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BRADLEY-TERRY MODELS

BY DAVID R. HUNTER
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The Bradley—Terry model for paired comparisons is a simple and much-
studied means to describe the probabilities of the possible outcomes when
individuals are judged against one another in pairs. Among the many studies
of the model in the past 75 years, numerous authors have generalized it in
several directions, sometimes providing iterative algorithms for obtaining
maximum likelihood estimates for the generalizations. Building on a theory
of algorithms known by the initials MM, for minorization—-maximization,
this paper presents a powerful technique for producing iterative maximum
likelihood estimation algorithms for a wide class of generalizations of the
Bradley—Terry model. While algorithms for problems of this type have tended
to be custom-built in the literature, the techniques in this paper enable
their mass production. Simple conditions are stated that guarantee that each
algorithm described will produce a sequence that converges to the unique
maximum likelihood estimator. Several of the algorithms and convergence
results herein are new.

1. Introduction. In a situation in which the individuals in a group are
repeatedly compared with one another in pairs, Bradley and Terry (1952)
suggested the model
(D) P (individual i beats individual j) = L,
Yi +vj
where y; is a positive-valued parameter associated with individual i, for each of
the comparisons pitting individual i against individual j. As a concrete example,
consider the individuals to be sports teams, where y; represents the overall skill of
team i.

The Bradley—Terry model of (1) dates back to at least 1929 [Zermelo (1929)]
and has applications in a broad range of problems. For instance, in any problem
in which observed data may be represented in a directed graph with nonnegative-
weighted edges and one wishes to attach an “influence” parameter to each node,
a Bradley—Terry model may be useful. Note that the weights on the edges must be
integers in this context; however, the algorithm of Section 2 could easily be applied
to graphs with nonintegral weights. The sports scenario mentioned above gives one
manifestation of such a graph—teams are nodes and the weight of edge (7, j) is the
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number of times i beats j—but there are many others. Examples in the literature
range from the quantification of the influence of statistical journals [Stigler (1994)]
to the transmission/disequilibrium test in genetics [Sham and Curtis (1995)]. There
is also a vast literature on the properties and generalizations of the Bradley—
Terry model; even as early as 1976, a published bibliography on the method of
paired comparisons [Davidson and Farquhar (1976)] lists several hundred entries.
Although it does not focus exclusively on the Bradley—Terry model, the book
by David (1988) provides an in-depth examination of paired-comparison models.
A more recent, albeit brief, history of the Bradley—Terry model is given by Simons
and Yao (1999).

A simple iterative algorithm for finding maximum likelihood estimates in the
Bradley—Terry model has been known for a long time [Zermelo (1929)]. Lange,
Hunter and Yang (2000) demonstrated that this algorithm is a specific case of a
general class of algorithms referred to here as MM algorithms. MM algorithms
have been studied under various names for over 30 years, though the initials
MM originate with a rejoinder of Hunter and Lange (2000). Surveys of some
of this past work may be found in Heiser (1995) and Lange, Hunter and Yang
(2000). Heiser (1995) uses the initials IM, for iterative majorization, to describe
this class of algorithms; however, the initials MM better emphasize the close tie
between MM algorithms and the best known special cases, EM (expectation—
maximization) algorithms. For an explanation of why an EM algorithm is a
special case of an MM algorithm—and, more precisely, why the E-step of EM is
actually a minorization step—see, for example, Heiser (1995). The current paper
demonstrates the potential power of the MM approach by showing how to extend
the argument of Lange, Hunter and Yang (2000) to generalizations of the Bradley—
Terry model. When numerical algorithms are published for these generalizations
[Ford (1957), Rao and Kupper (1967) and Davidson (1970)], they tend to be
ad hoc, designed specifically for the model at hand. Furthermore, convergence
results are not always given. Here, we provide a sort of template for creating
MM algorithms for these generalized Bradley—Terry models, showing how known
results about MM algorithms can be applied to give sufficient conditions under
which these algorithms can be guaranteed to converge to the maximum likelihood
estimates.

We begin the development in Section 2 by describing the iterative algorithm
for maximum likelihood estimation in the Bradley—Terry model and introducing
several known generalizations of this model. Section 3 introduces MM algorithms
and shows how to derive them for the models given in Section 2. Section 4
demonstrates that, under simple conditions, all of these algorithms are guaranteed
to converge to the correct values regardless of the starting point. In Section 5, we
discuss in greater depth a particular generalization of the Bradley—Terry model that
allows for comparisons (rankings) involving more than two individuals. Finally,
Section 6 gives a numerical example and provides some discussion about the
estimation of standard errors.
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2. Fitting and generalizing the model. Suppose we observe a number of
pairings among m individuals or teams and we wish to estimate the parameters
Y1, - - -, ¥m using maximum likelihood estimation. If outcomes of different pairings
are assumed to be independent, the log-likelihood based on the Bradley—Terry
model (1) is

(2) )= [wijIny; —wi; In(y; + v,
i=1j=1

where w;; denotes the number of times individual i has beaten individual j and
we assume w;; = 0 by convention. Since £(y) = £(ay) for a > 0, the parameter
space should be regarded as the set of equivalence classes of R}, where two
vectors are equivalent if one is a scalar multiple of the other. This is most easily
accomplished by putting a constraint on the parameter space; to this end, we
assume that ) ; y; = 1.

