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MARTINGALE EXPANSIONS AND SECOND
ORDER INFERENCE!

By PER ASLAK MYKLAND
University of Chicago

The paper develops a one-step triangular array Edgeworth expansion
for multivariate martingales that are, essentially, asymptotically ergodic.
Both discrete and continuous time are covered. The expansion is in a test
function topology. We investigate when the expansion has the usual
Edgeworth form, looking in particular at likelihood inference, including
Cox regression, and at inference for stationary time series. The triangular
array nature of the results make them useful for bootstrapping, and a
result pointing in that direction is shown for Cox regression.

1. Introduction. Edgeworth expansions are an important part of statis-
tics. A computerized search of the Current Index to Statistics for the years
1980-1989 reveals 489 entries containing the word “expansion” in the title or
as a keyword, and most of these entries concern Edgeworth series in some
form. New expansions are being developed, or they are being used for
bootstrapping, Cornish—Fisher inversion, conditional inference, optimality
calculations and so on. References tackling broad expansion issues are, for
example, Wallace (1958), Beran (1987), McCullagh (1987) and Hall (1988).
Major recent breakthroughs in expansion theory include Bhattacharya and
Ranga Rao (1976), Bhattacharya and Ghosh (1978) and Singh (1981).

A feature of this research area is that the applications are far ahead of the
theory. Some very important statistical results, such as those in McCullagh
(1984) and Beran (1987), can be derived under the assumption that a
relevant Edgeworth series exists and has the usual form, without reference to
the underlying data structure, which may range from i.i.d. observations via
regression to time- and space-dependent variables. Such results can be much
more comprehensive than available results guaranteeing the existence of an
expansion.

The discrepancy between expansion results and their applications are the
most striking for the case of dependent observations. Results here are quite
new, and the theory is still in development. Important references here are
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708 P. A. MYKLAND

Goetze and Hipp (1983), Malinovskii (1986) and Jensen (1989), working with
mixing and Markov conditions. Earlier work includes Nagaev (1957) and
Statulevicius (1969, 1970).

This paper also concerns dependent variables, in the form of martingales.
We shall investigate the conditions for a multivariate martingale to have a
one-step asymptotic expansion, thus generalizing the results in Mykland
(1992, 1993). Specifically, we shall consider the behavior of a triangular array
(/tN”)OSthN, N =1,2,..., of p-dimensional martingales ( = 1,..., p). The
expansion is in a test function topology.

Martingales are particularly important in inference [see, e.g., Klimko and
Nelson (1978), Hall and Heyde (1980), Chapter 6, Andersen and Gill (1982),
Andersen and Borgan (1985), Tjgstheim (1986) and Wong (1986)]. For exam-
ple, they come up in likelihood inference and, more generally, when using
martingale estimating equations. The martingale is the first order term in
the Taylor expansion relating the estimator to the derivatives of the likeli-
hood or the estimating equation. A one-step expansion for the martingale
term can then usually be turned into one for 6, — 6, appropriately normal-
ized (or for other common approximate pivots, such as the signed likelihood
ratio statistic). However, we shall not investigate in detail the conditions for
this to hold. Such conditions have been studied by Skovgaard (1981a, b) for
the case of pointwise convergence, and for our test function topology the
conditions typically will be considerably weaker. Some results of this type
(studentizing the martingale) are included in Mykland (1992, 1993).

A major question, and one on which many results depend, is when is it
true that the expansion has the usual form

(1.1) P(N12/N1 < xf) = ®(x; k) + NV (x),
where, using the summation convention,
(1.2) dv(x) = ¢(x; k) {3077k (x) + §x"I*h,(x)} dx.

We have here used the notation of McCullagh (1987); ® and ¢ are, respec-
tively, the p-variate normal c.d.f. and density with mean 0 and covariance
matrix « = k"/. The matrix «, ; is the inverse of «"/, and the Hermite
polynomials are given by

= J
hi = Ki’jx Py

(1.3) hi;=hh, — K

ij i,J?

hijk = hihjhk - hin,k[3]’

where [3] denotes summation over the three different expressions for %;«;,
which arise by permuting i, j and .. We shall use similar notation in the rest
of the paper. :

It turns out that, apart from “lattice problems” (the convergence type is
discussed in Section 2.2), (1.1)—(1.2) depends on a niceness condition on the
asymptotic behavior of the quadratic variation matrix of the martingale (to be
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defined in Section 2.1). We shall see that in parametric and partial likelihood
problems, the condition can be reexpressed as one on the observed informa-
tion, and that it is automatically satisfied in regular problems (Section 3).
Outside the parametric framework, the conditions can still be verified for
broad classes of nonlinear time series (Section 5). As an extended example,
we do a case study of Cox regression (Section 4).

It should be emphasized that there are a number of examples where
(1.1)-(1.2) does not hold. The example in Section 2.2 provides one illustration
of this. Earlier examples of nonstandard expansions can be found in, for
example, Woodroofe and Keener (1987) and Mykland [(1992), Section 2.3].

2. The martingale expansion.

2.1. When does the expansion have its usual form? The asymptotic behav-
ior of martingales is largely controlled by their quadratic variations. If
(/tN”)OstsTN, N =1,2,..., is a triangular array of p-dimensional martin-
gales, and if the time axis is discrete (¢t = 0, ¢, ¢,,..., Ty), one can define two
p X p-matrices of quadratic variations in the following way: optional
quadratic variation,

(2.1) [ M N, = LALT ALY

predictable quadratic variation,

(2'2) </N'i’ /N’j>TN = ZE(A/tI.,Vyi A/t].,vyj IJOTt(uN))'

Here, A/tlj u =/t]:’+'il -/ t{:’ ' and (F{V)) is a filtration or history with respect to
which (/)") is a martingale. If the time axis is not discrete, the quadratic
variations are obtained by taking limits in the above, subject to (/") having
sample paths which are right continuous with left limits (“cadlag”). This can
always be arranged [cf. Liptser and Shiryaev (1977), Chapter 2]. For a short
and self-contained rigorous development defining (2.1)-(2.2), see Jacod and
Shiryaev [(1987), Chapter I]; for an example of quadratic variations for a
martingale which is not time-discrete, see the discussion of Cox regression in
Section 4.

