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MODEL ESTIMATION IN NONLINEAR REGRESSION
UNDER SHAPE INVARIANCE!

By ALois KNEIP AND JOACHIM ENGEL

Université Catholique de Louvain and Universitdat Bonn

Given data from a sample of noisy curves, we consider a nonlinear
parametric regression model with unknown model function. An iterative
algorithm for estimating individual parameters as well as the model
function is introduced under the assumption of a certain shape invariance:
the individual regression curves are obtained from a common shape
function by linear transformations of the axes. Our algorithm is based on
least-squares methods for parameter estimation and on nonparametric
kernel methods for curve estimation. Asymptotic distributions are derived
for the individual parameter estimators as well as for the estimator of the
shape function. An application to human growth data illustrates the
method.

1. Introduction. Selection of a suitable model constitutes a central
problem in nonlinear regression. In classical nonlinear regression analysis of
the model function is specified a priori. Methods that allow estimation of the
model as well as the parameters have been introduced only recently by
Lawton, Sylvestre and Maggion (1972) and by Kneip and Gasser (1988).
These SEIf-MOdeling Regression (SEMOR) methods are motivated by the
situation encountered in many experiments in biomedicine and the physical
sciences. They are based on the availability of observations Y;;, j = 1,...,n,,
i=1,..., N, from a sample of N individuals or experimental units according
to some experimental design ¢;;. While in many situations a nonlinear
regression model is an appropriate framework to describe the data, there is
no a priori specification for the model available that provides a good fit to the
data. SEMOR then offers more flexibility than the classical approach. In
SEMOR the data are allowed to speak for themselves in choosing the model
function.

Given data from a sample of noisy curves we assume the model

(1.1) Y’U=f(t”,01)+€”, j=1,...,ni,i=1,...,N.

However, without further restricting assumptions it is not possible to esti-
mate at the same time both parameters {6,} and model function f. This is a
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552 A. KNEIP AND J. ENGEL

consequence of the problem of identifiability. Specification of some class of
functions that contains the true model is necessary. SEMOR is a semipara-
metric method in the sense that it employs methods from nonparametric
curve estimation in a parametric nonlinear regression context.

One important class of model functions that allows self-modeling regres-
sion estimation to work is the shape invariant model (SIM). Under SIM the
individual regression curves f; are obtained from a common shape function ¢
via some parametric transformation. In the simplest case these transforma-
tions are linear, and we have

t— 6,

(1.2) f(¢,0) =fi(t) = 0i1¢( .213) + 04

Then the individual regression curves differ only by referring to different
vertical and horizontal scales. As special cases the shape invariant model
includes some important parametric models that have been thoroughly stud-
ied in the literature, such as the Gompertz model and the logistic model
[compare Ratkowsky (1983)]. However, different from the classical approach,
no particular specification for the model function ¢ is required.

In this paper we study the shape invariant model (1.1) and (1.2) and
propose an iterative algorithm for the simultaneous estimation of the param-
eters 6, and the shape function ¢. Our estimation procedure is based on
iteratively employing least-squares methods for parameter estimators alter-
nated with kernel methods for nonparametric regression estimation. Kernel
estimators are thoroughly studied and enjoy good analytic properties. We
derive asymptotic distributions for the estimator of the individual parameters
0 as well as asymptotic bias and variances for the estimator of the shape
functlon é. If the number N of experimental units is large, the asymptotic
distributions of our parameter estimators practically coincide with those
resulting from least-squares estimators when ¢ is known. Our work is
related to Hardle and Marron (1990), who, in a somewhat different setup,
study nonparametric comparison of two regression curves f;, f; which differ
only by parametric shift transformations of the axes. They are concerned with
testing and estimating the parameters transforming one curve into the other
for which they obtain vn -convergence. Further they consider the important
problem of testing the underlying assumption of shape invariance. Our focus
is different, as we are concerned with estimating a model function ¢ and the
individual parameters 6;, in line with Lawton, Sylvestre and Maggio (1972)
and Kneip and Gasser (1988). Though related, our approach seems to be
simpler and more straightforward to apply than the one proposed in the
iatter papers. Furthermore, Lawton, Sylvestre and Maggio (1972) gave no
theoretical results, while Kneip and Gasser (1988) only proved consistency.

In Section 2 we describe our regression model and introduce an iterative
algorithm for estimation. Asymptotic results are presented in Section 3. The
efficacy of our method is demonstrated in Section 4, where we apply our
algorithm to real data. Based on the data of the Ziirich human growth study,



ESTIMATION UNDER SHAPE INVARIANCE 553

we estimate the shape function for the pubertal growth spurt separately for
girls and boys.

2. Estimation. We assume data (Y}, ¢;,) satisfying the regression model

l]’

Y, =fi(t;) + &5 J=1,...,n,i=1,...,N.

Here f, f;,... denote unknown smooth regression functions while &;; are
unknown independent zero mean error terms with variance o;%. The known
design points t;; are elements of an interval J =[ay,a;] CR. We now
postulate a shape-invariant model represented as follows:

(2.1) f(elzt + 0i3) = oll(l)(t) + 0i4 for t ej i = 1 ...,N.