As noted by Ford (1957), if it is possible to partition the set of individuals into
two groups A and B such that there are never any intergroup comparisons, then
there is no basis for rating any individual in A with respect to any individual in B.
On the other hand, if all the intergroup comparisons are won by an individual from
the same group, say group A, then if all parameters belonging to A are doubled
and the resulting vector renormalized, the likelihood must increase; thus, the
likelihood has no maximizer. The following assumption [Ford (1957)] eliminates
these possibilities.

ASSUMPTION 1. In every possible partition of the individuals into two
nonempty subsets, some individual in the second set beats some individual in the
first set at least once.

Assumption 1 has a graph-theoretic interpretation: if the individuals are the
nodes of a graph and the directed edge (i, j) denotes a win by i over j, then
Assumption 1 is equivalent to the statement that there is a path from i to j for all
nodes i and j. We will see later that Assumption 1 implies, among other things,
that there exists a unique maximizer of the log-likelihood function (2).

We now describe an iterative algorithm to maximize £(y). Start with an initial
parameter vector y1. Dykstra (1956) considers several ways to select starting
points; however, even though intelligent choice of a starting point can reduce the
overall computational workload, in this context we assume that »(!) is chosen
arbitrarily. Fork=1,2, ..., let

-1
k+1) _ vy Ni;j
#Yi 1V

where W; denotes the number of wins by individual i and N;; = w;; + wj;
is the number of pairings between i and j. If the resulting y **1 vector does



MM FOR BRADLEY-TERRY 387
not satisfy the constraint ), yi(kﬂ) = 1, it should simply be renormalized. This
renormalization step is to be understood as part of each algorithm described in this
paper, though it is not mentioned henceforth because it does not essentially change
the parameter vector.

Since (3) updates the parameter components one at a time, we may use the
updates as soon as they are available; thus, (3) may be replaced by a cyclic version

N N

-1
(k+1) ij ij
S Vi =Wi[z k oot a k:| :
i o Vi()+7/j(+) = Vi()‘H/j()
Readers familiar with the literature on EM algorithms may notice the analogy with
cyclic EM algorithms, also known as ECM algorithms [Meng and Rubin (1993)].
Under Assumption 1, both algorithm (3) and its cyclic version (4) produce a

sequence y (D, y@ ... guaranteed to converge to the unique maximum likelihood
estimator. In addition, the sequence E(y(l)), E(y(z)), ... i1s monotone increasing.
Rather than prove these facts directly as in Zermelo (1929), we adopt the approach
of Lange, Hunter and Yang (2000), where algorithm (3) is shown to be a particular
example from a class of algorithms we refer to here as MM algorithms. The
monotonicity of the sequence {£(y®)} is a characteristic property of all MM
algorithms, and the guaranteed convergence follows from a theorem stated in
Section 4. The cyclic algorithm (4) is technically also an MM algorithm, and, as
such, it inherits these favorable convergence properties.

There are numerous generalizations of the basic Bradley—Terry model (1) in the
literature. For instance, Agresti (1990) supposes that the individuals involved in
any paired comparison are ordered and postulates that the probability of i beating j
depends on which individual is listed first. If the individuals are sports teams, this
assumption leads to the “home-field advantage” model

: | Ovi/Oyi +v)), if i is home,
) Paveas p={ 70N i iohome
where 6 > 0 measures the strength of the home-field advantage or disadvantage.
Extending the model in a different direction, suppose that ties are possible

between teams. Rao and Kupper (1967) suppose that
P(i beats j) = y;/(vi +0v;),
(6) P(jbeatsi) =y;/(Ovi +v;),

P(i ties /) = 6% — Dyiv;/[(vi +6y) (v +670)],
calling 6 > 1 a “threshold” parameter. They justify this name by showing that
model (6) can arise if each comparison is decided by a judge who estimates
In y; —Iny; with error and declares a tie if this value is smaller than In 6 in absolute
value. Davidson (1970) gives a different adjustment to the Bradley—Terry model to
account for ties, in which the probabilities are in the ratio

(7 P (i beats j): P(j beatsi): P(i ties j) =y;:y;:0./YiVj-
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The positive-valued parameter € in model (7) is the constant of proportionality if
the probability of a tie is proportional to the geometric mean of the probabilities of
a win by either individual. Davidson (1970) calls 1/6 an index of discrimination
and points out that the use of the geometric mean is suggested by the fact that the
merits of the individuals may be represented on a linear scale as Inyy, ..., Iny,.

The Bradley—Terry model has even been extended to allow for comparisons
among more than two individuals at once. For instance, if individuals are compared
in groups of three, where each comparison results in a ranking from best to worst,
then Pendergrass and Bradley (1960) proposed the model

YiVij
i +vi +voW; +7)
We discuss model (8) and its generalization to comparisons of any number of
individuals, termed the Plackett-Luce model by Marden (1995), in Section 5.
In the next section, we demonstrate how to obtain MM algorithms for fitting

all of the models above using a method that is easily applicable to Bradley—Terry
generalizations not discussed here.

() P (i best, j in the middle and k& worst) =

3. Minorizing functions and MM algorithms. The strict concavity of the
logarithm function implies for positive x and y that

) —Inx>1—Iny—(x/y) with equality if and only if x = y.