A law of large numbers for either one of the two quadratic variations is the
main condition for a central limit theorem for (/) [cf. Hall and Heyde
(1980), Chapters 3 and 6].

For expansion purposes, it turns out to be convenient to consider a
combination of the two matrices above, namely, the mixed quadratic varia-
tion,

(23) (/N,i’/N,j)TN — %[/N,i’/N,j]TN + %(/N,i’/N,j>TN'

The structure of the expansion is determined by a certain asymptotic projec-
tion of the (/N, /N )r,-matrix on the /%"A;‘-Vector. We assume that there
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exists a Borel-measurable function p/(z!,z%,..., zP), symmetric in i and J,
so that
Ni JN,j
Nl/z( (%, 2% ), B Ki’j)
N

(2.4) .

e

PI\UN dx; Ix; ’

for all bounded measurable Hessians d2g(x)/dx; dx;. The subscript “as”
means asymptotically—(2.4) should be taken to mean that p®’/ is some
function so that any subsequence has a subsequence for which

(N M,
N

g()

ox; &x

N‘l/z/ﬁ’k -, Z" and Nl/z(
(2.5)

- Ki’j) >, €Y jointly;

E[¢V - pi(Z)] ———

It is clear from (2.4) that pfj ~only needs to be defined up to the equivalence
relation ~ , where p" ~ p if they are both symmetric in i and j, and
satisfy

’g(2) _

ELpt(2) = (D)) 5

for all bounded Hessians d°g/dx; dx;. One can take

N,i N,j
pij=Eas(N1/2(——-——-——(/ ’]\/; )TN —Ki’j)

provided the right-hand side is well defined. o
Ignoring “lattice problems” and assuming that «*/ is positive definite, the
condition for (1.1)-(1.2) is that p*/ can be taken to be linear:

I/TI‘\I[\;.
VN |’

THE LINEARITY CONDITION:
(2.6) p(Z) ~ viiZt + v,

Exact statements to this effect are contained in Theorem 1 and Proposition 2.

ExAMPLE. Consider estimation of ¢, in the model
p .
Y, = L X6+ &,
i=1

where X; forms a stationary process and where the &’s are iid., with ¢,
independent of X, n < t.
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If 6 is the least squares estimator, then 6,—6,=S N.i 1/ x> Where SN i 18

the inverse of Si§ =XV XiXJ/ and where / J 1s the martmgale given by
=Y. _.X]e, The quadratlc variations of /7 are[/‘ Ay = IV  XIX] g2

and (/ Y, /)N = Var(£)S%. Weak moment and mixing assumptions [see, e. g "
Hall and Heyde (1980), Chapter 5, Chan (1990) and Tjgstheim (1990)] now
yield that /y i and its quadratic variations are asymptotically jointly normal.
Hence p' can be defined by the asymptotic conditional expectation, and the
linearity condition is satisfied.

Conditions for the expansion to hold (cf. Theorem 1 below) can also be
verified under mixing assumptions; see Proposition 9 in Section 5.2 for an
example of this.

If (2.6) is satisfied, then the quantity appearing in (1.2) in the place of the
third cumulant is given by

(2.7 Kbk = vijka’k[3].

Under conditions which are somewhat stronger than those necessary for the
expansion to hold (see Proposition 7), one can show that

2. Lik — —E/N o J/Nk
(2.8) K Aim

The linearity condition (2.6) is usually satisfied in inference problems (cf.
Sections 3-5), but there is no all-embracing guarantee. If it does not hold,
then (1.2) is replaced by

a
2 paB( ) — By
axﬂp ( ) Ka,Bp ( )

1
dv(x) = Ed)(x; K)

(2.9) +p () (7ka, ;) (% )

d ,
—ZEpaﬂ(x)(lei’B) dx,

o

subject to (some version of) p being twice differentiable and not growing more
than exponentially as |x| - .

These conditions need not hold either, in which case the signed measure
dv(x) must be abandoned altogether. The expansion result, however, contin-
ues to hold, in a way. We shall now discuss its general form.

2.2. A more general asymptotic expansion. The expansion which holds
under the fewest assumptions has the form

(2.10)  Eg(cy'/2/}) = Eg(N(0, k¥7)) + ryd(g) + o(ry),
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where J(g) is a functional of g replacing the signed measured dv(x), and cy
and ry are convergence rates replacing N and N~ !/ Instead of (2.4), we let
p" be symmetric and satisfy

N,i N,j
. r‘l((/ s )TN_Ki,j)

as N

. N
(2.11)

A2\ 9t (28
_plj N g N =0:
1/]7 ox; axj 1/]7 ’

J(g) is then given by
2.12 J lE N(Z i Z
(2.12) (&) = SEp™( )Ea_xjg( )-

The expressions (1.2) and (2.9) now follow via integration by parts, subject, in
the latter case, to some niceness on the part of p’/. If p*/ is not that nice, the
expansion (2.11) is not defined except for twice-differentiable g’s. In general,
it also only holds for such g’s.

We shall denote this kind of test function convergence by 0,(-), and write

(2.13) P(cy'/22 < x) = ®(x56) + ryd(7) + 0y(ry).

This should be taken to mean that (2.10) holds uniformly in classes % of
functions g that satisfy the following: (i) [|g(x)| dx < %, uniformly in C, and
{£,x28(x), g € C} is uniformly integrable (here, § is the Fourier transform
of g, which must exist for each g € C); or (ii) g(x) = f(z'x,), with L,z%z¢, f
and f” bounded, uniformly in #, and with {/": g € &} equicontinuous almost
everywhere (under Lebesgue measure).

Case (ii) is important in that it covers one-dimensional martingales and
multidimensional characteristic functions.

