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UNIFORM COVERAGE BOUNDS FOR CONFIDENCE
INTERVALS AND BERRY-ESSEEN THEOREMS
FOR EDGEWORTH EXPANSION

By PETER HALL AND BING-YI JING

Australian National University

We derive upper bounds for the coverage error of confidence intervals
for a population mean uniformly over large classes of populations and
different types of confidence intervals. It is shown that the order of these
bounds is achieved by the normal approximation method for constructing
confidence intervals, uniformly over distributions with finite third mo-
ment, and, by an empirical Edgeworth correction of this approach, uni-
formly over smooth distributions with finite fourth moments. These re-
sults have straightforward extensions to higher orders of Edgeworth
correction and higher orders of moments. Our upper bounds to coverage
accuracy are based on Berry-Esseen theorems for Edgeworth expansions
of the distribution of the Studentized mean.

1. Introduction. Work on bootstrap and related methods during the last
decade has produced a wide variety of new techniques for constructing
confidence intervals, some of them very accurate and sophisticated. However,
this accuracy is obtained only at a price, usually expressed in terms of
moment assumptions about the sampling distribution. In the present paper
we address optimality issues in the study of confidence intervals for a
population mean. We prove that in a well-defined sense and for one-sided
confidence intervals, the normal approximation method provides the best
possible order of coverage accuracy uniformly over a large class of distribu-
tions with finite third moments, and an Edgeworth-corrected normal approxi-
mation method does the same among smooth distributions with finite fourth
moments. Similarly, higher-order Edgeworth corrections may be shown to be
optimal among smooth distributions with higher-order moments. These re-
sults are based on a new approach to identifying large classes of confidence
regions and on new methods for developing high-order bounds to coverage
probabilities over large sets of distributions.

Results of this type are sometimes referred to as “minimax,” in that they
describe the best possible performance (i.e., “min” error) over all possible
estimators, across a large class of models (i.e., “max” worst-case performance
among different distributions). In particular, Section 2 shows that the maxi-
mum of coverage error over all confidence interval types and all distributions
must be at least of a certain order, and that certain specific interval types
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364 P. HALL AND B.-Y. JING

achieve this order of accuracy. Section 3 introduces new theoretical results
that provide the basis for these conclusions. These take the form of Berry-
Esseen bounds for Edgeworth expansions of the distribution of the Studen-
tized mean and for adjusted versions of that distribution. The proofs of those
results employ new ways of incorporating a concise description of distribution
smoothness into explicit constants for the bounds. All proofs are deferred to
Section 4.

Edgeworth correction methods for constructing confidence intervals have
been developed by Pfanzagl (1979), Hall (1983) and Abramovitch and Singh
(1985). Edgeworth expansion theory, and its application to bootstrap and
other confidence interval methods, have been described by Hall (1992). A
Berry-Esseen theorem for normal approximation of the distribution of the
Studentized mean has been provided by Slavova (1985). Edgeworth expan-
sions of this distribution, under specific moment conditions, have been dis-
cussed by Chibishov (1984) and Hall (1987).

2. Coverage errors of confidence intervals.

92.1. Introduction and summary. Section 2.2 introduces upper bounds for
the coverage errors of confidence intervals, uniformly over large classes of
distributions. The orders of magnitude of these errors are of course not new,
but the uniformity is. This is the critical feature of our work, since it provides
the essential complement to the lower bounds described in Section 2.3.
Together, the upper bounds in Section 2.2 and lower bounds in Section 2.3
show that in the case of one-sided confidence intervals, normal approximation
methods are optimal over a large class of distributions with finite third
moments, and that Edgeworth-corrected confidence intervals are optimal
among smooth distributions with finite fourth moments. Here, “optimality”
refers to the order of magnitude of coverage error, which is n~ 12 in the
former case and n~! in the latter.

Let X, X,, X,, ... denote independent and identically distributed random
variables with finite third moment. Write X =n"* L,_, X;, 62=n"1%,_,
(X,-X)? and 9=6"%n"1 L,., (X, —X)?® for estimators of u = E(X),
o? = var(X) and y = E(X — n)®/03, respectively. It will prove convenient to
append the subscript F to u when the expectation E(X) = p is taken under
a specific distribution F.