Therefore, as shown in Lange, Hunter and Yang (2000), if we fix y(k) and define
the function

Z wij [ln Yi — % — ln(yi(k) + )/j(k)) + 1]7
1j=I1 v, + Vi

(10)  O(y) =

m
i=

we may conclude that

(11) Ow(y) <t(y)  withequality if y = y®,

where £(y) is the log-likelihood of (2). A function Qx(y) satisfying condi-
tions (11) is said to minorize £(y) at the point y("). It is easy to verify that, for
any Qg (y) satisfying the minorizing conditions (11),

(12) 0r(») = O(y®) implies £(p) > ¢(y®).

Property (12) suggests an iterative algorithm in which we let y®) denote the
value of the parameter vector before the kth iteration and define y **1 to be the
maximizer of Qr(y); thus, y(kH) of (3) maximizes Q(y). Since this algorithm
consists of alternately creating a minorizing function Q¢ (y) and then maximizing
it, Hunter and Lange (2000) call it an MM algorithm.

One feature of the function Qi(y) defined in (10) that makes it easier
to maximize than the original log-likelihood is the fact that it separates the



MM FOR BRADLEY-TERRY 389

components of the parameter vector y . Thus, maximization of Q(p) is equivalent
to maximization for each component y; separately. This separation of parameters
is typical of many well-constructed minorizing functions in high-dimensional
problems [Lange, Hunter and Yang (2000)].

The cyclic algorithm of (4) is itself an MM algorithm since V; *+D s the
maximizer of Qk(y(k+1), e, yl(k]q), Vi, yl(f)l, eees Vm )) which minorizes £(y) at
the point y = (y(k+1), cee, yi(f;rl), yl(k) ee s Ym )) Note that, in the cyclic case,

there is some ambiguity about what should be considered one iteration of the
algorithm; we discuss this further in Section 4.

In the home-field advantage model (5), we may use inequality (9) to construct a
minorizing function for the log—likelihood function

(13) Uy.0) = ZZ[a,J In—"" b 1nL},

i=1j=1 Vi Oyvi +vj

where a;; is the number of times that i is at home and beats j and b;; is the
number of times that i is at home and loses to j. Letting H =}, > _; a;; be the
total number of home-field wins and W; be the total number of wins by team i, we
obtain

m
_ (aij +blj)(6yl+yj)
01ty = Hing + Y- Wity — 32 3| SO L0 |
i=1 i=1j=1 +VJ

which minorizes £(y, 6) up to a constant; that is,

0r(y, ) +[£(y®,00) — 01 (y®,0%)] < t(y,6).

The presence of the product 8y; means that the parameters are not quite separated
by the minorizing function, which makes direct maximization of the function
slightly problematic. However, it is easy to maximize Qx(y,0%)) as a function
of y and Qg (y(k“), 0) as a function of 8—therefore, we may construct a cyclic
MM algorithm for this case.

For the Rao—Kupper (1967) model of (6) that allows for ties, the likelihood is

© I)VIVJ )}
14)  £(y.0) = 2wjj 1 T
(14) (y.0)= ZZ{ Wij n()/l-i‘@)/]) tJ <(9V1+V])(Vl+07/])

11]1

where #;; =;; is the number of times that i and j have tied. Using inequality (9)
as usual, we may construct the function

m m

Yi +0vy;

Qk<y,9>=22{<wl,~ +r,-j>(1nyi - (k)—f(k)) +tij In(0° — 1)},
i=1j=1 Vi +9(k))’j

which, up to a constant, minorizes £(y, 6) at (y(k), 6®). The parameters are not
completely separated, but we may alternately maximize Qy (y,0®) as a function
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of y and Qg (y(k+1), 0) as a function of 6 to obtain a cyclic MM algorithm.
Maximization of Qg (y, 6%y with respect to y gives

y (k) -1
(k+1) Sij 05 i
(15 [Z%}[Z( k 3 k )} )
e\ (k) Q(k)y k) Q(k)yl( ) + )/( )

J# J#i
where s;; = w;; + t;; is the number of times individual i beat or tied individual ;.
Solving a quadratic equation to maximize Qx (y ™1, ) with respect to 6 gives

1 1
ot = — ¢+ [14+—,
2Cy 4C7

(k+1)
Z Z (s ])
k+1 k+1

SEy l( + )+0(k)y]( +1)
and T is the total number of ties observed among all of the comparisons.
Equation (15) was suggested by Rao and Kupper (1967), though they did not
explore the convergence properties of any algorithm derived from it. Equation (15)
may also be modified to produce a cyclic update of y in the same way that (4) is a
modified version of (3).

In model (7), which also allows for ties, the log-likelihood

: 0 /7
16) £(y,0) =~ ZZ[ZwUln Vi +1;j1In ViV ]
Pt Yi +vj +0/Yiv; vi+vi+0./viv;

is minorized up to an irrelevant constant via inequality (9) by

Qi (y.,0) =~ ZZ|:2wUlnyl+t,jln(9,/—y, )

lljl

where

~ Quij+ )ity + 9./%‘)/]')}

79 4y ® o /y(k>y<k>

However, because of the second ,/y;y; term above, direct maximization of

Qi (y,0) is not convenient, even if 6 is held fixed at 6®) . Therefore, we employ a
further well-known inequality, the arithmetic—geometric mean inequality, to create
a minorizer of Q% (y,0).