EXAMPLE. As a case where the signed measure » does not exist and where
one really needs a very weak convergence type, consider the martingale array
from Example 5 in Hall and Heyde [(1980), Chapter 3.6, pages 82-83].
Martingales are given by (with some change of notation)

where

XN =

n

N—1/2Yn, iflSnSmN,
n=12212Y 1(/N > 0), ifmy<n<N,
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the Y,’s being independent N(0, 1), and m, = |N(1 — 8y)], where 1 > §, | 0.
In this case,

(N, Ny =N"lmy + 2N"Y (N - my)I(£Y > 0),
whence
(N, M — 1= 8y(2L v 0 — 1) + 0,(8y).
In view of Theorem 1, an expansion [in the sense of (2.13)] exists when ry?

is O(85') and O(N'?), or smaller. In the case where ry = 8y [with 8y =
O(N~1/2) or smaller], Proposition 3 yields that

p=E (2", T - 1) 147),
that is,
p(z) =2I(z > 0) — 1.
Hence the linearity condition (2.6) is not satisfied and » does not even exist.
In the case where ry! = 0(85'), p is identically zero, so the expansion term is

also zero. Even then, however, a pointwise expansion does not exist when
ry = O(8/?) or smaller [see the discussion in Hall and Heyde (1980)].

Before continuing our discussion of the expansion result, we digress by
defining the general kth order variations at time t. The optional and pre-
dictable versions are, respectively,

(2.14) [N, oM, N = X AN AL AL

tu+1<t
and
</N,i1, /N,iz’ e, /N,ik >t
(2.15) - E[A7Nn AsN A o AN FI],
ty t, t, ty

tu+1<t

for discrete time martingales. Equation (2.14) extends to general cadlag
martingales by taking the appropriate limit, while (/™1 ..., ZV*) can be
defined as the compensator of [#V", ..., /N ] [see, e.g., Jacod and Shiryaev
(1987), Chapter I]. Equation (2.14) is clearly also defined for cadlag semi-
martingales.

We now resume the discussion of when (2.13) holds. It remains to state
some integrability conditions.

(A) For each i, there are k;, k;, k; < k" <k, so that
SN N N ‘ . ~
Y SR I(k, < it (#N, /M), <B,)
N

is uniformly integrable.
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(B) For the same k;, %,
P(I&i < C}Trl(/N’i, /N’i)TN < %,) =1-o(ry)

for each i.

(C) Foreach i,
E[/N’i,/N’i,/N’i,/N’i]TN = O(cfvrf,).

The expansion result is now as follows.

THEOREM 1. Let (/V), ., <r, be a triangular array of zero mean cadlag
martingales. Assume conditions (A)—(C) and that p" is well defined. Then
(2.13) holds. O

This result is proved in Section 6, along with the following proposition.

PROPOSITION 2. Assume the conditions of Theorem 1. The expansion term
has the usual form (1.2) if and only if k"7 is nonsingular and the linearity
condition (2.6) is satisfied. In this case, if k“/* is required to be symmetric,
(2.7) holds.

A number of issues related to Theorem 1 are discussed in the context of the
less general expansions in Mykland (1989, 1992, 1993). This includes studen-
tization, confidence intervals and a putting into context of the test function
convergence.

The conditions for the expansion can be formulated in terms of the optional
or predictable quadratic variations. If (/N ZN7 /NkyL se3/2ry —p phik
(a constant) for all combinations of indices, then, typically,

Ni yN,j1. _ ¢ sNii yN,j
1g L0 m Ly n' I, won /208 + Uy,
CNTN ’ N

where Uy = O,(1) and, asymptotically, has zero expectation given cy'/ Z/fN”.
Hence, we get the following formulas which relate to the linearity condition
(2.6):

(N Ny = [N 2 e, 2
(2.17) enTy = g aen )"~ g U
and
oA NIy (N N 1 . 1
(2.18) ( o = §n"”’“'<k,ac&”2/%vf *3Un

CNTN

Rigorous conditions under which (2.16)—(2.18) hold can be deduced from Hall
and Heyde [(1980), Theorem 3.1 and Corollary 3.2]. Alternatively one can use
the following.
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PROPOSITION 3. Suppose that condition (C) of Theorem 1 holds. Then
conditions (A) and (B) on (/N /¥ ’i)TN are equivalent to the same conditions
imposed on either [ /N, /N ’i]TN or (/N N ’i)TN. Suppose furthermore that
NN NEY /e 2y converges in probability to a constant for each
u € [0, 1], with (/N 7N, /N‘k>TN/c§/ZrN —p n"9* Then, if k"’ is nonsin-
gular, (2.16)-(2.18) is valid.

In the above result, if Ty is not in the time axis for (/™ /N7 /Nty
take the closest value to (or the limit on) the right.

2.3. Average coverage probabilities. The o, topology is necessary for the
expansion to hold in general. However, it is not always a necessary evil, as it
can be used in connection with average coverage probabilities [cf. Woodroofe
(1989)]. Unlike this paper, however, the expansions with which we are
dealing here appear to lend themselves to average coverage probabilities in
contiguity neighborhoods. (The paper cited discusses average coverage in a
global sense.)

To see what happens, we shall focus on a multivariate (2, 1) exponential
family, that is,

dPy. s

1
(2.19) 7,

1
= exp(&’/, - —2—5'</,/>t5),

where /, is a martingale under P,. (In this section, we shall mostly use
matrix notation, as we shall be taking square roots of matrices—always the
symmetric square root; k will denote the x*’/ matrix.) This is, for example,
the model in Woodroofe (1989), and it is also the model for inference for the
drift in stochastic differential equations [see, e.g., Lipster and Shiryaev (1977,
1978), Basawa and Prakasa Rao (1980), Chapter 9.5, and Kutoyants (1984)].
The extension to more general models is fairly straightforward.

In this setup, suppose one is interested in average coverage in a contiguity
neighborhood of 6, specifically,

(220) ¥, = fP9+5t,1/2(</,/>}/2(é — 60— 8t71/%) e #)¢(5) ds,

where ¢ is a probability density. Note that

2,00\
det(<——t——>i) — det(k) ?