2.2. Upper bound to coverage error. First we show that for j = 1 or 2 the
usual j-sided confidence interval for a mean based on the normal approxima-
tion has coverage error of order n~//% uniformly over a large class of
distributions with finite (j + 1)th order moments. Then we treat one-sided
confidence intervals based on empirical Edgeworth correction and show that
coverage errors there are O(n~1) in a uniform sense.

We begin by defining confidence intervals based on normal approximation.
Let z, = ® (@) denote the a-level point of the standard normal distribution
and put 8 = (1 + @)/2. The one-sided intervalis I, , = (—», X + n™/%2,)
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or I, , = (X —n"Y%z,, ©); our main theorem applies equally to either
definition. The two-sided interval is L ,=(X—n""'%z, X+ nV%zp).
Assuming only that the sampling distribution has finite variance, these
intervals cover the true mean u = uy with probability a + o(1) as n — .

Next we describe our classes of distributions. Let #, ; denote the class of
all distributions of X with finite third moment satisfying

E|X - EX*(var X) */? < d.
Let & 4 be the class of all distributions of X that have finite fourth moment
and which satisfy:
for some y € (—, ©) and ¢;, ¢, > 0,

hrlrzu(r)lfh P(IX-EX+x —yl<h) >¢, alllx|l<c,,
!

and
(c2¢3) 2EIX — EX — yl* + (crcd) *(EIX - EX - yI*)’ <d.

Both distribution classes are nonempty if d is sufficiently large.

Our specification of &, is quite straightforward, but %, perhaps re-
quires a little elaboration. To describe an important subclass of 7, 4, let Fy
denote any absolutely continuous distribution with finite fourth moment,
whose dens1ty f, is bounded away from zero in a neighborhood of the origin,
say, fi(x) = ¢} for |x| < c,. Fix m; € (0, 1) and let &, ; denote the class of
distributions F which may be represented as convex combinations F = 7 F,
+ (1 — 7)F,, with 7 € [7, 1] and, defining ¢, = 2¢}7,

(c168) 2EplX — EpXI + (c1ed) (EslX - Bz XI")" <d

Then %, ; € %; 4 and so in the case j = 2, the bound at (2.1) below applies to
Fy q as well as to 7, ;.

THEOREM 2.1. There exists a constant B; > 0, depending only on d, such
that

(2.1) sup sup |Pp(pp€l;,)—al< B,n7/?
FeF,, 0<a<l

forj=1,2 and n = 2.

Proofs of all theorenis are deferred to Section 4.

Next we treat Edgeworth-corrected confidence intervals of the type studied
by Hall (1983). See also Pfanzagl (1979) and Abramovitch and Singh (1985).
Nominal a-level one-sided intervals are given by

Jiw= ( o, X + n Y% {z, — n 1?55 (222 + 1)})
and
Jioa= (}? - V%2, + n V255(222 + 1)}, 00);
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a two-sided interval is

Joo = (}f’— n'l/z&{zﬁ + n_1/2%9(22g + 1)},

THEOREM 2.2. There exists a constant B, > 0, depending only on d and
e € (0, 1), such that
(2.2) sup sup |Pp(pp€d;,)—al<Byn?

FEQ})d e<a<l-e¢
forj=1,2 andn > 2.

Theorems 2.1 and 2.2 imply that the orders of coverage error of the
two-sided intervals I, , and J, , are identical. However, the one-sided inter-
vals I, , and I, , have coverage errors of orders n~1/%2 and n’!, respectively.
In the next subsection we show that these convergence rates are optimal over
the respective classes of distributions.

2.3. Lower bound to coverage error. In this section we derive inequalities
that represent converses to (2.1) and (2.2). Our results apply not just to
confidence intervals based on normal approximation, discussed in Section 2.2,
but to a very wide range of intervals.

However, some restrictions are necessary. To appreciate this point, observe
that it is clearly possible to construct rather uninformative confidence inter-
vals with very high coverage accuracy. For example, if the interval I = (U, V)
is taken equal to (—, ) with probability @ and to (X, X) with probability
1 — a, then I covers u with probability precisely equal to a. This practically
useless interval differs from more informative approaches in that both its
endpoints have very unsmooth distributions.

