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AN INFINITE-DIMENSIONAL GEOMETRIC STRUCTURE ON
THE SPACE OF ALL THE PROBABILITY MEASURES
EQUIVALENT TO A GIVEN ONE

By GIOVANNI PISTONE AND CARLO SEMPI

Politecnico di Torino and Universita di Lecce

Let .#, be the set of all probability densities equivalent to a given
reference probability measure w. This set is thought of as the maximal
regular (i.e., with strictly positive densities) u-dominated statistical model.
For each f €., we define (1) a Banach space L; with unit ball #; and (2)
a mapping s; from a subset #%; of .#, onto 7}, in such a way that the
system (s;, %, f €.4,) is an affine atlas on .#,. Moreover each parametric
exponential model dominated by u is a finite-dimensional affine submani-
fold and each parametric statistical model dominated by u with a suitable
regularity is a submanifold. The global geometric framework given by the
manifold structure adds some insight to the so-called geometric theory of
statistical models. In particular, the present paper gives some of the
developments connected with the Fisher information metrics (Rao) and
the Hilbert bundle introduced by Amari.

0. Introduction. The aim of the present note is to give a construction of
an infinite-dimensional geometric structure on each class of equivalent proba-
bility measures. Many authors have dealt with just this problem in the
finite-dimensional (i.e., parametric) case; here we limit ourselves to mention-
ing Rao (1949), Efron (1975), various contributions published in the IMS book
by Amari, Barndorff-Nielsen, Kass, Lauritzen and Rao (1987), and the paper
by Barndorff-Nielsen and Jupp (1989). We believe that the framework we
propose is interesting on its own merits, is fairly simple, modulo an even
cursory knowledge of Orlicz spaces, and yet may turn out to be sufficiently
general to accommodate many interesting statistical ideas and models. The
knowledge of Orlicz spaces that is required is entirely given below when it is
needed, if one is willing to accept the standard facts (for which, however,
references are given). The only Orlicz space we explicitly use is built on an
exponential function that strongly suggests the well-known notions connected
with moment generating functions and statistical exponential families. What
we present below claims to be nothing more than a first step: a brief mention
of some applications to the general theory of statistical models is given in the
closing section. No new applied methodology is given but “nothing is so
practical as a good theory”: in fact, we think that if a manifold structure is at
hand, then the full force of the methods of global analysis can be put to work
for interesting statistical problem; as an example, see the application of the
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“implicit function theorem” in Groeneboom and Wellner (1992). This circle of
ideas may even be useful in the Bayesian approach, where the role of the
parameters is played by a priori distributions; it is then useful to have a
geometric structure on distributions. We intend to pursue this line of investi-
gation in order to deepen it and to compare it with other approaches, notably
those mentioned above.

The starting point of the research here reported was a suggestion con-
tained in a comment by Dawid (1975) on one of the papers by Efron (1975).
Precisely, Dawid suggested the introduction of a nonparametric model and
identified also the relevant tangent structure. This point was further devel-
oped in the definition of Hilbert bundle by Amari [see Amari, Barndorff-
Nielsen, Kass, Lauritzen and Rao (1987) and also the comments in
Barndorff-Nielsen and Jupp (1989)].

1. The statistical model and its topology.

1.1. The statistical model and contents of the paper. Let (Q, %, u) be a
probability space, and let us denote by .#, the set of the densities of all the
probability measures equivalent to u,

(1) — (feL(p):f> 0 was, E(f) = 1).

The probability measure whose density is f will be denoted by f- u and its
expectation by E.(-), where E(-) denotes the expectation with respect to the
reference measure pu.

The set .#, can be thought of as the maximal regular p-dominated
statistical model: here “regular” means that all probability measures in the
model are equivalent to the reference probability measure u. The more
obvious “geometry” of .#, comes from the fact that it is a convex subset of
L'( ). One of the key ideas in the geometric theory of statistical models is
that the embedding in L'(p) is not “natural” for statistical purposes [see,
e.g., Centsov (1971)]. In the finite sample space case it is shown in that
reference that a natural geometry is given by the embedding M, S fr
1% € L*(n) of the set of densities in the Hilbert space L2(u). [See the
review article by Kass (1989) for a simple exposition.]

Two topologies are usually considered for .#,: that of convergence in
pu-measure and that of the Banach space L'( ). These coincide, as is easy to
check by looking at the argument used in the proof of Scheffé’s theorem
[Scheffé (1947), but see also Sempi (1989)]; moreover, if ) is a metric space,
then this topology implies weak convergence (convergence étroite). They also
coincide with the topology induced by the mapping f > /f € L*( ), which is
used in connection with the Hellinger distance.