(2.21)
= — i—1—(det k) ' ?trace(k %) + o -
2Vt PA\vt
[see, e.g., McCullagh (1987), Example 1.16, page 21] and
| ok 1
(2.22) S0 \/t_>‘ — kY2 = ST o, (£71/2),
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Hence, under reasonable conditions on ¢, Taylor expansion yields
Y. = Eyg.(B;'4,) + t ?R, + o(¢t"1/?),
where
g:(%) = [I(x = k2 € F)exp(N'k'/2x — 1N kA){(A) dA
(2.23)
= [ exp(3(x'x = y'9)) (k12 (x ~ y))det(x) * dy

and

=
I

—3E [I(x7/?Z — A"V € %)exp(N'Z — 1N'kA)

(2.24) X{£(N)trace(x) + VE(A) &\ d A

= —3E [I(V € @){£(Ntrace(x To(k/2V + k)))
+VL() kp(k2V + kM) A} dA,

where V ~ N(0, I). In many instances g, will now satisfy the regularity
conditions imposed on the test functions. For example, this is the case if # is
compact and { is compactly supported. To get the final result, one Taylor-
expands E,g,((7, /); "/*/,) around E,g(t /% 1/2/)),

Egc(</, />t_1/2/t) _ Egc(t_l/zk_l/zft)
= —¢1/2 %E Vgc(V)K_lp(Kl/2V)V+ O(t_l/2),

and then uses Theorem 1 on Eg(t /% !/2/)). Note, incidentally, that
conditions (A) and (B) above assure the uniform integrabilities needed.

(2.25)

3. The case of likelihood inference. The structure provided by likeli-
hood estimation makes it possible to relate when our conditions hold to more
standard quantities and criteria. This is true both for parametric inference
and for partial likelihood in the sense of Andersen and Gill (1982) and Wong
(1986). First of all, the requirements imposed on the quadratic variation can
be rephrased as ones on the observed information (Section 3.1). Also, contigu-
ity arguments show that the linearity condition (2.6) is satisfied in regular
problems and that, typically, the convergence rates are as for i.i.d. observa-
tions (Section 3.2). Thus, in the 0,(N"!/2) sense, the usual Edgeworth
expansion (1.1)-(1.2) continues to hold in fairly great generality. It follows
that the same is true for the standard expansions for o,/(6, — 6,,;) [where
on/ = VN 8 (Kronecker 8) or is the square root of the expected or observed
information] and for the signed likelihood ratio statistic. In Section 3.3 we
discuss whether this extends to conditional properties, and there it turns out
that the picture is more mixed.

The purpose of this section is to see what can be shown without imposing
conditions on the dependence structure such as stationarity, mixing or geo-
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metric ergodicity. The implications of such assumptions are discussed in
Section 5.

Apart from in theorems, we work with fairly regular situations in the
sense that ry = cy'/? = N™'/2, the parameter 6, does not change with N,
Oy — 6, = O,(N~'/?) and the log-hkehhood L¥(0) has as many derivatives
as requlred denoted by LYi(0) = &LN(O)/ﬁO’ LYU(9) = 92LY(0) /90" 367
and so on.

3.1. Square variation and observed information. The connection between
the quadratic variation and the observed information is given by the Bartlett
identities for moments [see, e.g.,, McCullagh (1987), page 202]. In their
conditional version, the second and third are

(3.1) E(ALYH + ALY ALY | 7M) = 0
and
(3.2) E(ALY#* + ALY ALY-7*[3] + ALY ALYJ ALV* | 7)) = 0,

where A refers to any time increment from ¢ on. All quantities are evaluated
at 6,. From (3.1) it now follows that

(3.3) il = LN 4 (LN, IM9),
is a martingale, and (3.2) states that
(3.4) (mMNA LNk, [38] + LNk
is a martingale. Hence, typically, if
N,ijk
Ly

(3.5) —p AY*  (a constant)

N
and if there is a symmetric p¥/ satisfying

N.ij N, 2 N,-
Nl/z( Ly, . Ki’j) _ i Lz, 0 p L7, -0,
N VN dx; dx; VN

\

(36) E,

then p¥ is defined, and one can take
(3.7) pU(Z) = —BY(Z) — EXThy(Z).

A diversity of regularity conditions can assure this. The following is an
example.

PROPOSITION 4. Assume the following that the first four Bartlett identities
hold; that «% is nonsingular; that L% Jk /N converges in probability to a
constant for all u €[0, 1] and for each i, Jj, k; and that, for each i,
ELN i = O(N), E[LM#, [Nii], = O(N) and ELN iiii = O(N). Then
N1/2(LN "J/N + kb7) can replace Nl/z((LN’ LY7)p /N — k"7) in the condi-
tions of Theorem 1, and the expansion is given by (3 7) and (2.12) [or (1.1)
and (2.6)-(2.7) or (2 9), as the case may bel.
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As in Proposition 8, if «T); is not in the time axis for L'’ take the closest
value to (or the limit on) the right.

3.2. The linearity condition in regular problems. Condition (2.6) can be
verified with the Hajek—-Le Cam convolution theorem. Set Qi/(8) = (LV/(9),
LY7(0))5, /N — k“7(0), where the 6’s on k"’ and the quadratic variation
indicate that the relevant expectations are taken with respect to P,. Under
conditions set out in Le Cam (1972), Roussas (1972) or Millar (1985), the
convolution theorem now yields that N1/2Qij(6,) is asymptotically indepen-
dent of N'/2(6y — 6,). If Q*(6%5)/N —p, w'* (a constant) as N —  when-
ever (6% — 6,) = O,(N~'/?), then a Taylor expansion gives that
(3.8) N'2Qi(65) = N'*Qi(by) — N'/*(8y — 65, )w'* + 0,(1).

The linearity condition is, therefore, satisfied.

Another approach is to take the previous section as a point of departure
and to study the linearity condition for the observed information. As an
illustration, we here state a formal result. The subscript “as” is as defined

after equation (2.4); “Oy ,;” means that the relevant limits in law are under
the sequence P, .

PROPOSITION 5. Suppose that «>7(0) is differentiable and nonsingular at
0, and that L’}’N( 0) is thrice continuously differentiable in a neighborhood of
0o. Also assume that, whenever 6y — 6, = O(cy'/?), it holds that
LN’”k(GN)/CN = /\”k + Op(l), LN’U(ON)/CN = —KL’J(ON) + Op(rN) and

LVii(gy) LV(6y)
EON,as[rI\_/'l( -

4 i) || = Byl iyt | T + k(0) |
N Y
Then p* from (3.6), provided it exists, satisfies the linearity condition (2.6).
Also, unless 0 < limsupy, _,./rycy %l < », p¥ = 0 (a.s.).