Here 6, are unknown true parameter vectors, that is, 6, = (6,,, ..., 6;,) € R}
X R? and _¢ is an unknown real function; J = [a,, al] is a known interval
fulfilling J c J, that is, a, < @, < @, < a;. Furthermore, we have to intro-
duce some normalizing condition:

We impose that the true parameters average to the vector (1, 1,0, 0), that
is,
1
N ;

n[\/]z

1
N ;

uMz

1 g 1 XN

(2.2) 1 = 1, 0 = 1, - 0i3 = 0, - Z 0i4 = 0

N5 N3
Normahzmg conditions are necessary since the shape invariant model has
some inherent unidentifiability: for given parameters J; and shape function
¢ we can always find other parameters 9 and another shape function ¢*
such that 9,;¢(t — 9;5)/ ;) + 9,4 = 9% d* (¢ — 9%)/9%) + 9§ holds for all
t.

Conditions (2.2) are no restriction and serve as an anchor needed for the
uniqueness of definition. Other choices of normalizing conditions are possible,
and estimates based on (2.2) can always be renormalized accordingly. For
example, in Hirdle and Marron (1990) normalization is done by using the
first curve f, as reference curve, that is, by requiring that (6, 6,5, 63, 6,4) =
(1,1,0,0). Our choice is motivated as follows: Condition (2.2) implies that the
shape function ¢ allows representation as

1 N
(2.3) o(t) = = X fi(6;2t + 6;3),
. N/
that is, ¢ = ¢, is an average over shifted individual regression curves.

,,,,,

The shifts are such that the individual curves are transformed to an average
time scale. Amplitudes and locations of, say, minima and maxima of ¢ are
then averages over amplitudes and locations of the corresponding extrema in
the individual curves. In Kneip and Gasser (1992) a function ¢ with this
property is called “structural average” of the f; because ¢ summarizes
structural information about the f; in the form of an average. Model (2.1)
refers to a subinterval J C J. This is quite natural in applications where SIM

is used to model only specific structural features of the f;, and does not hold
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on the whole domain J (see our application below). However, even if (1.2)
holds for all ¢ € J, the observations from the ith individuum contain infor-
mation about ¢ only in the interval J; =[(a, — 6;3)/0:2,(a; — 6i3)/6;2].
Model (2.1) then refers to an “overlapping” interval J = NN ,J; = [@,, @]
containing information from all individual units to be utilized for estimating
¢. In many cases this will not impose a severe restriction. As illustration in
this paper, we consider the problem of modeling human growth velocity. The
data are from the Ziirich longitudinal growth study consisting of measure-
ments of many somatic variables taken regularly from birth to adulthood.
Figure 1 shows kernel estimated growth velocity curves for four boys. Note
that here we want to analyze the derivatives f; and not the regression
function itself. The curves in Figure 1 were obtained by applying kernel
estimators for derivatives. The small technical differences when dealing with
derivatives will be discussed in Section 4. )

The well-known, accentuated pubertal growth spurt is clearly visible in
each curve. As a paradigm for the ideas developed in this paper, we consider
modeling pubertal growth velocity. An inspection of estimated growth curves
suggests the validity of the shape invariant model. This corresponds to the
results of Stiitzle, Gasser, Molinari, Largo, Prader and Huber (1980), who
proposed a model for human growth from early childhood to adulthood
consisting essentially of two shape invariant components describing prepu-
bertal and pubertal growth. On heuristic reasoning they propose a very
complicated algorithm for estimating model and parameters and they obtain
a satisfactory fit. Our approach provides a first step toward a simpler

velocity

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

age
Fic. 1. Velocity curves for growth of four boys from the Ziirich growth study, estimated with
nonparametric kernel estimators. For better visual separation, constants have been added to the
curves.
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computational structure and better theoretical understanding of such proce-
dures. To reduce complexity, we restrict ourselves to modeling the pubertal
component. The age intervals to be considered extend from puberty entrance
age (the minimum just before the pubertal peak) to the end of growth at,
approximately, age 20. We thus assume that model (2.1) holds with J =
[7,20], where 7 denotes average puberty entrance. It has to be emphasized
that the SIM approach to the pubertal growth process generalizes previous
modeling attempts, based on prespecified model functions. References are
Deming (1957), Marubini, Resele and Barghini (1971), Bock, Warner, Pe-
tersen, Thissen, Murray and Roche (1973) and Preece and Baines (1978), who
basically all refer to models of the form (1.2) for describing pubertal growth.

Let us now return to the general model (2.1) and (2.2), and consider the
problem of how to estimate ¢ and the individual parameters. The algorithm
we propose is based on the existence of initial estimates 6 and 63 for the
horizontal shift parameters 6,, and 6,5. Such prior estimates can be obtained
in different ways. Following Kneip and Gasser (1992), a simple and practica-
ble method applies if we can identify at least two typical extrema and/or
inflection points that each individual curve f; and, hence, ¢ assumes. In what
follows these points are called “structural points.” When considering our
growth example, identification of structural points is straightforward. Obvi-
ously, each individual growth velocity curve possesses a well defined pubertal
maximum. Typical inflection points are maximal acceleration or deceleration
during puberty.