In its most general form [Magnus and Neudecker (1988)], the arithmetic—
geometric mean inequality states that []; lw <Y iwix; for x; >0, w; > 0 and
> w; = 1, with equality if and only if all x; are equal. With w; = wy = 1/2, we
obtain

k k
(17) _ s Zg_ﬁ yi()
ivi = ® ©
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with equality when y = y®_ Therefore, Q7 (y,0) is minorized at (y®,0W0) by

Ok(y,0)
Quwi; + 1) (i +v5)

1 m m |:
—ZZ 2wij Iny; + 1 ln(e,/j/iyj)
2 y +y(k) 1 o® /y(k)yj(k)

i=1j=1
k
Q(szj +tlj) Vz ( )
k
(k) + y(k) +9(k) (k) ( )

Minorization is a transitive relation: since Qy(y,6) minorizes QZ(y,@) at
(y("),e(k)) and Qj(y,0) minorizes £(y,6) at (y(k),Q(k)), we conclude that
Qi (y,0) minorizes £(y,0) at (y("),e(k)). The components of y are now
separated, and maximization of Qy(y, 8®) with respect to y is accomplished by

(k+1) _ Wi+ Ti
S gii(r®,0®)

where W; is the total number of wins for individual i, 7; is the total number of ties
for individual i and

(18) Vi

(wij +wji + 1) 2+ 60y /vi)

vi+vi+0./%ivj
Naturally, the components of ¥y may be updated cyclically if the denominator
of (18) is replaced by Zj<,- gij(y(kH), G(k)) + Zj>i g,'j(y(k),G(k)). Finally, we
maximize Qi (y ¥t 0) as a function of 0 by

m m
gkt = 4T[Z >

gij(y,0)=

k+1 k+1
Qui; + )@+ ) }

k+1 k+1 k+D_ k+D |’
Vl(+)+y(+)+9(k)/ (+)y§+)

where T is the total number of ties. Davidson (1970) used an argument nearly
identical to that of Ford (1957) to prove that, under Assumption 1, the cyclic
version of (18), along with a slightly different update to 6, is guaranteed to
converge to the unique maximum likelihood estimator.

We have seen how to derive MM algorithms for some generalizations of the
Bradley—Terry model using inequality (9) and in one case inequality (17). We may
apply the same technique in the case of the triple-comparison model (8), but we
postpone discussion of this case until Section 5. These MM algorithms, like all
MM algorithms, are guaranteed to increase the value of the log-likelihood at each
iteration. This monotonicity property alone is not enough to guarantee that the
algorithms will eventually lead to the maximum likelihood estimators; the next
section takes up the question of when such convergence must occur.
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4. Convergence properties of MM algorithms. There is some ambiguity in
deciding what it means for an algorithm to converge. Here, we say that an MM
algorithm converges if y* = lim; y© exists. This is a more stringent definition
of convergence than is sometimes seen in the literature; for example, Hastie and
Tibshirani (1998) merely note that limy £(p ©) exists and is finite in declaring that
algorithm (4) converges. We use the stronger definition here for two reasons. First,
the final value of y is usually more interesting than the final value of £(y); second,
the existence of limy £(y©) is automatic for any MM algorithm, and this limit
is finite as long as £(y) is bounded above. When y* does exist, we will also be
interested in whether it maximizes £(y).

In general, it is not always possible to prove that the sequence of parameters
defined by an MM algorithm converges at all, let alone to a global maximizer;
McLachlan and Krishnan (1997) give examples of EM algorithms that converge
to saddle points or fail to converge. Nonetheless, it is often possible to obtain
convergence results in specific cases. For example, Ford (1957) showed that under
Assumption 1 the algorithm of (4) converges to the unique maximum likelihood
estimate, and Zermelo (1929) derived a similar result. This result may be obtained
as a corollary of a more general theorem [Lange (1995)].

THEOREM 1 (Liapounov’s theorem). Suppose M : 2 — Q2 is continuous and
£:Q2 — R is differentiable and for all y € Q2 we have £L{M(y)] > £(y), with
equality only if y is a stationary point of £(-) (i.e., the gradient is 0 at y). Then,
for arbitrary y(V € Q, any limit point of the sequence {y ¥t = M(y(k))}kzl isa
stationary point of £(y).

The proof is immediate. If y* = lim,, y ®» for a subsequence y 1), p*2)
then the result is obtained by taking limits in

g(},(kn)) < Z[M(}’(k"))] < g(},(knﬂ))‘

For an MM algorithm, the map M (y) in the theorem is taken to be the map
implicitly defined by one iteration of the algorithm, which guarantees £[M (y)] >
£(y). For each MM algorithm in this paper, the continuity of M (p) is clear; the
fact that £[M (y)] = £(y) implies that p is a stationary point follows because the
differentiable minorizing function is tangent to the log-likelihood at the current
iterate.