It follows that, if necessary by rescaling, we can take ry = N™ /% ¢y =N,
whence the expansion gets the form (1.1)-(1.2). Also note that, even when the
conditions of the proposition do not hold pointwise (in 6,), they typically hold
almost everywhere under Lebesgue measure [cf. Le Cam (1986), Chapter 8].

Additional conditions and results of this sort are stated in Mykland (1992)

for continuous (2, 1) exponential families, and these results generalize under
appropriate assumptions.

3.3. The question of conditional inference. We shall here concentrate on
the one-parameter case. Further pursuing (3.4) yields that, under weak
regularity conditions, the signed square root of the likelihood ratio

W = sgn(0y - 00)<2(A1‘T’N((3N) — A¥( 00))>1/2

has the same one-step expansion as Lj'(8,)/(LV'(6,), LN'(6,))%?, thus
validating its usual unconditional convergence behavior up to 0,(N~/2).
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As a major point about W is its conditional behavior, it would be nice if we
could verify that, too. This poses some serious problems, however.

McCullagh (1984) shows that W is second order independent of all second
order ancillaries, provided a joint expansion exists for W and the candidates
for second order ancillaries. In particular, the most natural local ancillaries,
such as those discussed in Efron and Hinkley (1978) and Cox (1980), require
a one-step expansion for the observed information (jointly with L") to show
their second order ancillarity. At the time of writing, it looks as if this cannot
be done purely with martingales, however. One possibility is that one would
need to use, for example mixing, Markov or ARMA process assumptions to
get such an expansion. We are still investigating this question.

This raises the question of whether one can show the existence of any
second order ancillary under the weaker conditions with which we are
dealing. The answer is, typically, in the affirmative, but the resulting local
ancillaries have less statistical meaning than those proposed in Efron and
Hinkley (1978) and Cox (1980). Such ancillaries can be obtained by consider-
ing statisties of the form v7 ( 6y), where (1Y (6)), -, - r, is a martingale under
P, for each 6. These can be the martingales falllng out of the Bartlett
1dent1t1es [i.e., (3.3) etc.] or they can be created via a Girsanov-type construc-
tion [see, e.g., Jacod and Shiryaev (1987), Theorem I-3.11, page 155]; vz N(6y)
can be approximated by

Vﬁv( 0,) + (éN - 00)(VTN1(00) - (VN(OO)»LN’I(OO))TN)

(i = 00)(™ (000, LY (00}, + (B — 00y 22,

and thus fitted into the martingale expansion framework. Second order
ancillaries can then be found by the method of McCullagh (1984).

4. Cox regression: a case study. It is worthwhile to look in particular
depth at the Cox model for censored survival data [see, e.g., Cox (1972),
Andersen and Gill (1982) and Andersen and Borgan (1985)]. This is both
because of its wide use and because it presents a somewhat nonstandard
application of the martingale expansions. Features of the latter are that,
typically, Ty = 1 (or, more generally, a constant independent of N) and that
the optional and predictable variations do not have the discrete forms
(2.1)-(2.2) and (2.14)-(2.15).

We work with the form of the model studied in Andersen and Gill (1982).
The point processes N ,,..., Ny, are defined on [0, 1]; N;, has intensity

(4.1) Ay = Yti)‘o,t eXP{Oo,thi’j}’
where (Y}}) is predictable and is 0 or 1 according to whether the ith process is

under observation, Z>/ is a predictable covariate process, 6, ; are parame-
ters to be estimated and A,, is a baseline intensity. The N, ,’s are assumed
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orthogonal in the sense that two of them do not jump at the same time.
Associated with N; is the martingale

(4.2) M, =N, — [A,ds.
0

In the notation of Section 3, the derivative of the partial log-likelihood at the
true parameter 6, is

(4.3) Ik = fo"‘zg’k M, j Zimy AF dM,

where x*= 0if x = 0 and x~! otherwise, and where ¥ = Y , x;.

All of the above is in Andersen and Gill (1982), and a more detailed
description can be found there.
An important consequence of the orthogonality of the N,’s is that

(4.4) [Mil"“’Mik]t = 8i1i2"'ik]\]i1,t
and
t
(4.5) <Mi1""’Mik>t = 6i1i2'-'ik_/;)/\i1,s dS,
8, ... being a Kronecker 8. From this one can calculate the “variations” of

11l
L*. The first couple of them are as follows:

[z, = [ ‘221289 dN, | + A (Z8h, A7) (2805 A7) dN,

(4.6)
_[2]£)tZ:’i(Zf’jAB,sA:) dNa,s’
(L, LY, = (22280, ds
(4.7) °
[ (Z20 A3 ) (28925 (XS )X, dis;
[, L0, 1}, = ['ZeZe 2% N, ,

0

- ft(Z;"iAa’sX;)(Zsﬁ’f)\ﬁ,s};)(zv A, AL ) dN,
(4.8) 0

+[3]fZ‘” (2892 A7 )(27M0, A7) dN,

Y878

a,s?

—[3]/Z;"iZ;”j(Zsﬁ’k)tﬁ’sx:) dN,
0
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(L L3, LRy, = [Z22922928M, , ds
0
t . . —

4.9 —[8] Z&iZ2IN, \ZEMAg AP d
( ) []Ls s a,s(s B,s s)s

+2[ (Zo0 A3 ) (25925 X5 ) (270, X5 )R, ds.
Also,
(4.10) E[L, L, I, L], < 16E [ [(207) A, o + (280,03 )', ] ds.

0

These quantities can then be fed into the expansion theorem under various
scenarios. As an example, we shall show a result in a particularly simple
situation: each N, only jumps once, the covariates are bounded and the
patients are i.i.d. The result is on a triangular array form, making it suitable
for use also in bootstrapping.