Now assume that we are able to specify two structural points, and let
T1i» T9; denote the individual locations of these points for the regression curve
f;- Then if we denote the locations of the corresponding structural points of ¢
by x; and x,, equations (1.2) or (2.1) imply that for any i,

Ty = O2%0 + O3,

Toi = O;9%5 + 6;5.

As a consequence of the normalizing condition (2.2) it follows that the location
of the two structural points of ¢ is given by x, = 7, = (1/N)Z¥ ;7;, and
%y =Ty = 1/NXN 75, that is, x; and x, are obtained as averages over the
individual locations.

The above equations can be used to determine initial estimators for 6,, and
0,3. Estimates 7,;, 75; of the locations 7,;, 75; of the two structural points can
be obtained from nonparametric estimates of the regression functions and
their derivatives [Miiller (1985), (1989); Kneip and Gasser (1992)]. Then we
obtain initial estimators for the individual parameters by

6o — Tio = T
(2.4) i (1/N)va= 1(3'12 - '?'11) ’
. ) 1N
9;'03 =T~ 6 T
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There are, of course, alternative ways for determining initial estimators: for
example, one might choose one of the f;, i =1,..., N, as a “reference curve”
and then estimate the parameters transforming all other curves into this
reference curve, using methods of Hardle and Marron (1990). Suitable nor-
malization, following (2.2), then leads to initial estimates.

Note that if ¢ were known, estimates of the parameters could be obtained
by least-squares methods. On the other hand, if the parameters were known,
an estimate of ¢ could be based on (2.3). Replacing in (2.3) the unknown
regression function f; with nonparametric estimates, the availability of
initial estimators for 6,5, 6,3 and relation (2.3) suggests the algorithm below.
As nonparametric function estimates, we use kernel estimators of the convo-
lution type [see Gasser and Miller (1984)]. Other estimators, such as splines,
local polynomials or nearest neighbor methods, could be used alternatively.
For mathematical convenience, we assume the parameters to be obtained
from a compact subspace D C R% X R2, that is, we do not allow arbitrary
large shifting and scaling.

ALGORITHM.

Step 1. For i = 1,..., N estimate the regression function f; by a nonpara-
metric kernel estimate f;. More precisely,

n ol Ly t—v
(25) fo= X [ w5 a,

Jj=1 i(j-1)
where s;; = (¢;; + ti+1))/2, W is a prespecified kernel function and b >0
denotes the bandwidth. Then compute an initial estimate ¢° of ¢ by

\ 1N ., \ -
(2.6) AOREDY £i(0%¢ + 83) forzed.
i=1

Step 2. Iterate h = 1,2,..., A*:

(i) For each i = 1,..., N determine new estimates 6} € D by solving
Al - - o - - 12
[ LBt + 85) - 628" 1(0) AN

= min[j[f;(ﬂzt + ) — 9, 1(t) — o] de.

d€D
(i) Normalize these estimates, that is, for (&, j) € {(1,4), (2,3)} set
. ok N 6k N
oh = ——2% ok = 6F — — Y 60, i=1,...,N.
o (1/N)ZN 6k votue N oY
(iii) Set

o 1y . n —
o"(t) = ¥ ¥ £i(0ht + 8f) foreed.
i=1
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Step 3. Determine final estimators:

>

N *

(2.7 6,=6F, i=1,...,N,

A

i

||M2

A 1 A A -
(2.8) B(t) = ¥, (o,.zt + 6y5) forted,

where f:* denotes a nonparametric kernel estimator with bandwidth b*
[replace b by b* in (2.5)].

For a reasonable implementation and a correct understanding of this algo-
rithm, the following considerations are important:

1. The number A* of iterations to be done depends on the quality of the
initial estimators. Typically, a few iterations suffice to guarantee Vn -con-
vergence of the parameter estimators 6,. For example, if the initial estima-
tors are derived via extrema as structural points, then only A* =2 is
necessary.

2. The procedure requires that the same bandwidth & is used for all esti-
mates f; and d)h throughout the iterations. This is of theoretical impor-
tance since then the leading bias terms for f and ¢" cancel out (compare
the proof of Theorem 1 in the Appendix) leading to approximately unbi-
ased parameter estimates even if ¢" is strongly biased. Note, however,
that in Step 3 we allow d) # M.

3. Asymptotic theory (see Theorems 1 and 2 in Section 3) yields information
on the choice of b and b*. It turns out that the bandwidth b used to
determine the estimates f , required in Steps 1 and 2, is of minor impor-
tance. The leading terms in the asymptotic expansions for 0 and ¢ do not
depend on b. In particular, this bandwidth does not 1nﬂuence the resulting
asymptotic distributions of the parameter estimates, unless b is extremely
large or small. One might work with some “reasonable” bandwidth &
according to prior experience or inspection by eye. Other possibilities for
selecting b include averaging optimal bandwidths obtained by cross-vali-
datory or plug-in methods.