The construction of the mentioned geometric structure will be achieved by
the definition of an atlas on the metric space .#Z, so as to give it the structure
of a manifold modeled on Banach spaces. The relevant Banach spaces are the
subspaces, denoted in the present paper by L, of centered random variables
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in the Orlicz spaces L®(f-u) based on the exponential Young function
¢(x) = cosh x — 1 to be defined in Section 2. The existence of the atlas and
the characterization of its tangent bundle is then established in Section 3.
Section 4 discusses the connection of the geometry with the statistical
applications.

The topology induced on the space .#, by the atlas will be stronger than
the L!'-topology and will reduce in the case of sequences to the convergence
defined in the following subsection.

1.2. Exponential convergence (e-convergence). Let (g,), <y be a sequence
and let g be a density both in .Z,.

DEFINITION 1.1. The sequence (g,),cy in #, is e-convergent (exponen-
tially convergent) to g if (g,),cn tends to g in ,u,-probablhty as n — o, and,
moreover, the sequences (g,/8),cn and (g/g,), <y are eventually bounded
in each L?(g), p > 1, that is,

g\”
< +oo, limsupE, (-——- < 400,
8n

n—«

g.\?
(2) Vp>1, limsupEg[(;")

n— o

The previous definition can be extended in an obvious way from the
sequences to other types of limit. In particular, a function g mapping a real
interval I into.#, is said to be e-continuous at a point ¢, € [ if lim,_,, g(¢) =
g(¢y) in p-probability and

p
t
(g( ) ) ]< + o, limsup E < 4o,

Vp>1 limsupE,

t—ot,

( &(to) )p
(to) t—t, g1\ g(t)
Let us remark that e-convergence is equivalent to the convergence of g,/g
and g/g, to 1 with respect to all p-seminorms h — E[|A|"], p > 1.

As the boundedness condition in Definition 1.1. is given with respect to

seminorms which depend on the limit g, the following proposition will be
useful in the sequel.

PROPOSITION 1.2.  Let a > 0 be given, and consider f, f, €4, with

(3) % e LM(fy-u).
2

If the sequence (h,),cy in #, is eventually bounded in all LP(f,- w),
p > 1, then it is also eventually bounded in all LP(f;-n), p > 1.

Proor. It suffices to apply Holder’s inequality:

[1hal?ty dps = lhnl”(f)fz du

e

2

1/(1+a)
) o

a/(1+a)
(fhf(l+a)/af2 dM)
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REMARK 1.3. It follows from Proposition 1.2 that condition (2) in the
definition of e-convergence is a consequence of the condition

p

where f €.#, is such that g/f € L'**(f- u) for some a > 0.

The notion of e-convergence is quite strong, but nevertheless the exponen-
tial arcs in .#, are continuous except at the endpoints for that convergence,
as the following proposition shows.

n—w

(4) limsupEf[(%)p

< oo, limsupEf[(-égi-

n—ox n

PROPOSITION 1.4. Let two densities f, and f, be given in M.
(a) The function

C:R>t~ C(t) =E(fifi?) € R,U{+}

is convex, and its proper domain contains the closed interval [0,1]; the
exponential arc from f, to f, in 4, defined by

fifo!

(5) f:[O’]‘]Bt'—)ft=W,

is continuous in u-probability on the closed interval [0, 1] and e-continuous on
the open interval 10, 1[.

(b) If, moreover, C is finite on an open set containing [0,1], then the
exponential arc (5) is e-continuous.

Proor. The normalizing constant C(¢) can be written

C(t) = Efo[exp(t In ;—;)]

This shows convexity. Moreover, it is finite and continuous on [0, 1] because of
the inequality f{fs ' < (1 — t)f, + tf,: this is easily verified by taking the
logarithm of both sides and using the concavity of the logarithmic function.
This in turn implies that the exponential arc is continuous in u-probability
and in L'( ).

Let ¢ be any point in [0, 1], let s be.in [0,1] and let s — ¢. To verify the
e-convergence of f, to f,, we have to show the boundedness, as s — ¢, of the
pn-expectation of both

fs ’ C(t) ’ 1 t+p(s—t)pl—[t+p(s—t
_(C(s)

f.\° P q
(Z) f (C(t)) Sy,
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If s is such that both (¢ + p(s — ¢)) and (¢ + p(¢ — s)) are in the proper
domain of C, then we can write

(E)" _ (C(t) )”C[t +p(s —1t)]
fi C(s) C(?) ’
7

fs

If t €]0,1[, then s satisfies0 <t +p(s —t) <l,and0 <t +p(t —s)<1lin
a neighborhood of ¢ in [0, 1] and the boundedness condition of the e-continu-
ity follows.