In the case of a cyclic MM algorithm, M (y ®©) = p*+1 is actually the result of
several MM iterations in succession, one for each subset of parameter components.
Nevertheless, the continuity of M is clear, and the only way that £[M (y)] = £(y)
can occur is if each of the several MM iterations leaves y unchanged, which means
that yp is a stationary point of £. Thus, Theorem 1 applies to cyclic MM algorithms
as well as MM algorithms, and, in particular, cyclic MM algorithms share all of
the convergence properties of MM algorithms detailed in this section.
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The strategy for proving convergence of the Bradley—Terry MM algorithms is
as follows. First, give a sufficient condition for upper compactness of the log-
likelihood function [£ is defined to be upper compact if, for any constant c,
the set {y € Q:€4(y) > c} is a compact subset of the parameter space 2].
Second, reparameterize the log-likelihood and give a sufficient condition for
strict concavity of the reparameterized log-likelihood function. Since upper
compactness implies the existence of at least one limit point and strict concavity
implies the existence of at most one stationary point, namely the maximizer,
we may conclude from Liapounov’s theorem that the MM algorithm converges
(irrespective of its starting point) to the unique maximum likelihood estimator.
Note that, unlike some algorithms such as Newton—Raphson algorithms, an MM
algorithm retains the same sequence of iterates after a reparameterization since
reparameterization does not destroy the minorizing property or alter the maximum.

Almost all of the log-likelihood functions given in the previous section are upper
compact if Assumption 1 is satisfied. The exception is the home-field advantage
likelihood (13), for which we need a stronger assumption.

ASSUMPTION 2. In every possible partition of the teams into two nonempty
subsets A and B, some team in A beats some team in B as home team, and some
team in A beats some team in B as visiting team.

The following lemma gives sufficient, and in some cases necessary, conditions
for the upper compactness of the likelihood functions seen in each of the models
thus far.

LEMMA 1. Let Q ={y € R":eachy; >0,Y 7", v; = 1}. The parameter
space is assumed to be 2 for log-likelihoods (2) and (8); 2 x {# e R:6 > 0}
for log-likelihoods (16) and (13); and 2 x {# € R:6 > 1} for log-likelihood (14).
For the purpose of Assumption 1, i is said to beat j in a triple comparison if i is
ranked higher than j.

(a) The log-likelihoods of (2) and (8) are upper compact if and only if
Assumption 1 holds.

(b) Both of the log-likelihoods of (14) and (16) are upper compact if
Assumption 1 holds and there is at least one tie.

(c) The log-likelihood of (13) is upper compact if Assumption 2 holds.

The sufficient condition for upper compactness in the home-field advantage
model, namely Assumption 2, may seem unusually strong, since it implies, for
example, that each team must play at least four games, winning and losing both a
home game and an away game. However, this is not an unrealistic assumption for
many situations—consider, for example, the Major League Baseball schedule in
the United States and Canada, in which no team ever wins or loses all of its home
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games or all of its away games over the course of a season. In parts (b) and (c)
of Lemma 1, it is not known whether the sufficient conditions are also necessary
conditions.

As explained earlier, we now reparameterize the models and give conditions
under which the log-likelihood functions are strictly concave. Let ; =Iny; —Iny;
fori =1,..., m. The inverse function

eﬂi
Vi = ;(121 eBi
establishes a one-to-one correspondence between {y € R%:};y; =1} and {B €
R™ : 81 = 0}. For models in which there is an additional parameter 6, let ¢ = In6.
Note that results (a) through (c) of Lemma 1 still hold after the reparameterization,
since any sequence of parameter vectors that approaches the boundary of the
original parameter space also approaches the boundary of the reparameterized

space.
After reparameterization, the original Bradley—Terry model (1) becomes
(19) logit[ P (i beats j)] = B; — B;,

and the log-likelihood (2) becomes

m m
(20) AB) =YD [wijBi — wijIn(eP 4 F1)].

i=1j=1
As (19) suggests, the Bradley—Terry model may be fitted using logistic regression.
Agresti (1990) describes how to do this, noting that if a constant term is included
in the model then it is the home-field advantage parameter ¢ = logé of model (5)
as long as the predictors are defined correctly. Logistic regression is not applicable
to any of the other generalizations of the Bradley—Terry model discussed here.

The concavity of the log-likelihood (20) follows immediately because of the fact

that the set of log-convex functions (i.e., functions whose logarithm is convex) is
closed under addition. We can also prove concavity using Holder’s inequality, an
approach with the additional benefit that it allows us to give sufficient conditions
under which the concavity is strict. Taking logarithms in one form of Holder’s
inequality [Magnus and Neudecker (1988)] shows that, for positive numbers
cl,...,cyanddy,...,dyand p € (0, 1),

N N N
1) > cfd, P <pnd cr+1—p)n ds,
k=1 k=1 k=1

with equality if and only if there exists some & > 0 such that ¢, = &dy for all k.
A log-likelihood A is concave by definition if, for any parameter vectors e, 8 and
pe©.1D),

(22) Mpe+ (1= p)Bl = pr(er) + (1 — p)A(B);
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concavity is strict if & # B implies that the inequality in (22) is strict. Inequal-
ity (21) implies that

_ ln[epai+(1—17)ﬂi + epaj+(1—17)/3j]
(23)
> —pln(e® + %) — (1 — p)In(eP + €P),

so multiplying inequality (23) by w;; and then summing over i and j demonstrates
the concavity of the log-likelihood of (20).

The equality condition for Hoélder’s inequality (21) may be used to derive
conditions for strict concavity of the reparameterized log-likelihood functions.
These conditions are weaker than those of Lemma 1; for the most part,
Assumption 3 is sufficient.

ASSUMPTION 3. In every possible partition of the individuals into two
nonempty subsets, some individual in the second set is compared with some
individual in the first set at least once.