4. In contrast, the choice of the bandwidth b* is crucial when estimating ¢.
An undersmoothing bandwidth is advisable when determining the final
estimate d) Undersmoothing means to choose a smaller bandwidth than
the optimal one for ‘estimating an individual curve f;. Note that q& is
defined as the average of N estimated individual curves. By undersmooth-
ing these curves, we reduce the bias, while averaging curves itself dimin-
ishes variance. A procedure for determining b* is sketched at the end of
Section 3. _

5. The restriction of the domain of estimation to the overlapping interval J
has been introduced to derive the asymptotic results below. A slight
modification of the algorithm allows consistent estimation of the model
over the entire range of data as follows: under the above model (2.1) and
(2.2), the observations from the ith individual carry information on ¢(#)
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for t € J, = [(ay — 6;3)/6;5,(a; — 6;3)/6;5]. Therefore,
6(t) L O+ L Ou= XL [fi(0at+63).

{i:ted}} {i:ted})} {i:ted;}

Based on this equation we could estimate ¢ over the entire data range
using initial estimates of the 6, s and of the f;’s. The algorithm described
above is the special case of {i: t e J;}} ={1,..., N}. An appropriate modifi-
cation in Step 3 and integration over J, in Step 2 then leads to an
estimator of ¢ over the whole data range. However, the rate of conver-
gency of this modified estimator would be slower outside the overlapping
interval, depending on the size of the set {i: ¢ € J;}.

3. Asymptotic results. Our asymptotic theory is based on the following
assumptions on error terms and design:

AssuMPTION 1. (i) For all i, j the random variables &;; are independent,
and for fixed i the errors &;,, &;5,... are iid. zero mean random variables
with variance o2 < c. Furthermore for each a € N there exists a constant
C, < © such that Eef; < C, for all i.

(11) For each 1nd1v1dua1 we have the same number of observations, taken

at the same set of design points, that is, n == n; = n, = *-* = ny, and for all
n and each j we have ¢; == t,; = - = ty; Moreover, ¢;,, — {; = (a; —ag)/n
for all j.

Condition (ii) has been introduced for mathematical convenience only. It
can easily be generalized. Some further assumptions concerning model (2.1)
are required:

ASSUMPTION 2. (i) 6; € int(D) for all i = 1,..., N, where int(D) denotes
the interior of the set D. For all 9 € D it holds that F,a, + 95 € (ay, a;) and
B0, + %5 € (ay, ap).

(ii) The parameters 6, are identifiable, that is, for any i there exists a
unique vector 6, € D such that (2.1) holds. Moreover for any i there exists a
8; > 0 such that (2.1) generalizes to all ¢ € [a, — §;, @, + §].

A final assumption refers to the initial estimators of 6, and 63, the
number of iterations to be done, the smoothness of the curves f; and ¢ and to
the kernel functions.

ASSUMPTION 3. (i) The initial estimators 6 and 63 fulfill
165 — 6;,] = Op(n™?),  k =2,3and for some > 0.
(i) A* = —log( B)/log(2).
(iii)) W is a kernel of some even order k € N, k > 2. More precisely,
JW(x)x%dx=1forg=0, =0forg=1,...,k—1, #0for g = k.
(iv) W has support [—1,1], is contlnuously differentiable on R and twice
continuously differentiable on [ -1, 1].
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(v) For some u > k + 1 the functions ¢ and fi,..., fy are u-times contin-
uously differentiable.

When using kernel methods for estimating the structural points as de-
scribed by Miiller [(1985), (1989)] one can specify the rate of convergence for
the initial estimators: For example, if the structural points are based on
extrema only and kernels of order greater than or equal to 2 are employed,
then B8 > 2/7 and h* > 2 is required by Assumption 3. If inflection points are
involved the rates deteriorate to 8 > 2/9 (if u > 4), and A* > 3 is necessary.
To formulate asymptotic results we introduce the following notation (1 < i,
J<N):

Gi(t’ ‘9) = fi(ﬂzt + ‘93) - 1924’(’f) — Y, Qi = diag( 0,15 0;2, 0;2, 9i1)a

-1

T
r; = {f_Gi,ﬂ(ei’t)Gj,ﬂ(oj’t) dt} ) =15,
640, N 1 0, 6,
e Z__‘ll‘__l’ & =G>

” N =1 0l2 0i2 0j2
where G, ,(-,-) denotes the vector of the derivatives of G; with respect to .

THEOREM 1. Under the above assumptions letb — 0, b = O(n~") for some

y>0,(nb*)"! > 0asn - . Fori€{l,..., N} for the parameter estimators
we obtain
(3.1) Vn (6 - 6,) is AN(0,3,),

where the covariance matrix can be represented as sum of %, =A; + B; + C;,
defined by

1
A =T,
0:2

B 1/1 % 1 r 1 r 1 r
i~ N —ﬁQil=10_12 1Q; oizQi e Q|

1 1 1 1
C = N(giri - —ﬁ‘;gilrliQi N Zl:Qi Gl + WZ,Zin flkrszi)-

The proof is deferred to the Appendix. Let us consider the terms in the
expression for the asymptotic covariance matrix in Theorem 1. First note that
(2.1) implies that f;(¢) = 6,,¢((¢ — 6;3)/6,5) + 6,, for all ¢t €J, =[(a; —

0:3)/ 0:2, (@1 — 6;5)/6;5]. If ¢ were known, we could estimate 6; by least-
squares methods, minimizing ¥, ,{Y;; — % o((t;; — 03)/ 02) — 9,}% with
respect to 9 € D. The term A, equals the asymptotic covariance matrix of
this least-squares estimator [compare Jennrich (1969)]. Subsequent normal-
ization [see Step 2 (ii)] of these estimators would lead to the covariance
matrix A, + B;. The matrix C, is that part of 2, which is due to the fact that
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¢ is unknown. It is immediately seen that the matrices B; and C, are of order
1/N. Thus, for large N, 3; approximately equals A,.