In the case ¢t = 0 or ¢ = 1, the value ¢ + p(¢ — s) is not in [0, 1] and the
conclusion follows from the fact that the proper domain of C is a neighbor-
hood of [0,1] in R. O

E;

E

t

_(C(s)\"Clt +p(t —9)]
) C(t)

REMARK 1.5. The previous proposition shows in particular that .#, is not
connected by e-continuous exponential arcs unless the reference probability
space (Q, &, w) is finite. In fact in such a case it is not difficult to produce an
example where the e-continuity fails on one of the boundary points of the
interval [0, 1]: take f, = 1 and f;, € L'(w) but f; € L?, p > 1. The set of all
densities connected by an e-continuous exponential arc to a given f €.,
consists of the set of all densities g such that both functions

g f
t-—»Ef[exp(tln—];)], and s*—»Eg[exp(slng)]

are finite in a neighborhood of 0. It is easily verified that this is equivalent to
the requirement that f and g belong to the same one-dimensional exponen-
tial model. The construction developed in the present paper will show that
this property can be thought of as the construction of the maximal exponen-
tial model containing f (see Section 4).

2. Moment generating functions and Orlicz spaces. In the present
section we are going to present the construction of the Banach spaces that
will play the role of generalized parameters or coordinates for maximal
nonparametric exponential models. Notice that all the construction is local in
the sense that this constructions will be done with reference to a neighbor-
hood of a particular density f in the model .#,. Note also that, while the
notion of norm is derived from functional analysis, the vector space itself is
an object well known in the theory of moment generating functions. More-
over, the resulting distance will be related with the more common L?norm in
Section 4.

For each real random variable u on (Q, &, f- w), the moment generating
function of u, that is, the Laplace transform of the distribution of the random
variable u with respect to the probability measure f- u, is the function 4,
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with values in R, = [0, + %] defined by

(7) 2p(t) = [exp(tu)fdu = E;(exp(tu)), tER.

We recall a few useful results on moment generating functions.

PROPOSITION 2.1. The moment generating function iy (a) is convex and
lower-semicontinuous; (b) is analytic in the interior of its proper domain
D(i,)°; and (c) its derivatives are obtained by differentiating under the
integral sign.

Proor. See Widder (1941).

DEFINITION 2.2.  For each density f €.#,, we consider the set of all random
variables u such that the following hold:

(a) The moment generating function &, is defined in a neighborhood of the
origin 0.

(b) The expectation of u is zero [condition (a) implies the existence of a
finite expectation)].

This set is easily shown to be a vector space and will be denoted by L,
that is,

(8) Ly={u e L(f-p):0 € D(&;)’, Ex(u) = 0}.

It follows from Proposition 2.1(b, c) that all the moments of every u € L
exist and that they are the values at 0 of the derivatives of ;.

The next step is now to show that L is actually a Banach space because it
is a closed subspace of a particular Banach space, the Orlicz space based on
an exponentially growing function shortly to be introduced. For a general
reference on Orlicz spaces, see, for example, Krasnosel’skii and Rutickii
(1958) or Rao and Ren (1991).

We say that a real function ¢ is a Young function if $(0) = 0, ¢ is even,
strictly increasing, convex and lim, ,,, ¢t ¢(¢#) = + . Young functions gener-
alize the family of functions u — (1/p)u?, p > 1; the Orlicz space of the
Young function ¢, denoted by L®(f- u) is the corresponding generalization of
the Lebesgue space of p-integrable funetions LP(f- ). Such a generalization
is not straightforward because it is not enough to assume ¢-integrability,
that is, a condition such as E/[ ¢(u)] < +. Such a condition is not sufficient
to define an element of L*(f- u) unless a further assumption on the growth
of ¢ is introduced, which is always satisfied in the case of the usual Lebesgue
spaces.

We define the set L*(f-u) as the collection of all the (u-equivalence
classes of) random variables u for which there exists a positive number a
such that E/[ ¢(u/a)] is finite. This class is a Banach space for the norm
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defined by
9) lullg,, = inf{la > 0: E;[¢(u/a)] < 1}.

Such a norm is the norm induced by the convex balanced set {u: E/[ $(w)] < 1}:
this means that it is the unique norm for which such a set is the closed unit
ball.

Let us remark that the definition of norm we have given implies that for a
given £ > 0 the distance between u and v is less than ¢ if and only if there
exists a constant p > £~ ! such that

(10) E[¢(plu —vl)] <1.

By the same argument, one shows that u, » « in L®(f- ), that is,
lim, , ,  llu, — ullg, s = 0 if and only if, for all p > 1,

(11) limsupEf[¢>(p|un -u)] <L

n— o

In particular [see Krasnosel'skii and Rutickii (1958), Section 9.14], the
convergence lim, _, , ., llu, — ulls, = O implies that [¢(u, — w)fdu — 0.

From now on we shall use a specific Orlicz space by considering the Young
function ¢(u) = cosh u — 1, and we shall let LP~D(f- 1) denote the Orlicz
space, and || [|; its norm.

PROPOSITION 2.3.

(a) The set L defined in Definition 2.2 coincides with the closed subspace
of the space L~ D(f- u) of zero expectation random variables.