PROPOSITION 6. Suppose that (N, ,, Y/, Z}/, j=1,...,p)y.,., are i.id.
PN fori=1,...,N, with (Z>/) bounded (uniformly in N ) and Y} becoming
0 no later than when N, , jumps. Suppose further that there are K‘ J and v/
so that

LoaNgligl,j (YN L N{ol N
(4.11) foE Z:"Z;7h s ds ,/;E (230, ) EN (2390 ) (EDy ) ds

= ki N"V/2pid 4 o( N-1/2)

and that there are k*7* so that

(4.12) ENAAIA* = bk + o(1),

where

(4.13) A= Y[z - EY(Z00 ) (ED,) ] au, .
0

Then the conditions of Theorem 1 are satisfied, as is the linearity condition
(2.6); kb7, v and kbP* are as given by (4.11)-(4.12).

5. General martingale inference. Outside the likelihood case, estima-
tors can still often be approximated by martingales, and finding a one-step
expansion for 6y — 6, (suitably normalized) then reduces by a Taylor argu-
ment to finding an expansion for a martingale. This is generally true when
using martingale estimating equations, estimating 6, by a 6y satisfying

i(6y)=0,i=1,..., p, where the Ly (6,)s are martingales. A major non-
likelihood example of this is the conditional least squares procedure of
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Klimko and Nelson (1978) [see also Hall and Heyde (1980), Tjgstheim (1986)
and Tong (1990)]; 6 is here the value minimizing

(5.1) Ly(0) = ; (Xpi1 = Ey(Xp1 1))’

In the following, we shall deal only with L ‘(0) at the true value 6, and
for this reason we refer to the martingale by the generic /

5.1. The form of the cumulant. In Section 2 we introduced the quantity
k' J* as deriving from a regression. We here tie it to a true cumulant.

PROPOSITION 7. Let (/, A]’V ') be a p-dimensional triangular array of zero-
mean martingales. Assume that, for each i, E[/ Ni & pNi  pNi N, ’]T
O(N) and E(YN[(/N, /N’)TN/N P ’]}15+5 0(1) for some 8 >0, and

that the linearity condition (2.6) is satisfied. Then

1
592 i,j,k — li __E/Nl/NJ/Nk
(5.2) K Aim
The result remains valid if O(N), VN, /N and 1/N are replaced by, respec-
tively, O(cxr?), ryt, eyt and (c3/%ry) ™t

Under stationarity, we can reexpress (5.2) as follows.

PRrOPOSITION 8. Under the assumptions of Proposition 7, supposing that
we are in a discrete time and nontriangular array setting, and that A/, =
4,1 —#, is a stationary process, then

(5.3) ki Ih = BEALE NI ALY + [3] L EACE(AL] A] — k')
t=1

with

(5.4) ki =EAN/S AL

5.2. Expansions for stationary processes. Estimating parameters from a
stationary process typically leads the martingale L) (6,) to have stationary
increments. In this case, we can use a whole arsenal of theory to show that
this martingale has an expansion.

As an illustration, we treat the case where the process is strongly mixing.
Let * be the o-field representing the future of the process from ¢ to +o,
and set

(5.5) a(n) = sup |P(ANB)—P(A)P(B)l.
Aed,,Begttn
I
(5.6) T a(n)? <,

n=1
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for some 8, 0 < § < =, it is sufficient for the expansion to exist that
(5.7 EIAZ*F? < o,

for each i.
This is stated formally in the following result.

PROPOSITION 9. Suppose that we are in a discrete time and nontriangular
array setting, and that A/, =/, , —/, is a stationary process, satisfying
conditions (5.6) and (5.7). Then the conditions of Theorem 1 and the linearity
condition (2.6) are satisfied; v’/ = 0; and «“’* and «k“’/ are given by
(5.3)-(5.4). If k"’ is nonsingular, the expansion has the form (1.1)—(1.2).

6. Proofs. In the proofs of Propositions 4, 6, 8 and 9, ¢y = N, and when
proving Proposition 5, ¢y can be anything. Otherwise, we assume, without
loss of generality, that ¢, = 1.

It is convenient to divide the proof of Theorem 1 into two parts. We begin
with the following lemma.

LEMI\;IA 1. Theorem 1 holds for martingales with time axis t =
0,1,2,...,Ty.

ProoF. If alternative (ii) is used in the definition of 0,(ry)-convergence,
the result follows from Mykland [(1993), Theorem 1] by considering the
martingale (2,4, ;- Ty

In particular, the result holds for the characteristic function

hy(x) = Eexp{ixj/ﬁ;’jy

Hence, if we use alternative (i) in the definition of 0,(ry)-convergence we
can use that, if g, is a convergent sequence in &,

; 1
EgN(/%f;’-) = (—27—7)—5f§zv(x)hzv(x) dx,

where g is the Fourier transform of g,(—x), and we are finished if we show
dominated convergence for

rytl8n(x)hy(x) - eXP{_%ijj’kxk}l‘

Embed (/") in a continuous p-dimensional martingale (/tN ). By Mykland
[(1992), Lemma 5.1],

|y () — exp{— 3,0, ) < 3Elx;x, (2N, 7V ) g, — kit
< LIV 2P EKZNE VR, — kb,
Jj k

In view of the uniform integrability of &; x}ﬁN(x), the result now follows if we
can show that ryEK/N*, /N *)p — k**| is bounded. By Mykland [(1993),
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Lemma 1], this reduces to showing that ry'El/™*, ZV*), — k*®*| is
bounded.

This is not necessarily true with our original definitions, but it is true if we
assume that k; < (/ NJ N J)TN < k We can make this assumptlon how-
ever, without loss of generahty, by cons1der1ng the martingales / J given by

/N for t < Ty,
N VAR for t > Ty and (/™7 /NI )p, >k,
t = t

4+ X &l,  otherwise,

s=Tyn+1

where the &/ are ii.d. standard normal and independent of the (/""*)s. If we
set

(6.1) Ty = inf{t:(/N’j, /N’j>t+1 — kb > %j | for somej}

[this is a stopping time by Jacod (1979), Chapter X-1a], then the martin-
gale /N7 —/tl\,’\f satisfies that k; < (/™/, /) ik — kP <E; if K>
max(k;), and /TN {x can replace /,}VN’j in view of Proposition 3 and a Taylor
argument. O

PROOF OF THEOREM 1. Assume in the following that, for some %,

(6.2) [N, N g, <& + 1AL,

where A/ny’i is the jump of /,N * at time Tj. This can be done without loss of
generality, by using the same kind of argument as that surrounding (6.1). A
consequence of (6.2) is that

[/N,i, /N,i]TN SE +1+ [/N,i’ /N,i,/N,i’/N,i]TN,

whence [# V¢, /N ’i]TN is integrable.
For some gy > 0 to be determined later, create the following stopping
times:

N
7 = 0;
( N o1 oNi _ yN,i .
7+ ey) A Ty, if |Z; /< 1foralli,s,
N N
N = T, Sss(ru +8N)/\TN

inf{s: lZNE— N > 1 for some i}, otherwise.