Unfortunately, matrices B; and C; are rather complex, and for small N we
were unable to analyze their behavior in general. There is, however, a
remarkable exception: if 6, = 6, for all i = 1,..., N, then C;, = 0 which
means we do not have to pay anything for not knowing ¢. Furthermore, if all
parameters 6;;, 6;; and 6,5, 6, are equal, which by (2.2) implies that 6,; = 6,
=1 for all i, then B; = —I;/N is negative definite. We conclude that if
6,1 = 6;5 = 1 for all i, then the matrix B, + C, is negative definite. Hence, in
this case our parameter estimators are asymptotically more efficient than
(nonnormalized) least-squares estimators under the known model ¢. For the
estimator of the shape function ¢(¢) we obtain the following result:

THEOREM 2. In addition to the assumptions of Theorem 1, let b* — 0,
(nb*2*")~1 - 0 as n — o (for some n > 0). We then obtain for the estimator
of the shape function the following asymptotic representation:

N 1Ny
d(t) — ¢(t) = N .=Zl{fi*(0i2t + 0;3) — fi(0,5t + 9i3)}

+ Op([Nn]-l/z + [nbz]—l + bkn—1/2 + [nb*1'5]_1)_

Again, the proof is found in the Appendix. It should be noted that the term
[nb*'5]71 is due to some rather crude approximations of some remainder
terms. A more sophisticated analysis reduces this term to [nd*']"!, and it
might be possible to derive a still lower bound. The leading term on the
right-hand side in Theorem 2 can be analyzed using standard expansions
[compare Miiller (1988)]:

1y,
Biasz[—ﬁ Z {fi*(oizt + 0;3) — f;(0;5t + 0i3)}]

i=1

*2kM2
- T gy —ope),
1N 2V (W) i
Var[ﬁi;{fi*(oizt + 0;3) — fi(0;5t + 9i3)}] = GT,l(l)*— + o([nb*] 1)‘

Here M, (W) = [u*W(u)du, V(W) = (W(u)?du, and o2 = a/N)Z) o?.
Considering AMISE = [(Bias® + Var), we obtain as the asymptotically opti-
mal bandwidth

1 V(W)o?(a, —a,)k!?
Nn 2kM, (W) [76®2(¢) dt

A data-dependent bandwidth b* might be chosen with plug-in methods [e.g.,
Gasser, Kneip and Kéhler (1991)]. However, a bandwidth b* = N~1/@k+D .3
is also asymptotically of the correct order of magnitude if & denotes the

-1/@2k+1)
bXMISE = { }
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average of the optimal individual bandwidths. This results in a gain for the
asymptotic MISE by the factor of N~2%¥/%k+1 a5 compared to nonparametric
curve estimates of a single curve.

4. Application to human growth data. The sample consists of mea-
surements on N = 112 girls and N = 120 boys, taken yearly or half-yearly
(in puberty), from birth to adulthood, following the design of an international
prospective study. This resulted in a 32 dimensional data vector per subject
for each somatic variable measured (height, leg and trunk length, width of
shoulder, pelvis, etc.; the focus in most studies has been on height).

As outlined in Section 2, we apply our methodology in order to model
pubertal growth velocity for height, separately for boys and girls. A slight
modification has to be done due to the fact that we are dealing with deriva-
tives and not with the regression functions themselves. The basic estimation
method remains unchanged, only when determining f; and f* we use
kernels tailored for estimating derivatives [Gasser and Miiller (1984); Miller
(1988)]. Asymptotic results generalize to this situation with, however, a
slower rate of convergence for ¢.

We assume that model (2.1) and (2.2) holds with J = [7,20], where 7
denotes average puberty entrance age. The puberty entrance age for each
child is estimated as that time point where the nonparametrically estimated
velocity curve has a local minimum before the pubertal spurt (PS). For
details, see Gasser, Miiller, Kohler, Prader, Largo and Molinari (1985) and
Gasser, Kohler, Miiller, Largo, Molinari and Prader (1985).