(b) The set L, is a vector subspace of the space L{(f-u) of centered
p-integrable random variables for every p > 1 with continuous and dense
embedding; it contains the space Ly(f- u) of centered essentially bounded
random variables, with continuous embedding (where the symbol “ = ” marks
the continuity of the embeddings, which is more than simply being a sub-
space)

(12) o(f-m) = Li=> (Y LE(f w).

p>1

Proor. (a) Assume u € L*(f- u) and E/(u) = 0. Then there exists a > 0
such that Eq(exp(u/a) + exp(—u/a)) is finite, and this implies, from the
convexity of the exponential function, the finiteness of the moment generat-
ing function in the interval ] — @ ™!, @~ '[; therefore u is in L. Conversely, let
us assume u € L;. Then there exists ¢ such that both ¢ and —¢ are in the
domain of the moment generating function #,, and this means that
E(exp(tu) + exp(—tu)) is finite, so that u € L*(f- w).

(b) The first inclusion in (12) depends on the fact that, for every ¢ € R, .
exp(tu) is bounded whenever u is. The second inclusion depends on the
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inequality

= |ul>”

lu
$(lul) = coshlul — 1 = El zn)! = (2p)!

Denseness follows from the denseness of L” in L?, p > 1. O

|2

p €N.

Let B; denote the open unit ball of Leosh=D(f. 1), and by 7 its trace on
L, namely,

(13) By={ue L™ V(f-u):llully <1}, 2,=B,nL,.

The following proposition is the “nonparametric” counterpart of Proposi-
tion 2.1.

_ PrOPOSITION 2.4. The moment generating functional ®;: LEsh=D(f ) >
R, = [0, + ] defined by

(14) ®p(u) = Ef(exp u)
satisfies the following:

(a) takes the value 1 when evaluated at the function that is identically 0,
elsewhere it is greater than 1, is convex and lower semicontinuous and its
proper domain D(®;) = {u € L D(f- u): ®(u) < %} contains the open unit
ball By;

(b) is infinitely Gateaux-differentiable in the interior of its proper domain;
the nth derivative in the direction v is given by

(15) v E(v"expu);
(¢) is bounded and infinitely Fréchet-differentiable on the open unit ball B;.

PROOF. (a) As for convexity, there is nothing to prove if either Eq(exp u) =
+ o0 or Ef(exp v) = +, or both; otherwise, it is an immediate consequence of
the convexity of the exponential function.

In order to prove that @, is lower semicontinuous, one has to show that the
level set C, = {u € L D(f- u): ®,(u) = E(exp u) < a} is closed for every
a > 0. Thus let {z,} be a sequence in C, such that |lu, — wllcosn—1), f = O.
This, in turn, implies that u#, - « in f- u-measure [Sempi (1986)]. The
sequence {exp(u,)} converges in (f- w)-measure to exp u. Therefore there
exists a subsequence (n(k): £ € N) such that exp u,;,, > expu, k - ©, y-a.s.
Fatou’s lemma then gives E/(exp u) = E(lim inf,explu (2)]) <
liminf, Eq(explu,(k)]) < a, sothat u € C,.If u € By, then [(cosh u)fdu < 2
so that E(exp u) < +%, namely, u is in the proper domain of ®. Therefore
B, C D(®)).

(b) Since ®; is convex and lower semicontinuous, it is continuous in the
interior of its proper domain D(®;)° [Ekeland and Temam (1974), 1.2.5].
Thus, if u € D(®,)°, then, for every v € L I(f- ), u + tv is again in
D(d>f)° for ¢ small enough. By Proposition 2.1(b) the mapping t — ®:(u + tv)
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is analytic and its derivatives are
d"®p(u + tv)
dt"

(c¢) As for Fréchet-differentiability, one has to prove the continuity of the
multilinear mapping v — E/(v" exp u). Let r be the radius of a ball centered
at the origin and entirely contained in the unit ball B;. For every unit vector
v, rv is again in B; and

rv)"
Ef[( ) exp u
n!

Hence E/(v" exp u) < 4(n!/r"). O

=E;(v"expu).
t=0

< 2E[cosh(rv + u)] < 4.

The following proposition is the nonparametric version of well-known
properties of the exponential models. Note that it is important to restrict
consideration to the class of centered random variables in order to ensure the
positivity properties of the function V.