Let the set Ej be given as the indices u, 1 < u < M, for which the second
option is used to fix 7. Let |EL} | be the number of elements of Ejj.
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Note that
EN|< Z Z ( /NL)
i ueE}
(6:3) <L L (e -o)
i l<u<M

< DL(ap-aE),

By Jacod and Shiryaev [(1987), Theorem 1.4.47, page 52], the r.h.s. of (6.3)
converges in probability to [/, /™ *lr, as ey — 0. Fix &y such that

PllS s (ap - - Tiom o,

Then, by our assumptions on [/ Ni & N, ’]T , there is an integer M,, M, >
p(k + 1), such that

> 1) =o(ry).

P(IExy| > My) = o(ry)-

By using a Taylor argument akin to those involving (6.1) and (6.2) we can
therefore, without loss of generality, assume that |E}}| < M, and, in particu-
lar, that |[EN| < M,,. Hence, if

M, = M, + 1 + integer part of Ty /&y,
then 7, = Ty as.
Now consider the discrete time martingale Z, PN ‘,n=0,..., My, given by
/N,i =/N,i

Correspondingly, VACNZE) u, and so on are defined. Since /, NNi =/ i, it is
enough to prove '] Theorem 1 1f we check the conditions on the ° varlatlons

associated with /
We begin with [/N‘ AN N /NL]M Note that

[/N,i’/N,i,/N,i,/N,i]MN
- I(ar-an)

4 < ; oo w2t T ((asM) 1)
= u( T, 1',,,1) uEEiv Ty )
< [/”N,i /”N,i]M + 24 N, /N,i,/N,i,/N,i]T + 24M,.

As in Jacod and Shiryaev [(1987), Theorem 1.4.47, page 52], [/ PN , PN , L /N, ‘
/N’]M converges in probability to [Z", /7, /N’ /N’]T if we let eN be
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small enough. By (6.4) and (6.6) (below), this convergence is dominated,
whence ¢y can be selected to go sufficiently fast to zero to get

E /N,i,/N,i’/fN,i,/fN,i]M _E[/N,i,/N,i’/N,i,/N,i]TN _ O(rﬁ,).

Hence the integrability condition on [/ N PN , N N u, is satisfied.
Turning to [ £V, /N’]M , note that

(6.5) E[/N,i’/N,i]M — B[ /N /N,

Since [/ PNi , N Ny = [ Ni N ’]T in probability as &y becomes small (for
fixed N), and since (6 5) y1e1ds that this convergence also holds in L!, we can
choose ¢y to go sufficiently fast to zero to get

(6.6) B[V, A%, = [, 2% | = o(ry).-

By Proposition 3, the integrability condition for [/ Ni ' pNi lp, is satisfied,
and by the same reasoning as in Mykland [(1993), Lemma 2], this is also true
for [/ , 2Ny, . Equation (6.6) also yields that ¢, exists for (), ’N.i) and has
the same form as for ; N:1). The same type of reasoning gives the same result
for ¢, if one observes that the limit of a sequence of predictable processes is
predictable. O

PROOF OF PROPOSITION 2. Assumption (2.6) is obviously sufficient for (1.2).
To prove necessity, note that the signed measure » from (1.2) can be
represented (for nice g’s)

v+

SO\ LR,

[e(x) dv(x) = 5B

ox; dx

where Z is N(0, k). Comparing this to (2.12) yields (2.6), and also (2.7) for
symmetric definitions of x“/* and v®/. O

PROOF OF PROPOSITION 3. From inequality (5.6) in Mykland (1993),
6.7 E(/N /N,i]TN — (N /N,i>TN)2 < E[/Ni gNi pNi /N,i]TN
and
(68) E((/N’i, /N,i)TN _ </N,i,/N,i>TN)2 < %E[/N’i,/N’i,/N’i,/N’i]TN

for discrete time martingales. By taking limits, the same results hold for
general time axis. Hence, one can apply Lemma 2 of that paper to show the
first part of Proposition 3.

"The second part of the result follows as in Mykland [(1993), Proposition 2],
with the appropriate modifications which come from dealing with a martin-
gale with general time axis. O
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PROOF OF PROPOSITION 4. The proof is divided into three parts. B
Fact 1. E(m7")> = O(N). In view of (6.8), we can replace mj i with
L+ [LN4, LN*]y for this purpose. From the fourth Bartlett identity,

E[LN,ii + [LN,i,LN,i]’LN,ii + [LN,i’LN,i]]TN
— —%E[ LN’i,LN’iii]TN _ %ELI’.IYI\’,iiii + %E[ LN’i,LN’i, LN’i, LN,i]TN
- O(N),
in view of our assumptions and since
|E[LN,i,LN,iii]TN| < E[ LN’i,LN’i]TN + E[ LN,iii’ LN,iii]TN — O(N),

by our assumptions and by the second Bartlett identity.
Fact 2. For any x,,

(6.9) E (%2, N7V 2mp i | x, N7V/2LER) = cx, Z*,
where Z* is as in (2.5) and where
(6.10) ex; x;k5) = —x x;0, A /3.

Our assumptions yield that L’;; — (LN = O,(N /2y whence it fol-
lows from (3.4) that

(6.11) <xixij'ij’ x, LN*)p, /N - _xixjxk)‘ijk/&

By the same reasoning as in Proposition 3 [or by Mykland (1993), Proposition
2], (6.9) follows. Equation (6.10) then follows from (6.9) and (6.11).