We may exclude this pathological case by asking that if the confidence
interval I is of the form (—, U) or (U, =), then for some reference distribu-
tion F,, constants C;, C; > 0 and n sufficiently large,

(2:3) PFo(lU — bl < Czn_(j+1)/2) > Cn77/2,

where j = 1 or 2. This condition is no more than an assumption about the
smoothness of the distribution of U, coupled with the assumption that U is
distant order n~!/% from Kr,- For example, if

PFo(nl/ZIU - gl < x) > Cyx

for all sufficiently small x and large n, then any values of C; and C, which
- satisfy C, = C,C, will produce (2.3), for all large n.

We should stress that F, may be chosen almost arbitrarily to facilitate
checking (2.3). For example, F, may be chosen to be the standard normal
distribution or a uniform distribution. If F, is the standard normal distribu-
tion, then one may readily check that for appropriate choices of C; and C,,
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(2.3) holds for intervals (—«, U) or (U, ©) based on the normal approxima-
tion, the percentile or percentile-t bootstrap, the double bootstrap, the boot-
strap calibrated normal approximation, the Edgeworth-corrected normal ap-
proximation and so forth. Thus, the class of confidence interval I for which
(2.3) holds for an appropriately chosen reference distribution F is very large.
We now state the main result in this subsection. Let .7, ; denote the class
of distributions introduced in Section 2.2, suppose that F, € % ; for some
dy >0 and let &, = &(F,, C;, Cy, ny) denote the class of all interval
sequences I = I, = (—, U) or (U, ») such that (2.3) holds for n > n,.

THEOREM 2.3. If d > d, is chosen sufficiently large (depending on F, C,
and n,y) and forj =1 or 2,

(2.4) liminfn//2 inf inf sup |Pp(pp<l) — a|>0.
n—-o Ie®; 0<a<l FeF;,

To compare the upper bounds (2.1) and (2.2) with the lower bound (2.4), let
us suppose that a given one-sided confidence interval I = I, has nominal
coverage «. Theorems 2.1 and 2.2 declare that if I is based on the normal
approximation (the case j = 1) or on the empirically Edgeworth-corrected
normal approximation (for j = 2), then

sup |Pp(up€I) — al=0(n7/?).
Fez,d

Theorem 2.3 states that for a much more general class of confidence intervals,

sup |Pp(pp€I) —al=Cn7/?
FeZ,

for large n and a constant C > 0. In this sense the confidence intervals
discussed in Section 2.2 produce levels of coverage accuracy which cannot be
bettered by other intervals [satisfying (2.3)], uniformly over distributions in
F

J,d

3. A Berry-Esseen theorem for Edgeworth expansions. Adopt no-
tation from Section 2. Without loss of generality, u =0 and o= 1. Put
T, = n'/2X /&, representing the so-called “Studentized mean.” If X has a
nonsingular distribution, then a one-term Edgeworth expansion is valid:

(3.1) P(T,<x) =®(x) +n 2%y(2x% + 1)p(x) + o(n~/?)

uniformly in x, as n — «. In this formula, ® and ¢ denote the standard
normal distribution and density functions, respectively, and y = E(X?®)
X(var X)~3/2 equals the skewness of the sampling distribution. See Chibishov
(1984) and Hall (1987). It is of particular interest to determine factors that
influence the size of the remainder term o(n~1/2) in (3.1), as this would
indicate the extent to which the expansion depends on properties of the
sampling distribution. In the event that fourth moments are finite and the
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sampling distribution is nonsingular, (3.1) may be extended to a longer
expansion:

P(T, <x)
= ®(x) + n 1 25y(2x% + 1) ¢(x)

+n Y Ek(x? - 1) — 5y2(x* + 227 — 8) — 3(a + 3)}é(x)

+o(n71),
uniformly in x, where k = E(X*)(var X)~2 — 3 denotes kurtosis. Result (3.2)
suggests the following “error bound” to formula 3.1

sup |P(T, <x) — ®(x) — n 2 5y(2x2 + 1) ()|
—o<x <®
(3.3) 2
< cn M {E(XY) + (BIXP) ),

(32)

where C is an appropriate constant.
Inequality (3.3) is reminiscent of the Berry-Esseen theorem, which de-
clares that

sup |P{n'/2X < (var X)?x} — ®(x)l < An~ VP,
—o<x <™
where v = E|X|*(var X) 3/2 and A denotes an absolute constant. (In partic-
ular, A does not depend in any way on the sampling distribution and of
course not on n.) A version of this result has been proved by Slavova (1985)
for the case of the Studentized mean:
(3.4) sup |P(T,<=x)— ®(x) <B(v)n "2,
—o<x<®
where B(v) depends only on ». A careful examination of Slavova’s proof
shows that B(») has the property that for each v, > 0,
(3.5) sup B(v) <,
0<wv<vy,

and so without loss of generality B(v) is increasing in v.