PROPOSITION 2.5. For each u € L let the cumulant generating functional
W, be defined by

(16) Ve(u) =1In Pp(u).
Then ¥, has proper domain D(®;) N L, D 7} and the following properties:

(a) W is null at 0, elsewhere it is strictly positive; it is convex, lower
semicontinuous, infinitely Gateaux-differentiable in the interior of its proper
domain, infinitely Fréchet-differentiable on 7%;

() V u € 7;, g = explu — V(w)] - fis a probability density in .4, and the
value of the nth derivative of Wy at u in the direction v is the nth cumulant of
v with respect to g, that is,

d" In E,(exp tv) '
dt" =0

(17) dyWe(vo") =
(¢) in particular,

(18) dgq'f(vl»vz) =Eg(vlvz) _Eg(vl)Eg(v2)'

ProoOF. Positivity follows from Jensen’s inequality: Ef(exp u) >
expl E/(u)] = exp 0 = 1; differentiability follows from Proposition 2.4 and the
chain rule; the rest are simple computations. O

DEFINITION 2.6. Let us define the symmetrized cumulant generating func-
tional V; by

\i’f(u) = %[\I’f(u) + \I’/(—u)]

= In[®,(w)@p(—u)]"”?, wuwel,
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It is a positive, convex, balanced function on L, with proper domain
D(¥;) N —D(¥;) D 7;; we denote the induced norm by |- [l¢,, that is,

(19) lullg, = inf{a > 0: ¥, (u/a) <1}, uelL,.

The relations between this new norm and the previously defined norm
Il-1lf, based on the functional u — Ef[cosh u — 1], will be derived from the
following inequalities:

(a) It follows from In x < x — 1 that
(20) YVueL, ¥(u)<E] coshu —1].

(b) From Jensen’s inequality [ Es(exp w)]° < Ef(expcu), u € L, ¢ > 1, it
follows that

Yu€eLsc>1, c\i’f(u) < \iff(cu).

@ If a,b>1, then a(b —1)>b —1; if In(ab)'/? <¢, ¢ > 1, then
(a +b)/2 <1 + exp2¢)/2; using ®p(u), ®,(—u) = 1 and the definition of
W, (u), it follows that

\i’f(u) <c = Ey(coshu —1) < j(exp2¢c — 1).

_ ProposITION 2.7. The following inequalities between E (cosh u — 1) and
V:(u) hold for all u € L;:

\i’f(u) <Eg(coshu — 1) < exp[2\i’f(u)], u € L;.
In particular, the norm ||-|l; dominates the norm |- |s,.

ProoF. The domination property follows from the first inequality, which
in turn is (a). The second inequality follows from (b) and (¢). O

ExXAMPLE 2.8. It is interesting to show how the previously defined norms
reduce to the usual L?*norm in a Gaussian case. Let us consider centered
Gaussian random variables of the form u = [} a(s) dB(s), where B(¢), t €
[0, 1], is the standard Wiener process for the probability measure f- 1 and
a € L%(0,1]). We easily compute [from p [} a(s) dB(s) ~
N, p? [} a®(s) ds)]:

d)f(p[loa(s) dﬁ(s)) = exp(%j:az(s) ds);
Ef[COSh(p/Ola(s) dﬁ(s)) - 1] - eXP(%—folaz(s) ds) _ 1,

\Tf(pfola(s) dB(s)) = %—Llaz(s) ds.
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Then it follows that

| () ascs)

llalls

T a1,
A \/2ln2fo a(s)ds = o=

’fola(s) aB(s)|, - %‘/%/:az(s) ds = %nanz.

It follows that both the norms we have defined on L, are proportional to the
L2(f- w)-norm on the vector space of Wiener integrals.

(21)

Now we have completed the study of the space of coordinates L, which is
a topological B-space for each one of the norm we have defined in the present
section. The next topic will be the construction of an atlas with such a
coordinate space.

3. The manifold of equivalent probability measures. Our treatment
of infinite-dimensional differential geometry is elementary in the sense that
we shall limit our discussion to the existence of an atlas (Theorem 3.6) and to
the characterization of the tangent bundle (Section 3.3); we refer to the
coordinate-free presentation of infinite-dimensional manifold of Lang (1972).
The metric theory we present does not fit into the standard theory of
Riemannian manifolds because our manifold is based on Banach spaces,
which are not in general Hilbert spaces. Nevertheless, we define a continuous
bilinear form on the manifold (Section 3.4) together with continuous multilin-
ear forms.

3.1. Atlases and manifolds. Let us consider the following map:
(22) %Bu»—éexp[u—\lff(u)] fed,,

where V¢(u) = In Eq(exp u) = In ®,(u) is the cumulant generating functional
of Proposition 2.5 and ®; is the moment generating functional of Proposition
2.4. This mapping is one-to-one, as equality of its values at u and v implies
that (u — v) is constant and 0 is the only constant contained in 7;. We shall
denote the range of the mapping defined in (22) by #;, and its inverse on %,
will be denoted by s;. Such an inverse, s;: %; —> 7}, is easily computed, for
g €%, as

(23) sp(g) =ln§ —Ef[lné].

The functions s;, f €.#,, will be the coordinate mappings of our manifold
in the sense that, locally around each f€.#,, each g € #%; will be “para-
meterized” by its centered log-likelihood (23).

REMARKS. The value sq(g) of the mapping s;(-) defined in (23) is the
log-likelihood of g with respect to f plus the Kullback-Leibler information
E(In(f/g)).