To apply the above algorithm initial estimators are needed for the shift
parameters along the time axis, that is, for 8 and 6>. These were obtained
via the locations of two structural points 7,; and 7,; as the age of maximal
acceleration of the ith child in PS and the age of maximum velocity in PS of
the ith child. These functionals are determined from nonparametric esti-
mates of growth acceleration curves. The initial estimators then are obtained
by (2.4). Further, in this particular application, all vertical shift parameters
are set 0,, = 0 since growth ends after puberty. The bandwidth b used in
Steps 1 and 2 of the algorithm was chosen by prior experience as b = 1.5.
This value is close to the average of the estimated optimal bandwidths for the
individual growth velocity curves if measurements in early childhood are
excluded. When taking different bandwidths b = 1 or b = 2 the resulting
parameter estimates differed by at most 2%. For the bandwidth b* a value of
approximately b* = bN~1/% was taken. Figure 2 shows a comparison of two
methods for estimating growth curves: the estimates relying on the SIM
structure of the data are visually clearly superior to kernel estimates based
on estimated optimal bandwidths. This also confirms the validity of the shape
invariant model. . R

Finally, Figure 3 compares the estimated model functions ¢}y, Pgins for
boys and girls. The picture on the left shows the estimated model functions
after three iteration steps representing the average growth during PS for
girls and for boys. The picture on the right shows (i;boys and O P2 —
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Fic. 2. Comparison of two different estimates of the growth curve for four boys: a kernel estimate
ﬁ based on measurements for the ith child only (dashed line) and a SIM based estimate

0,,0((t — 6;3)/0;5) (solid line). The triangles represent the divided differences of the data, that is,
the height and time measurements.

93)/3,), where the parameters ¥ are obtained by a least-square fit to the
boys model. It suggests that the pubertal growth of boys is structurally not
different from the girl’s growth.

APPENDIX

In order to prove the two theorems, we introduce further notation: for
heN,ief{l,...,N}, 9 D, t € J, we define (E denoting expectation)

fi(t) =Ef(¢),  fi(t) = fi(t) = fi(2),
Gh(t 9) = (192"‘ + ;) — ’91¢h l(t) — Uy,

1
GI(t, ) = f(Dt + %) = Zfl(el’a bl -0,

1
Eft(Ol"z O - 0,

Gl(t,9) = fi( Dt + 05) — O —
Nl

Gi(t,9) = fi( Ot + 95) — 191N Z fi( 615t + 6;3) — 9y,

Gh(t,0) = GI(t) — Gi(t),  Gi(t,9) = G(t) - G(2).
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F1c. 3. (a) Final estimate of model function for human growth between puberty entrance and age
20. Solid line: model for boys, dotted line: model for girls. (b) Model for boys (solid line) and
model for girls (dashed line) fitted to boys model.

Moreover, by GL 1,,GL 15,,Gl o we denote the derivative of the above terms
with respect to 9. The 1dent1ﬁab1hty of the model implies the existence of I};.

The following lemma provides basic results for £, and f

LeEmMMA 1. Under the above assumptions, we obtain, as n — «:

(1) Let I = {infy . p(%,a@, + 33), supy c p(¥a; + 9,)] C J. Then

sup sup|f,(¢) — fi(t)l = O(b*),

i tel

sup Sull)lﬁ-’(t) —fi(t)l = O(b*),
i te

sup sup| 7(t) — f7(t)] = O(b*~1).
i tel
(i) supy c p [7f(Oyt + 95)% dt = O,(nb?*]"Y) for i=1,...,N, ve
{0,1}.
(iii) For a compact set LCRY, yEN, let u:J XL > R denote a
Lipschitz-continuous function. Then for any n > 0,

sup supf fi( Oyt + 93)u(t, z) dt =o (sup suplu(t, z)In‘l/Z“')
deD zeL ted z€L
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(iv) Furthermore, for any fixed & € D, z € L, it holds that

1/2
- 1 t..— O
(9t + ) u(t,z)dt =0, | n-1/2 v_3 ,
fjf;( 2 3)u(t, z) | {m&;tZ u( 9, » 2

ijeJGi
where @y 5 = D,y + 3,8y 5 = Y@, + I3 and
Jy, = [(‘70 — 0;3)/0;2,(a; — 9i3)/0i2]'

(v) Asymptotically, it holds that

~ 1
n1/2f fi(9t + F3)u(t, z) dt isAN(O, —fu(t,z)2 dt).
J ¥y /7

ProoF. Statement (i) of the lemma follows directly from results of Gasser
and Miiller (1984). Note that by assumption the f; are u-times continuously
differentiable, where u > & + 1. Consider assertion (ii). By our assumptions
on W and on the ¢;; we obtain sup, < pE [7/ (0t + 95)% dt = O(nb?"*1171).
Furthermore, for any a € N there exists a B, < « such that for all 8 € D,

2a
E{fjf}”(ﬁzt + 9)% dt — Efjf}”)(%t + 95)° dt}

< Ban—2 ab—a(4v+ 1).

(A.1)

This follows from Whittle’s (1960) bounds for the moments of quadratic forms
[compare the proof of Lemma A2 of Gasser, Kneip and Koéhler (1991)].
Moreover, we conclude from our assumptions that there exists 0 < p <
such that

sup 'f (St + 95)° dt — ff(”)(ﬂz t+ 0F) dt‘
- 0*Ilzsn °

- Op([ nb2u+1/2]—1)_

On the other hand, (A.1) implies that for any set (), containing at most
(@, — ay)n’ elements and for all &,1 > 0,

P( sup |n'~ "b2”+1/2{f FO Syt + 9,)% dt —Ef (9t + ) dt} > s)
deQ,
< #Q,672°
2a
xE( nl‘"bz”“ﬂ{f_ﬁ(”)(ﬁzt + 95)° dt — Ef_f,.(”(ﬁzt + 95)° dt} )
J J