Despite these encouraging precedents to (3.3), that inequality must fail as
a general result since even the milder expansion (3.1) can be invalid for
lattice-valued sampling distributions. To overcome this problem we impose a
smoothness condition on the sampling distribution as follows. Suppose that
for some y € (—, ®) and ¢;, ¢y > 0,

(3.6) liglnionfh_lP(IX+x—y|sh) >c;, alllx|<ec,.
!

This condition may be equivalently expressed by saying that “the distribution
of X contains a uniform distribution on (y — ¢y, y + ¢,) with weight c;¢;.” As
before, define y to equal skewness.

To appreciate the implications of (3.6), let us suppose that the distribution
function F of X is nonsingular. Then we may write F = 7F; + (1 — m)F,,
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where 0 < 7 < 1, F, and F, are distribution functions and F, is absolutely
continuous. Write f, = F; for the density function corresponding to F, and
let I = (a, b) denote a nonempty interval on which f; is bounded away from
zero. Then (3.6) holds with y = 3(a + b), ¢; = m inf, ; fi(x) and ¢, = (b -
a).

Theorem 3.1 is a Berry—Esseen theorem for Edgeworth expansions and
Theorem 3.2 is a variant of that result needed to derive Theorem 2.2.

THEOREM 3.1. There exists an absolute constant A > 0 such that for all
distributions of X that satisfy E(X*) < «», E(X) = 0 and condition (3.6),

sup |P(T, <x) — ®(x) —n /23y(2x% + 1) ()l

—o<x <%

(8.7) L B \
< A~ (e1e}) PEIX - y1* + (ercf) (EIX ~ %))

forn > 2.
It is straightforward to develop versions of inequality (8.7) for higher-order
expansions.

THEOREM 3.2. Let x and x, denote arbitrary fixed positive constants. Then
P{T, <x —n 123322 + 1)} = ®(x) + O(n™")

uniformly in |x| < x, and distributions of X that satisfy (3.6) and are such
that E(X) = 0, E|X — y|* < C(c,c2)? and E|IX — yI° < Cleycd)*/2.

4. Proofs. Theorem 2.1 follows from (3.4) and (8.5) when j = 1, and from
Theorem 3.1 when j = 2. Theorem 2.2 is implied by Theorem 3.2.

ProOF OF THEOREM 3.1. We outline the proof up to the point where details
coincide relatively closely with those described by Hall (1987). It is permissi-
ble for us to assume that y = 0 in condition (3.6), although of course we are
now not permitted to suppose that X has zero mean. In this new notation,
T, = nV/%(X — EX)(n 'L X? — X?)~'/? and result (3.7) is equivalent to

sup |P(T, <x) — ®(x) —n 25y(2x% + 1) $(x)l

—o<x <™

(4.1) i s ,
< A~ (esc}) PEIXI* + (cref) (EIXP) ),

for an absolute constant A. We shall outline a proof of (4.1).

Write & for the o-field generated by |X;l,...,|X,| and put S; = sgn(X)),
p;=P(X;>0IX;D, Y;=X; — EX XD, By = EYHIX)D for k=2, v, =
E(By1), s2 =L Byj, T=LY; and y;(t) = E{exp(itY)|X;}}. We preface our
proof with two lemmas.

LEMMA 4.1. Under condition (3.6),
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Ely(t)] < 1 — (cyc,/28)min(1, (2¢,¢)%}
for all real t.

PROOF. [Recall that we suppose y = 0 in (3.6).] Let F' denote the distribu-
tion function of X, write F, for the distribution function of the uniform
distribution on (—cj, ¢;), put 7 = ¢;c, < 1 and let Fy = (1 — w) WF — wFy)
if 7w < 1. Then F, is a distribution function and, by construction, F = 7F; +
(1 — @)F,. Let x, x; or x, denote the characteristic function of X condi-
tional on |X| in the case where X has distribution function F, F, or F,,
respectively. Then x = mx; + (1 — m)x, and so | x| < 7l x| +1— 7. Also,
x:(t) = cos(¢|X]) and so

C
Elyy(t)| = Bl x(8)| < 7Ep | xo(t)| + 1 — 7= meg? foz|cos(tx)| de+1—m.