The mapping s, is connected to the maximum likelihood estimator as
follows: the maximum expected (at g) log-likelihood, that is, the maximum of
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the function
exp[u — \I'f(u)] -f
f

is obtained, by differentiating and using Proposition 2.5(b), at that point & for
which E, () = Eyp, wuy (), that is, at & = s,(g).

7;2u~ E;|ln =E,(u) — Y (u),

Let us compute now the change-of-coordinates formula: if f; and f, are
two points in .#, such that %, N %;, # J, then the composite (transition)
mapping

-1,
(24) Sp,° 87, Sl #p, N #y,) = s (%, 0 %)

1
simplifies to

(25) s 085 () =u+In

"i‘:‘l'_.Ef2 u+lnﬁ],

fa fa

where the algebraic computations are done in the space of u-classes of
measurable functions and the expectation is well defined as long as %, N
%;, # & because this implies u + In(f, /f,) € 7.

We shall show that the sets %;, with f €.#,, are sequentially e-open. In
order to prove this point, the following two propositions will be useful. In fact
it is shown that e-convergence is local with respect to each %, in the sense
that the LP”-boundedness condition does not depend on the limit, but it
depends on the set %;.

ProposITION 3.1. Let g €4,; if g € %;, which implies |s/(gllf <
1/(1 + &) for some & > 0. Then

gELHS(f’M), ﬁELZJra(g',u,).

f g

As a consequence, a sequence (h,), < is eventually bounded in each LP(f- u),
p > 1, if and only if it is eventually bounded in each LP(g - u), p > 1.

(26)

Proor. Let s/(g) =u € 7;, that is, g = explu — ¥;(u)] - f. Therefore,
2+ 68 (§)1+3+ f 1+6
f

I v ) e |7) -

g
= f [exp[u(l + 8)]exp{— ¥ (u)(1 + )}
+exp[ —u(1 + 8)]exp{W(u)(1 + 8)}]fd/u

< 2exp{l¥;(w)l(1 + 3)}jcosh{u(1 +68)}fdu

fdu

(because of the assumption)
< 4exp{I¥(u)l(1 + 8)}.
The last part now follows from Proposition 1.2. O
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PROPOSITION 3.2. Let g € %, and let (g,),cy be a sequence in 4, that
converges to g in probability [and in L' w)]. Then the sequence is e-convergent
if and only if both sequences g, /g and g/g, are eventually bounded for each
L*(f-w), p> 1

ProoF. The proposition follows from Proposition 3.1. O

DEFINITION 3.3. Let us now recall basic definitions from Lang (1972). The
set ., is covered by (%}, s¢);c “, and the maps s;: %, —> 7; C Lf are one-to-
one on the unit ball 7; of a Banach space L;. Such an object is called an
atlas of class C” if, moreover the following two conditions are satisfied:

(@ Vfges sf(?/f N%, ) is open in L;
®VSfg e/é’ the transztzon mapping

Sg ° Sf_I: Sf(%f n %g) - Sg(%f n %g)

is a C*-isomorphism.

In fact, in the following subsection we shall show much more, that is, the
covering is a sequentially open covering for e-convergence, the mappings s,
are homeomorphisms for e-convergence, and the atlas is actually affine, that
is, the transition mappings are affine functions.

3.2. Main result. The following proposition shows that each %; is e-open
and that the coordinate mappings s, are sequentially continuous from e-con-
vergence to L-convergence.

PROPOSITION 3.4. Let us assume that the sequence (g,), < n s e-convergent
to g as n — », and that g € %;. Then the sequence (g,), <y is eventually in
%;, and the corresponding sequence of coordinates u, = s/(g,) converges to

= s,(g) in 7;.

Proor. Let us define &, by g, = exp[zln = V(w)]-f, n € N. From the
assumptions we have u € Wf but on %, = In(g,/f) — ¥,(u) we do not have
any integrability assumption. From the e-convergence of the sequence (8 )nen
to g there follows the convergence of the sequence (u,), .y to © in u-mea-
sure. Moreover, by the definition of e-convergence and Proposition 3.2 we

know that,V p > 1,
(27) {Ef (g;) + (gin)p]} — 1= E([cosh p(#, —u) — 1]

tends to 0, and this in turn implies the eventual convergence of (©,),y to u
in the Orlicz space L'~ D(f- ) [see (10)]. The sequence of functions u, =
@, — E/(@,) is eventually well-defined in L, and eventually belongs to 7;. In
such a case g, = explu, — ¥(u,)]-f. O

‘

Now we show the sequential continuity of the inverse coordinate mappings
sy ! from L convergence to e-convergence.
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ProposiTION 3.5. Let u,, u € 7;, n €N, and assume u, > u in L;. If
u, =s(g,), u=s,g),n €N, then g, e-converges to g.

Proor. The sequence (g,) is pu-convergent to g and

Ef[d)(p(un_u))]
28)  _1f [(&\"][ @) &\ e \"|
- 2{Ef[(g) ] D (u) ) o (gn) ] cI’f(un)) } b

where ®; was defined in Proposition 2.4. This shows that the condition of
Proposition 3.2 is satisfied. O

We are now ready to state the main result of the present paper.