The proof of the following lemma is given in the Appendix.

LEMMA 2. For the reparameterization (y,0) — (B, ¢) in which B; =Iny; —
Iny; and ¢ =1n0, let Q' ={B e R™: B; =0}.

(a) The reparameterized versions of log-likelihoods (2) and (8) are strictly
concave on Q' if and only if Assumption 3 holds.

(b) The reparameterized version of (14) is strictly concave on Q' x Ry and
the reparameterized version of (16) is strictly concave on Q' x R if and only if
Assumption 3 holds and there is at least one tie.

(c) The reparameterized version of (13) is strictly concave on Q' x R if
Assumption 3 holds and there is a loop (i, i1, ..., iy =io) such that ij_y is home
in at least one comparison againstij for 1 < j <s.

Because the assumptions ensuring upper compactness given in Lemma 1 are
stronger than those ensuring strict concavity, Liapounov’s theorem (Theorem 1)
implies that each of the MM algorithms, whether cyclic or not, is guaranteed to
produce a sequence of parameter vectors converging to the maximum likelihood
estimator under the assumptions of Lemma 1.

5. Multiple comparisons. Consider an extension of the Bradley—Terry model
to comparisons involving k& > 3 individuals, where the outcome of such a
comparison is a ranking of the individuals from best to worst. This situation may
arise, for example, when judges consider entries at a fair. Each judge might see
only a few of the entries, then rank the entries seen. A thorough survey of models
of this type is given by Marden (1995).
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Suppose that there are m individuals, labeled 1 through m, in our population.
For AcC{l,...,m},say A={1,...,k} with k < m, suppose that the individuals
indexed by A are to be ranked. Let — denote the relation “is ranked higher than”
and let 48; denote the group of permutations of k elements. Then, given A and
some 7 € 4, the probability we assign to the event 7 (1) — --- — m (k) is

k

Y (i)
(24) Palr (1) = - > 7w(k)] = .
,-11 Yr() T Vak

This generalization of the Bradley—Terry model, termed the Plackett—Luce model
by Marden (1995), was introduced by Plackett (1975). In the particular case of
triple comparisons, model (24) reduces to the Pendergrass—Bradley (1960) model
of (8). For any subset of A, say {1, 2}, we may interpret P4 (1 — 2) as

> Pal(1) = - — w(k)],

medi:n 1 ()<r~1(2)

the sum of the probabilities of all rankings of {1, ..., k} such that 1 — 2. Ideally,
the model should be internally consistent in the sense that the probability of a
particular ranking does not depend on the subset from which the individuals are
assumed to be drawn. In other words, if model (24) is internally consistent, then
the subscript A in P4 (1) — --- — w (k)] is unnecessary.

To prove internal consistency, let A = {1, ..., k} as before and evaluate

Pri(l— > k—1)
[ 1
=Y Ve—1Vk
(25) W+ ) (k=1 + Vo) Ye

1
+ +}
i+ v e+ V=) V=1

where the sum has k terms corresponding to the k distinct permutations in & that
leave the order of (1, ..., k — 1) unchanged. Equation (25) simplifies to

Pal—= - k—1)
Y1 Vk—1

it Vi) (V2 Vi) Vi1
=Py k-1y(1—>---—>k—1).

(26)

The subset {1, ...,k — 1} in (26) may be replaced by any subset of A with k — 1
elements. Thus, using (26) repeatedly if necessary, for any B = {by, ..., b;} C A,

27) Py(by — -+ — b)) = Pg(by — --- — by).
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Thus, the model is internally consistent so we may drop the subscripts A and B
and simply write P (b; — --- — by), or P (b) for short. In particular, the number of
individuals included in a given ranking need not be the same for all rankings. For
example, a sport such as track and field is often contested at meets that can involve
two or more teams. Results of an entire season of such meets could be combined
using this model, resulting in an estimate of the relative strength of each team.

‘We mention briefly the connection between model (24) and Luce’s choice axiom
[Luce (1959)]. The axiom states that, for any model in which individual i has a
positive probability of beating individual j when the two are compared as a pair
for all i £ j, we have

(28) Pp(i wins) = P4 (i wins) Pp(anything from A wins) foralli € A C B.

Luce (1959) showed that axiom (28) is equivalent to the statement
Vi

for positive-valued parameters y;. It is not hard to see that model (24) is equivalent
to statement (29): Marden (1995) points out that model (24) arises from (29) if we
envision the ranking process as first choosing a winner, then choosing a second-
place finisher as the winner among those that remain and so on. The converse
follows because, under (24),

Pa(i wins) = Y Palr(1) > - —> (k)]
m:r(l)=i
k
_ Z Vi Vr(j)
ziat=i VUT T Ve o Ve T VG + o+ V)
_ Vi
i+t

Thus, model (24) is equivalent to Luce’s choice axiom, which thus implies internal
consistency in the sense defined above.