= O(n”n_z"”’).
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If o is taken sufficiently large, n°n 2" = 0(1) holds. When combining these
arguments, we conclude that for any sufficiently small n > 0,

sup f (8t + 95)% dt = supEf FO(9yt + 95)" dt + o, ([ n? =762 1/2] 7).
deD

This proves assertion (ii). Using Whittle’s (1960) bounds for the moments of
linear forms, some straightforward computations show that for any a € N
there exists a B¥ < = such that E{[7f.(9,¢ + 93)u(t, z) dt}** < B¥n~* for all
% € D, z € L. A partitioning argument similar to the one used above now
leads to assertion (iii). Statement (iv) is straightforward. Assertion (v) follows
from (iv) and the standard central limit theorem. O

For the proof of the two theorems, the following lemma, which describes
the iteration path, is crucial. Depending on the rate of convergence achieved
for 0” !_ the lemma yields rates of convergence and asymptotic expansions
for 0h

LEMMA 2. For h €N assume that the parameter estimates 0 Lo,
~lobtained in the (h — 1)th iteration step satisfy 011 — 6,lls = O,(a,),
l =1,..., N, where a, is a sequence of constants with a, = 0 as n - °° We
then obtain for any small n >0,

l6; — 6Fllz = O,(@2) + 0,(n"/2*"), i=1,...,N.

Proor. Using GI'(¢,d) = GIt, 9) + (G, 9) — GI(t, 9)} + GMt, ), we
conclude from Lemma 1 and the consistency of the Oh ! that

(A.2) sup’jjé{l(t,ﬁf dt—iji(t,ﬂf dt’ = 0,(1).

Note that Gy(¢,6,) = 0 for the true parameter 6,. Since by definition of
6}, [7GM(t, 6, 2 di > [7GI(t, 62 dt, (A.2) implies that [7Gi(t, 612 dt = o0,(1).

By the 1dent1ﬁab111ty of the parameters this leads to

(A.3) ||6ih - 0,'”2 = Op(l)‘

The probability that élh is not an interior point of D tends to zero and we

obtain

d A -
0,(n"?) = ) (Gh(t, )2 dtlyg _2fG t,61)Gr(t,6F) dt

(A4)
= zf {G t,0F) + Gt ,(t, 5ih)>{@,-h(t, oF) + Gi(t, éf)} dt.

We now analyze the terms on the right-hand side of (A.4) starting with
GMt, 61). Set ¢(t) = XP_ 11785 Wt —v)/b)dv ¢(¢,), t € R, and note that
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for all i,
Our assumptions on 6! imply that 8" and 8*” defined as
1 X 6, N 0,
t=—3Y — (6} - 6,), =— Z ~ 6;3),
N/ 912( 2) N5 912( )

are O,(a,). However, if 5" 8*" are sufficiently small, then
(AB)  B((1+ 8™t + 8*") = ¢(t) + ' (¢)(8"t + 8*") + O,(a?)
holds for ¢ € J. On the other hand,

1y o — -
(A7) & .Zlf,.(o,g-lt +6471) = B(t) + $'(£) (8" + 8*") + Oy(a2).

i=

Let 6} = (0,5, 0,,(1 + &™), 6,5 + 6,,6*", 6,,). By assumption (2.2), there exists
an ¢ > 0 such that (A.5) generalizes to all ¢ € [a@, — &;,@; +_&;]. Hence, if
8", 5*" are small enough, it follows that fi05¢t + 60) = 0;';4;((6" + Dt +
S*h) + 63, for all ¢ € J. Since 8" = 0,(a,) = 0,(1), 8*" O,(a,) = 0,(1), we

conclude from (A.6) and (A.7) that suptEJIGh(t 6}l = o, (a2) Based on a
Taylor expansion of G!(¢, 6}, (A.4) now can be written as

J{(@ho(t,88) + Gl (e, 81))
(A.8) < {Gh (¢, &)" (87 — 67) + Gh(¢,67) + Gh(¢,6])) dt

=o0,(n7?).
Recalling the definitions of éi’f,, and G}, Lemma 1(ii) implies that

JIGE s (e, 815 de = 0,([n6°17),  [IGH(2,6})1 dt = O,([nb]").
J
Applying the Cauchy—Schwarz inequality, we obtain
oy
fG t 0 Gh(t 0*)dt (W),
fé,.h,, (t,62)Gr (¢, 62) dt = O,([nd?] ).

Because of our assumptions on b it holds that (n/2p%/2)"1 = ¢ (1), and since
J7Gl o(t, 6IGE(¢, 67) dt = o0,(a2), (A.8) reduces to

fj{@{j,,(t,éih) + Gl o(t, 01))Gl (2, &) de (67 — 61)

(A.9)
= [Glo(t,80)Gl(¢, k) dt + Oyl + [n0%] 7).
J
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Since the elements of Ghﬂ are continuously differentiable functions of ¢ and
9, invoking Lemma 1 (iii) in order to bound the first term on the right-hand
side leads to

(A.10) jj@{j,,(t, 61)Gh (¢, 6}) dt = o,(n=1/2*m)
for any small n > 0. Lemma 1, (A.3) and |16} — 6,ll; = op(an) imply that
fj{@i’fﬂ(t, 61) + Gl o(t, 1)}Glh o (2, &) dt

- [Guo(t, 0G4, 00" dt| = 0,1).