THEOREM 3.6. The collection of pairs ((#%;, s;): f €.4,} is an affine C*-atlas
on #,. The induced topology on sequences is equivalent to e-convergence.

ProoF. We have to verify conditions (a) and (b) of Definition 3.3.

(a) The set s{(#%; N %,) is open because it coincides with s.(%,), %, is
sequentially e-open and s; ! is sequentially continuous and defined on an
open set 7; of a Banach space L.

(b) The transition mapping s, °s; ' is continuous because it is the compo-
sition of two continuous mappings; moreover, it is affine, as formula (25)
shows. Then it is affine and C*. O

1

3.3. The tangent bundle. In the previous section we constructed a mani-
fold structure where the value of the coordinate (parameter value) is the
log-likelihood. Now we consider the tangent manifold structure and we show
that the geometric notion of tangent vector corresponds to an equally well
known statistical notion, that is, the score.

Let f be a density in .Z,, and let a curve through f be given, that is, a
one-dimensional parametric statistical model I = ¢ — g(¢), I open real inter-
val, ¢, €1, g(¢y) =f. If (%, s;) is a chart for f, then g(¢) = exp{u,(¢) -
Ve lu O - f1, uy(t) = s;[g(t)], t € I. With respect to this chart the tangent
vector to the curve at f is u/(¢,). In a different chart (%, s;) we will get
uy(t,), and the two vectors will be connected by the equivalence relation
(sr, 0 87, Vs (PIw(ty) = wy(ty). The collection of tangent vectors at f, mod-
ulo this equivalence relation, is called the tangent space at f of the manifold
. It is a vector space and has the same topology as any one of the Banach
spaces L, for all g €., such that f € 7,.

This abstract construction in our case has a concrete realization. In fact,
the manifold .#, is affine [see (25)], and we get (s, o s;,') o s(u) = u — E;[ul,
so that u; € L;, is equivalent to u, € L/, (i.e., they both represent the same
tangent vector) if and only if u, — u, is a constant. The tangent space at f is
denoted by T;, and usually we shall identify it with L, (i.e., the coordinate
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space at f). With such an identification the tangent vector of a one-dimen-
sional statistical model g(¢) = exp{u;(t) — Y u(®)]} - f is w'(¢) — E, @' ().
However, from We(u(t)) = In Ef(exp[ u(?)]) it follows that [d\lff(u(t))/dt] =
E, ,[u'(t)]. Then the tangent vector will be represented by d In[ g(¢)/f]/d¢,
that is, the score function at ¢. Notice again the importance of considering
centered u’s.

The model .#, endowed with the collection of all the tangent spaces is
called the tangent bundle and denoted by T(4,). An atlas of the tangent
bundle is given by the mappings T(%;) = (g,u) — (s/(g), u — E{(w)). This
new manifold has transition functions

%fl X Lfl > (ul, vl)

(29) fi

f u; +In f—],vl —Efz[vl]) € %, X L, .
2

u1+lnf——Ef2
2

—>

In our opinion the preceding definitions fill the “technical details” of the
original suggestion by Dawid (1975). It is our hope that the explicit definition
of tangent bundle shall be relevant in the computation of approximation of
parametric statistical models [cf. Barndorff-Nielsen and Jupp (1989)]. An-
other connected important issue we will not discuss here is the Hilbert
bundle as defined by Amari [see the references in Amari, Barndorff-Nielson,
Kass, Lauritzen and Rao (1987); see the next section also].

3.4. The cumulant forms, the Fisher information and the definition of a
Riemannian metric on #,. In this section we show how the most important
item of the geometric theory of statistical models, that is, the Fisher informa-
tion metrics and the corresponding Riemannian metrics, fits in our theory.
The construction of a nonparametric extension of the Fisher information
metrics, as a quadratic form on the space of square-integrable random
variables, is due to Amari in the case of parametric statistical models. Here
we give a generalization that works for the full nonparametric model; each
parametric case is then obtained by restriction of the structure to a submani-
fold in a standard way.

Let a point of the tangent bundle be given, (f,v) € T(.#,), and let us
consider two different charts for it, centered respectively at f, and f,. Let
(u1,v,) and (u,, v,) be the coordinates.

Let us denote by K (v)") = d}W;(i,), u; = s;(f), the cumulant n-form at f
of the random variables u;, i = 1,2 (see Proposition 2.5). Because v;, i = 1,2,
represent the same tangent vector, their difference is a constant and the
cumulant n-forms differ only for n = 1. In other words the cumulant n-forms
for n > 2 are an intrinsic (that is, not depending on the coordinate system)
object of the tangent bundle. In particular, the first one has an explicit
representation as the scalar product (covariance) in L2(f) N L,. The tangent
bundle endowed with the system of cumulant n-forms, n > 2, could be called
cumulant bundle as an extension of the Hilbert bundle by Amari.
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4. Application to the geometry of parametric models. We conclude
by discussing briefly the connection between the structure of affine manifold
of Theorem 3.6 and the geometry of exponential models.