To fit model (24) using maximum likelihood, it is once again possible to
construct a minorizing function using inequality (9). Suppose that the data consist
of N rankings, where the jth ranking includes m; individuals, 1 < j < N.
Let the ordered indices of the individuals in the jth ranking be denoted by
a(j,1),...,a(j,mj), so that a(j,1) - a(j,2) — --- — a(j, m;) according to
the jth ranking. Assuming independent rankings, the log-likelihood may be
written as

N mj—l

m,;
=3 3 [m Vo~ 103 Va(j,s)}-
s=i

j=1 i=1



398 D. R. HUNTER

By inequality (9),
N mj—1 Z
Ya(j,s)
Qk(}’) - Z Z |:ln Va(] l) $=i (k) }
j=1 i=l Z;,Va(];)

minorizes the log-likelihood £(y) at y®, up to a constant. With the parameters
now separated, maximization of Qf(y) may be explicitly accomplished by

k+1 w
(30) 7 s G
j=l1 Zi:l ]”[Zv =i ya(j s)]
fort =1,...,m, where w; is the number of rankings in which the ¢th individual

is ranked higher than last and

5. — L, if tef{a(j,i),...,a(j,mj)},
Jit 0, otherwise.

In other words, §;;; is the indicator of the event that individual # receives a rank
no better than i in the jth ranking. The MM algorithm of (30) generalizes (3);
alternatively, the components of y may be updated cyclically.

In this context, Assumption 1 makes sense if we interpret individual i beating
individual j to mean that i is ranked higher than j in a ranking that includes both
of them. As in Lemmas 1(a) and 2(a), Assumption 1 is necessary and sufficient
for the upper compactness of the log-likelihood function, whereas Assumption 3 is
necessary and sufficient for the strict concavity of the log-likelihood function under
the reparameterization B; = Iny; — Iny;. We conclude that the MM algorithms
in this section are guaranteed to converge to the unique maximum likelihood
estimator if Assumption 1 holds. The author does not know of another algorithm
in the literature specifically for maximizing the Plackett—Luce likelihood; Plackett
(1975) merely states that “the maximum of the likelihood can be determined only
by numerical methods.”

6. A numerical example. Competitive racing, whether it involves humans,
animals or machines, provides ready examples in which subsets of a group of
individuals are ranked. If we consider different races among some group of
individuals to be independent, we may fit a Plackett—Luce model (24) to estimate
the relative strengths of the individuals.

For example, consider the 36 automobile races for the 2002 NASCAR season
in the United States. Each of these races involved 43 drivers, with some drivers
participating in all 36 races and some participating in only one. Altogether, 87
different drivers participated in at least one race. However, Assumption 1 is
violated due to the fact that four of the drivers placed last in each race they entered.
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When these four are removed, we obtain a set of 83 drivers and 36 races, some of
which involve 43 drivers and some of which involve only 42 drivers. As noted in
the previous section, there is no problem in fitting a Plackett-Luce model when the
comparisons involve different-sized subsets as in this case. Assumption 1 holds for
the reduced field of 83 drivers.

For purposes of comparison, the Plackett-Luce model is fitted using two
methods, the MM algorithm of (30) and a modified Newton—Raphson algorithm.
The Newton—Raphson algorithm operates in the reparameterized parameter space
{B € R : B; =0}, starting from the point 8 = 0. Since the log-likelihood function
is strictly concave on this space, as shown in the proof of Lemma 2(a), we might
expect that an unmodified Newton—Raphson algorithm would be well behaved
here; however, this is not the case. Therefore, a modified algorithm is used in
which the proposed Newton—Raphson step is taken whenever that step results in
an increase in the log-likelihood, and otherwise the MM step is taken. Since the
MM algorithm is guaranteed to increase the log-likelihood at each iteration, it
bails out the Newton—Raphson algorithm until the iterates are close enough to the
maximizer that the Newton—Raphson step is effective.

The MM algorithm also starts from the point 8 = 0, or, equivalently, y =
(%, e %); as pointed out previously, the reparameterization does not change
the MM algorithm. Although selection of the initial point affects the final iteration
count of the algorithm, MM algorithms tend to get close to the answer quickly
and then slow down; thus, the speed of convergence will likely be similar for all
starting values far from the maximum. In fact, for numerous randomly chosen
starting vectors in the NASCAR example, the algorithm always converged in either
25 or 26 iterations. In the implementation of the MM algorithm, the y vector
is not renormalized to satisfy ), y; = 1 after each iteration, since doing so is
unnecessary. Because the MATLAB code for the MM algorithm modifies the entire
y vector at once, the noncyclic version of the algorithm—that is, the algorithm
of (30)—is used. Both the MM algorithm and the Newton—Raphson algorithm are
terminated and convergence is declared when a simplistic stopping criterion is met,
namely that the Ly-norm of the change in the value of the parameter vector is less
than 10~°. At convergence, the two algorithms produce MLE vectors that differ
by less than 10~!3 in each component.

MATLAB allows the counting of floating-point operations. Since MM algo-
rithms tend to result in more but faster iterations than Newton—Raphson algorithms
[Lange, Hunter and Yang (2000)] the counts of iterations until convergence are
misleading. The number of floating-point operations is used as a measure of the
overall computing effort required and serves as the basis of comparison here.