By assumption, the matrix [; G; ,(¢, 6,)G; ,(¢, 6,)" dt is regular. This allows
us to derive from (A.9) and (A. 10) that for any small n> 0,

(a11) 10 ~ 321l = 0,(a?) + o, (n"2*),
Note that by assumption [#b2]"! = o(n~1/2). Clearly,
(A12) 16; = 62l = O, () + 0, (n~1/2*7)

is an immediate consequence. Relations (A.11) and (A.12) allow us to derive
asymptotic expansions for §; — 0" By definition, 6} is determined by normal-
izing 6}. Recall that 6} = 0,1, 0;; 0,,(1 + &), o = 0,5 + 0,,6*", 6% = 0,,

and 8", " 5%k = O,(a,). Using (A.11) our normallzatlon procedure leads to the

asserted bounds on the parameter estimates.O

PRrOOF OF THEOREM 1. By assumption there exists 8> 0 such that II6’0 -
6;llz = O,(n™?) for all i. Invoking Lemma 2 we obtain 167 — 6,ll = o, (n'B2 )
+op(n_1/ 2+m) for all h €N and any small 5> 0. Since by assumptlon
h* > —log( B)/log(2), this implies that for all small n > 0 and all ¢,

(A.13) 1671 = 6,ll; = 0,(n~1/2*m).

Recall relations (A.9), (A.11) and (A.12) in the proof of Lemma 2. We obtain
a, =n"Y2*" for b= h*, and |16} — 6,lls = 0,(n~1/2¥ "),

(A14) ll6F — 6}, = 0,(n71/2+m), e, — 6"l = o p(n 12ty

We consider the first term on the right side of (A.9). When using (A.14) and
Lemma 1 a straightforward expansion allows us to derive that

]:ﬁ!’,t»(t, 0F )Gl (¢, 6]") dt
(A.15)
= [Gi.o(t.6)Ci(t,6) dt + O,([nb?*] " +bn =17,

Since by Lemma 1Gv), [7G; 4(¢t, 6,)G(¢, 6,) dt = 0,(n"17?), we immediately
obtain

(A.16) 6 — 671l = O,(n=1/2).
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When using (A.16), (A.13) and Lemma 1 to analyze the left-hand side of (A.9)
we immediately obtain

jG (t,607)GFy(t, &) dt(6} — 61")

= [Gi,5(2,0,)G: (2, 6)" dt (07 — 6]")
J
+0,(b*n"1/2) + 0,(n"1 7).
We thus arrive at
(9;'* - éih*)f_Gi,«?(t’ 0,)G;, (2, 6,)" dt
J

(A.17)
= [ Gy o(t,8)C; (¢, 6) dt + 0,([nb2]™" + bkn~172).
J

After applying our normalization procedure, (A.17) leads to

-1
0= 6= ([ Guo(t.00Gua(t,0)" de| - [Gu(t, 0062, 0)
1

(A.18) ‘NZZ {sz (2, 0,)Gy 5(2, 6,) dt}

foG,,,,(t, 6,)Gy(2,6,) dt + O,([nb*] " + b*n~1/2)

= 0,(n"/2 + [nb?] " + bFn712).

We recall that ¢;; and ¢&;, and hence f and f; are independent for j # I.
Based on Lemma 1(v) and the Cramer—Wold device, straightforward compu-
tations now lead to the assertions of the theorem. O

PROOF OF THEOREM 2. We write again /¥ = f* + f;, where f* is the
function estimate obtained by applying a kernel estimator with bandwidth
b*. It holds that

1y . A
_ %
Ni=1fl (Giz-‘t + 9;3)
1
= N i (02t + 6;3)

(A.19)
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1 N

f' (6t + 0i3){(éi2 - Oiz)t + (éi3 - 0i3)}

i=1
N 2
; *”(fi,t){(éiz - oiz)t + (éi3 - 9;'3)}

for all ¢ € J, where ¢, .+ denote suitable mean values. Let us now analyze the
terms on the right side of (A.19). Recalling the independence of f and f for
J # 1, (A.18) implies that the second term on the right-hand s1de is bounded
by O,([Nn]~ 172 + [nb%]7! + b*n~1/2). Considering the third term, (A.18)
leads to the bound O,(n~'). We conclude from the results of Gasser and
Miiller (1984) that for all i and any ¢ € J, |/'(6,5t + 6,5) = Op([nb3] 1/2),
Together with (A.18) it follows that the fourth term on the right is bounded
by O,([nb%2]7!). To analyze the fifth term, first note that for any small
n > 0 it holds that

suplf;*”(t)l = op(n"log n/| nb*5]l/2).

ted

This follows from Lemma 1 in Kneip and Gasser (1992), which in the version
required in the present context is an easy generalization of a result by Cheng
and Lin (1981). Together with (A.18) it follows that

N " A 2 n"log n
_N_zgfl* (§i,t){(0i2_9iz)t+ 0;3 — 0:‘3} =0p(W)’
which implies the assertion of the theorem. O
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