However,

{foczlcos(tx)l dx}2 < czfoczcosz(tx) dx = (1/2)c3{1 + (2¢,t) " sin(2¢5t)}
< c2[1 - (1/14)min(1, (2¢,1)%)]
< c2[1 - (1/28)min(1, @et))]

the second-to-last line following since ¢! sin ¢ < 1 — (1/7)min(1, ¢*). There-

fore,

Elyy(¢)l < 7|1 — (1/28)min(1, (2¢,2))] +1 -,

which implies the lemma. O

Our next result is a portion of Lemma 2.3 of Hall (1987). Here and below,
A,, A,,... denote positive absolute constants.

LEMMA 4.2. Let Z,,...,Z, be independent random variables with finite
third moments, zero means and L'_E(Z?) = 1. Set

3
x;(t) = E(e"%) and B;(t) EE{exp(ith) -y —1—!-(ith)r}

r=0T

and choose I so large that

™M=

E{z21(1Z] > 1)} < 5.

<.
I
[un
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Then whenever |t| < 1/121,

ﬁXj(t) - {1 + i Bi(t) + 3(it)’ f‘, E(Zf)}e‘tz/2
J=1 j=1

Jj=1

< A,ltle /8

£ (m@) £ r(z) |

Jj=1

Put A = {1024E(X*)/v,}'/? and v()) = E{Y2I(|Y;| > A)}. Let & denote the
event that |s?> — nv,| < 3nv, and

< (1/32) n,.

% E(AI(%) > )] ~ no()

Write & for the complement of &. We may prove from Markov’s inequality
that

(4.2) P(&) <A,n"W;2E(X?).
Similarly, since |Y;| < 2|X/| then the following results may be established on
&:

572 ¥ E{YAI(IY > M)IF) < (3nv,) nATP16E(XY) + & = 1,
i=1

~

n

1{E(YJ-2L7)}2 < (3nvy) z (4X2)" = 64(nv,) éxjfi,

s—4

o8

J

n

n 2 n
3-6{ r E(|Yj|3|y)} <s* L E(Y/¥) < 64(nv,)* ¥ X},
j=1 Jj=1

j=1
= 1/2 -3/2 =
572 ¥ E(1Y°1l7) < (512)*(nv,) "2 L 1X,P°,
j=1 j=1
n 3 1 o n —a.4 n .
h i(t/s) — Y ﬁ(lt) > B.j| < 64(nvy) "t P D
J=1 r=0"" j=1 j=1

Therefore, taking Z; = s'Y; and [ = s~'A in Lemma 4.2, and evaluating all
distributions and expectations conditional on .#, we deduce that if the event
& obtains,

ﬁ s - {1 + 3(it)’(nvy) " i E(YJ‘Q'V)}e-tz/z
-1

j=1

n

5A3It|e_‘2/6{(n1/2)_2 Y XP+ (nvz)_5/2( Y |X,.|3)|s2 - nvzl}
=1

j= j=1

uniformly in [¢| < s/(12A). Now apply the smoothing lemma for characteristic
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functions [e.g., Petrov (1975), Theorem 2, page 109, with T = ¢;*nE(X*) in
Petrov’s notation], obtaining on &,

sup
—o<x <™

P(T < sx|¥)

—{<b(x) + 3(1 - 2?) d(x) (nwy) " éE(WIy)}’

(4.3) i i
SA4|’(n"2)_2 Y X} + (’“’2)_5/2( > IXj|3)N|32 — nwy|

j-1 j=1

n fc54nE(x4)
/(121)

s

fIII(//j(t/s)l} dt + cg{nE(X‘*)}_l].

j=

Let J denote the integral on the right-hand side. On &,

1/2 (es M1/ Dnvy)-V2nEXY |
J < (2nvy)” f02 /2nvy)V/2nE( ){l_lltlfj(t)l} s,
17120 j=1

From this point, making use of Lemma 4.1, one may show that
E(JI(&)} < A{(cref) v /2 + (cred) " }n IE(X).
Adopting notation introduced during the proof of Lemma 4.1, we have
Vo = 4EF{P1(1 _pl)Xlz} = 47"'EF1{P1(1 —p1)X12}.
=4-cicy 3¢5 " fczxz dx = 3c,c3.
0
Therefore, E{JI(£)} < Ag(c,c3)2n"'E(X*). Replacing x in (4.3) by an arbi-

trary #measurable random variable U, and taking expectation, we deduce
that

8= sup |P(T<sU,)

