n}

A variant of this result may be established rigorously using methods of large
deviation theory:

P{ib; - b,1 > (1+¢)5)
> Cy;(log n) %exp{—$(1 + £)°(sup f) "'C2log n} — Cygn?,

uniformly in j €% and 0 <i < ¢ — 1. Combining (3.24) and (3.28)-(3.31) we
see that, with B =1 + ¢,

(3.31)

q-1

JE(f=F) = CisCir(log n) /5% T piexp{~1B°(sup ) "'C* log n)
i=0

_ o(n—2r/(2r+1))

> Cyo(log n)“1/262Pqn—(1/2)3602/(supf) — o(n~2r/@r+ Dy

as required.

A difficulty in deriving (3.31) using classical arguments is that the sum-
mands in the series represented by n(b;; — b;;) do not have bounded
moment-generating function. Essentially, the reason for this is that the series
contains a great many terms which are identically zero, and it has been
normalized to allow for this fact. To circumvent this difficulty, we condition
on a quantity which is virtually equal to the number of nonzero terms. In
more detail, suppose supp ¢ € (—v,v) and let Y;; have the distribution of X
conditional on X € ((j — v)/p;,(j + v)/p;). Write m;; for probability that X
lies in the latter interval and define

N;= L KX, € ((J - v)/pi,(J +v)/p)},
k=1

for j€ and 0<i <q — 1 Write Y,,;, #> 1, for independent random
variables, independent also of N, o with the common distribution of Y; o Set
vij = E{y(p;Y;; — jh,

N N
- S = P Y(p Yy —J) T, = kZ {l//(PiYk -J) - Vij}'
k=1

=1
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Then S;; has the same distributions as np; '/ 2p, ., and so

ij
P(1b,; — b1 > B8) = P(IS;; — np; V/2a b, > Bnp; /%)

P{IT + (N;; — EN;;)v;;l > Bnp‘l/zé}

> P(IT,;| > B np"l/28) P(IN,; — ENj| > eBnp; /%8 /|v;5)
> P(IT,;|/NY? > B*/*np; /%)

— P(IN,; — EN,j| > Bnp;'/%/\v,}|) — P(BN;; < EN;;).

Result (3.31) follows from this inequality, from application of Bennett’s or
Bernstein’s inequality to large deviations of N;; — EN;; and from classicial
arguments of large deviation theory (conducted initially conditional on N;)).
For the latter, see, for example, Linnik (1961a, b, 1962), Rubin and Sethura-
man (1965) and Petrov [(1975), Chapter VIII]. O
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