Tying it together. The integrability conditions are a consequence of Fact 1.
The relationship between p/ and p¥/ follow from Fact 2 in the following way.
Equation (6.10) implies that, if Z is N(O, «"/),

E(x;x;A7*%, ,Z°/3 + cx,Z* )2, ZP = 0,
that is,
E(x,x;A*h,(Z) /3 + cx,Z)x,Z* = 0.

The equivalence between orthogonality and independence for Gaussian ran-
dom variables then yields that

E(xixj/\ijkhk(Z)/3 I kak) = —cx, Z*.
Thus, (6.9) gives that
Eas(x,-xjN_l/zm%;ij %, N—1/2L1¥I,Vk)
= —E(x;2;27*h,(2) /3 | x, Z").
The result now follows by, for example, a Fourier argument. O
PROOF OF PROPOSITION 5. By the reasoning used in the proof of Proposi-

tion 6.1 of Hall and Heyde [(1980), page 160], we can see that, under P, ,
LYH6y)/ ey =4 Z, where Z is N(0, k"/(6,)). Let us assume that we are
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dealing with a subsequence so that ry (L3H9(0,) /ey + k59) =4 4 for all
i, j, jointly with /Nk(ﬂo)/ Vew - Since

LN,L] o
| L) K”(ON)) —ry
(9

LN:W( e .
1(—(0) + ki(0,)
9
= "Ix_rl(Ki’j(eN) - Ki'j(oo)) + "zx_rl(ezv,k - eo,k)LN’ijk(ez’\l;),
it follows that lim infy _, |ryci/?l > 0 unless g% = AR 4 9k I(0) /90% - 9,
= 0, and that
E,(£YV) = E, (£ + hw,g'"* )exp{w, Z* — jo,w0;x"7},

where w, =lim, . cy/?(6y, — 6y) and h =limy ., ry 0&1/2 (if the limits
do not exist, take a subsequence). Hence the result follows. O

PrOOF OF PROPOSITION 6. Working with (4.7) and (4.10), it follows from
(4.11)-(4.12), the'i.i.d. assumption, the boundedness of |Z2 0, )t*l and Propo-
sition 3 that the integrability conditions are satisfied and that x>/ and v¥/
in (4.11) are the ones referred to in Theorem 1.

To calculate k7%, write
(6.12) L} = Qf — Ry,
where
(6.13) Q= fo [zik - BN(Z ) (EMy,) | d;,
and
(6.14) R* [ [Zim, X; — EN(Z2 ) (E™M,) | dM,.

Note that, clearly, (R*, R*); = 0,(1), while {@’, R*); = 0,(N'/?), since
E[zi* — EN(ZM ) (EMy,) A, = 0

except when E™), , = 0. Similarly, (Q’, @, R*); = 0,(N), (Q’, R/, R*); =

0,(N) and (Ri, R/, R*), = 0,(N). Since the 1ntegrab1hty conditions of Theo-
rem 1 are satisfied for @”* and R* for the same reasons as this is true for L*,
it follows from Proposition 3 that the R-component in (6.12) contrlbutes
nothing to the asymptotic regression (2.4)—(2.5). That reduces the problem to
calculating «*/* for the @-component in (6.12), which is straightforward. O

PROOF OF PROPOSITION 7. Assume first that the time axis is discrete.
Embed (/Y )y, - r, in a continuous martingale (#, N Yo <i< 7, By It0’s lemma

. [see, e.g., Jacod and Shiryaev (1987), Theorem 1.4.57],

d/ZtN,i/ZtN,j/ZtN,k =/_tN,i/?tN,j d/'tN,k[S] +/ZtN,k d</ZN,i,/?N,j>t[3]
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and

d( /N /;N,j>t/ZtN,k — (PN Ny, d/'tN,k +/'tN,k d(FNi gy,
Also, by Mykland [(1993), (5.12)-(5.13)],
xixjxkE</N’i, /ZN,j>TN/g],k _ xixjxkE(/N’i, /N,j)TN/g],k‘
Combining the three equations above yields
%2, Py BLp 4

6.15 . ' N
( ) = 3xixjxkErg,1((/N”, /N’J)TN _ KL,J)/TI‘\I/;,k.

By taking limits, we can now go over to a general time axis. Since the
integrand on the r.h.s. clearly converges to 3x;x;x, £ /Z*, it remains to show
uniform integrability. By Holder’s inequality, it is clearly enough to show that
EI/}VN"I” and E((/N, /N”)TN — k%|/ry)? are bounded for p, g so that
p ' +q ' =1- & Assume first that the time axis is discrete. Since, by
Burkholder’s inequality for continuous martingales [see Jacod (1979)],

EI/3NP = BIZpHP
< c, B/, /;N’i)ﬁ,/z
< e BN, OV + (BLAY, oV 4N, o], )

by Liapunov’s inequality and inequality (5.11) in Mykland (1993), c¢; being a
constant, and having assumed that 2 < p < 4. By taking limits we can now
eliminate the discrete time assumption, and it is clearly enough that E(I(#"",
/My, — k"/ry)? be bounded with g = p/2. The result follows. O

ProOF OF PRrROPOSITION 8. Follows directly from (6.15) and the Toeplitz
lemma [see Hall and Heyde (1980), Section 2.6].

PrOOF OF PROPOSITION 9. It follows from the ergodic theorem [see, e.g.,
Breiman (1968), Section 6] that E[/*, /*, /', /']y = O(N), for each i, and
that

(616) [/i’/j’/k]N/N —p ni’j’k

as N — o, for each i, j, k. By Hall and Heyde [(1980), Corollary 5.1, page
132],

(#™ VN AN ([27,*]w/N = k) all i, j, b)

is asymptotically jointly normal with mean zero, whence the linearity condi-
tion (2.6) is satisfied in view of (6.16) and Proposition 3, with v/ = 0. The
same Corollary 5.1 also yields that [YN ((#?, #‘1y/N — k")]? is uniformly
integrable, whence, in view of (6.7)~(6.8), E[VN ((/*, #")y/N — k*)]* = O(1).
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Hence the integrability conditions (A) and (B) of Theorem 1 are satisfied, as
are the conditions of Proposition 8. O
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