—o<x<®

—E{(D(Ux) + L1 - U2)$(U,)(nvy) " }EE(Yfly)}l
(4.4) =1
< A](erd) Pn T E(XY)

- — 3 .
+n 3/21/25/2E{|X1| |82 — nwylI(Is® — nv,l < %nvz)}

LP(&) + ;B E(YAF)I(E)) + cin ' (EX*) .
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Now
E{IX1|3|s2 — nvylI(ls? — nv,l < %nvz)}
< Aa{(nvy) B(X*) + (n/v) X(BIXP))
and for n > 2,
E{X,PI(£)} < Ag(nv,) " *E(X*).
Combining the results from (4.4) down and noting (4.2), we conclude that
(45) < Ayf(cicd) TE(XY) +cd(BX) T+ (cxed) *(BIXI) Jn~t,

In notation from the proof of Lemma 4.1, 7Ep(X*) < Ex(X 4) or, equiva-
lently,

cic 5t f%x“ dx < E(X*), thatis, c,cd < 5E(X*).
0
Therefore, ci E(X*) < 25(c,c3) 2E(X*). Hence, by (4.5),
- - 2
(4.6) 5 < Ap{(ercd) "E(X*) + (er00) (EIXI) hnL,

The argument in Hall [(1987), pages 925-930] may be employed to show
that, with

() = E{é(l - U2)$(U) (nvy) "™ éE(Y}?’I?)},

to(x) = n~ V240 E{(1 - US)¢(U,)},
we have
sup |t;(x) — ty( )l
(4.7 TosEse , L ,
< Ap{(ered) "E(X*) + (crc8) (EIXP) pnt.
Result (4.1) follows from (4.6) and (4.7). This completes the proof of Theorem
3.1. O

The proof of Theorem 3.2 is similar to that of Theorem 3.1 and so is not
given here.

ProOF OF THEOREM 2.3. It suffices to derive the following result, which is
substantially more general than Theorem 2.3.

THEOREM 4.1. Fix r > 2 and let F,, denote any distribution with finite rth
~ moment. Write € = €(F,, C,, Cy, ny, r) for the class of all interval sequences
"I =1, such that

|Pp(pp, €1+ Con == D/2) — Py (g €1 - Cyn=C-1/2))

4.8
( ) > Cln—(r—Z)/z
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for n > n,. Let C5 denote any point of support of F,,, let 0 < & <1 and for
i =1, 2 let F,, denote the distribution obtained by taking mass 1eCinr/?
from the vicinity of C; and placing it at x, ~ (—1)'4e”'C;'Cyn'/%. We may
choose x,, satisfying this last asymptotic relation, such that:

(a) Ep |XI° — Ep|X|°=0(n~""*/%) forO<s<r,
MF;, = HFry, = (_l)iczn—(r—l)/Z,

Ep |XI" — Ep|XI" > (4/5) C}7C;

as n — «© and

(b) liminf n"~2/2 inf inf max |P el) —al>i(1-¢)C,.
n— o IE%0<0{<1FE(FL’L,F2,",F0) F(/Jlf ) 4( ) 1

ProoF. Result (a) follows by direct calculation. To prove (b), note that in
view of (4.8) we have either

(49)  |Pp(pp, €1+ Con™""V%) = Pp(pp, € I)l = 3Cyn~ 0772
or
(4.10) IPFo( ur, €1 — Czn_(r_l)/z) — Pp(pp, €I)l = 1C,n~r=v/2

The chance that some data value in an n-sample drawn from F;, come
from the region of probability 36C,n""/%, where F, and F, , dlﬂ'er 1s less
than $£C;n~("~?/2 Therefore, if 1nequahty (4.8 + i) holds’ for i=1 or 2,
Py, (pp,, €1)— PF(p,F el > 3(1 — &)C,n~""2/2 Taking F, to equal
F,, "if (4.9) holds and to equal F, , if (4.10) holds but (4.9) fails, we deduce
that |Pe(pp €1) — Pe(pp, € DI 5(1 — £)C;n~"~?/2. Therefore, for any
0<a<l, IPF(,uFeI)— ol > 11 - &)C,n~"=?/2 holds for F = F, or F =
F,. This establishes part (b) of the theorem. O
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