For every f in #, the maximal exponential model at f is defined to be the
family of densities

(30) #(f) = {exp[u — ¥,(w)] - f:u € D(®))°, Ey(u) = 0)
(cf. Proposition 2.4). The mapping
L, DD(\Iff)0 > u > explu — Y(u)] - f e,

is the likelihood mapping when the maximal exponential model is parameter-
ized by L. Such a mapping is continuous (cf. Theorem 3.6).

If g, 8, € &(f) are two densities in the maximal exponential model, we
have

g = explu; — Vp(u)|f,  w,€D(¥),i=1,2,

E|gi %8s = - ,
lei™ed] = ot a7 (ay)

6<[0,1],

then they are connected by an e-continuous exponential arc by Proposition
2.4(a) on the convexity of (D<I>f)° and by Proposition 1.4(b). In other words,
the maximal exponential model &(f) is a connected subset of the manifold
,. Notice that in the present discussion connected means connected by
e-continuous arcs.

The following theorem gives a more precise result on the way the maximal
exponential model (30) is related to the manifold structure.

THEOREM 4.1. The maximal exponential model (30) is the connected com-
ponent containing f of the manifold .4,.

ProorF. We know from the preceding remark that &(f) is indeed con-
nected; we are left to prove maximality. In other words, we have to show that,
given a finite sequence g, = f, gy,..., g, of densities in .#,, such that g,_, is
connected to g; by an e-continuous exponential arc, i = 1 , n, then &n
belongs to &(f). It is enough to prove the following: if g, € ép( f ) and g, is
connected to g, by an e-continuous exponential arc, then g, € &(f), because
then the previous proposition follows induction on n.

Let us consider again the exponential arc connecting g, and g, in &(f),
namely,

6<[0,1].
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As it is a continuous mapping from the closed interval [0, 1] to .#Z,, then its
image {g(6): 6 € [0, 1]} is covered by a finite number of open sets of the form

{exp[v - \Ifg(ol)(v)] -8(6,):lvllge,y < ri}, i=1,...,n,6, €[0,1].

These sets are overlapping and all the relevant spaces L, are isomorphic
to L; under the mapping u — u — E(u) as topological vector spaces, so that
we can assume that the covering has the form {explv — ¥, ,,(v)] - g(6,): lv —
El; < r).

Assume again by induction that the proposition is true, that is, g, € &(f)
for a covering with n — 1 open sets. We are then reduced to proving the
following: if the set {explv — ¥, (v)] - g,:v € L, ,llv — E{(v)llf < r} contains a
density g, in &(f), then g, € &(f), where r is such that the r-ball centered
at g, is contained in D(¥,)°.

Finally, let us consider that

g1 =exp[u — V(u)| -f=exp[v - ¥, (v)] &, v —E;(v)ls<r,
simplifies to
g = exp{u — v + E;(u — v) — [¥(u) - ¥, (v) + E;(u —v)]}-f.
Because [¥,(u) — ¥, (v) + E;(u — v)] is finite and
{u—v+E(u—v):llv-E(v)llp<r)

is a neighborhood of u — (v — E/(v)) contained in D(\I'f)o, then g, belongs to
&(f). o

Let us consider now a parametric exponential model of the form
(31) {go=exp[<01T) — ¥:(0)] -f: 6 € 6),

where O is an open set in R%, d € N. We can assume also, without loss of
generality, that E,(T') = 0. The mapping ® > 6 — g, €.#, has, with respect
to the chart s;, where A is in the parametric model (31), the local representa-
tion 6 > <0—-6,1T) e L, The subspace generated by T' splits L;. Then
the parametric exponential model is a submanifold of the manifold .Z,, but
such a manifold has also an affine structure that fits with the affine structure
of the atlas we have constructed.

In our framework a parametric model is just a finite-dimensional submani-
fold. Between the parametric models some models have a more stringent
finiteness condition, that is, they are submodels (i.e., submanifolds) of an
exponential model: they are the curved exponential models as defined origi-
nally by Efron (1975). A curved exponential model is embedded in a finite-
dimensional geometry, where all the technicalities connected with the infi-
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nite-dimensional Banach spaces of coordinates disappear as all the coordi-
nates are real vectors; on the other hand a general parametric model is
finite-dimensional and is described by real parameters, but all the analytic
computations are much more difficult because it cannot be treated as a
surface in a finite-dimensional space.

Our remarks are quite general, but they are strictly connected with many
practical computational problems. We limit oursleves to mentioning two
items that are the object of current research, namely, the problem of comput-
ing approximate models and the problem of finite-dimensional filters in
filtering theory.
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