In the modified Newton—Raphson algorithm, even for an MM iteration, all of
the work of determining the Newton—Raphson step is required. Therefore, the
computational work reported in Table 1 for this algorithm is roughly the same
as would be required for 10 Newton—Raphson iterations. It is instructive to note
that the computational work required even to invert a single 82 x 82 matrix,
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TABLE 1
Performance of an MM algorithm and a modified Newton—Raphson (MNR) algorithm in
finding the maximum likelihood estimator for the Plackett—Luce model (24) fit to the
2002 NASCAR data. For the MNR algorithm, an MM iteration was taken whenever
the Newton—Raphson step failed to increase the likelihood

Number of iterations Floating point operations
Type of algorithm MM Newton—Raphson required
MM 26 — 0.22 x 10°
Modified Newton—Raphson 4 6 14.45 x 10°

which is done at each Newton—Raphson iteration, is roughly 1.13 x 10° floating-
point operations according to MATLAB; this is itself over 5 times more than the
MM algorithm requires to converge completely in 26 iterations. The number of
iterations required by MM in this example is surprisingly small; as noted, for
example, in Lange, Hunter and Yang (2000), an MM algorithm often requires
several hundred iterations despite saving overall computational work as compared
with other algorithms.

Obtaining standard error estimates for parameters in a Bradley—Terry model
is easy in principle; the inverse of the Hessian matrix of the log-likelihood (or,
alternatively, the inverse of the Fisher information matrix) evaluated at the MLE
gives an asymptotic approximation to the covariance matrix of the MLE. However,
this is not ideal because part of the point of an MM algorithm is to avoid the
inversion of large matrices; furthermore, computation of the Hessian or Fisher
information matrix may be burdensome. For the NASCAR example, the inverse
Hessian matrix is readily available because it is needed for the Newton—Raphson
algorithm; several of the standard errors obtained from this matrix are listed in
Table 2. Of note in this example is the fact that the standard errors, while larger
for drivers who have not competed in many races, are not inversely proportional to
the square root of the number of races. Furthermore, the rank order of the MLEs
does not correspond completely with that of the average places. Both of these facts
suggest that a great deal of the information about §; is derived from the strengths
of the other drivers in the race, which is one aspect of the Plackett—Luce model
that might make it more appealing as a method for ranking the drivers than, say,
average place.

Note that some care should be exercised in interpreting standard errors in
this model. While standard asymptotic arguments enable one to build confidence
intervals (for example) for parameters or contrasts, the standard errors should not
be viewed as estimates of the true standard deviations of the MLE. The reason for
this is that the MLE for any individual (on the 8-scale) can be +0co with positive
probability, since this happens whenever that individual wins or loses all contests.
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TABLE 2
Top ten and bottom ten drivers according to average place, along with MLEs
in B-space and standard errors. The B-value of A. Cameron is constrained
to be 0. Standard errors are obtained from the inverse
Hessian matrix evaluated at the MLE

Average
Driver Races place ﬁi se( ﬁi )
P. Jones 1 4.00 4.15 1.57
S. Pruett 1 6.00 3.62 1.53
M. Martin 36 12.17 2.08 1.05
T. Stewart 36 12.61 1.83 1.05
R. Wallace 36 13.17 2.06 1.05
J. Johnson 36 13.50 1.94 1.05
S. Marlin 29 13.86 1.73 1.04
M. Bliss 1 14.00 2.23 1.47
J. Gordon 36 14.06 1.74 1.05
K. Busch 36 14.06 1.65 1.05
C. Long 2 40.50 —0.32 1.30
C. Fittipaldi 1 41.00 —0.44 1.49
H. Fukuyama 2 41.00 —0.76 1.45
J. Small 1 41.00 —0.54 1.48
M. Shepherd 5 41.20 —0.45 1.16
K. Shelmerdine 2 41.50 -0.32 1.28
A. Cameron 1 42.00 0.00 0.00
D. Marcis 1 42.00 0.03 1.46
D. Trickle 3 42.00 —0.31 1.20
J. Varde 1 42.00 —0.15 1.48

7. Discussion. This paper does not claim to give a comprehensive treatment
of all known generalizations of the Bradley—Terry model, nor is the main thrust
of the paper to derive new algorithms and results, though some of the results here
are new. The main thrust of the paper is to demonstrate that a single simple set
of ideas may be applied to a broad range of generalizations of the Bradley—Terry
model. Once certain fundamental properties of MM algorithms are established
and a means for creating them for a particular class of log-likelihoods is in place,
derivation of simple, reliable algorithms that are guaranteed to yield maximum
likelihood estimates can be straightforward. Among the many distinct algorithms
exhibited here, along with proofs that they converge to the maximum likelihood
estimators, are several that have appeared earlier in the Bradley—Terry literature
that were custom-built for particular log-likelihood functions. Here, they are mass-
produced as specific examples of a general principle.

One of the well-known drawbacks (arguably the most important drawback)
of EM algorithms in particular and MM algorithms in general is their slow
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rate of convergence, particularly as the iterates close in on a stationary point.
Computationally, MM algorithms tend to give fast, simple-to-code iterations,
where each iteration moves in the right direction, but the tradeoff is they
require many more iterations than an optimization method like Newton—Raphson.
Newton—Raphson, on the other hand, despite converging in relatively few
iterations, requires the computation and then the inversion of a square matrix
at each iteration, operations that may be extremely time-consuming, particularly
if the number of parameters is large. Furthermore, there is no guarantee that a
Newton—Raphson step will increase the value of the objective function, so any
well-designed Newton—Raphson algorithm must contain safeguards against erratic
behavior. In the example of Section 6 in which the Plackett-Luce model is applied
to NASCAR racing data, the MM algorithm fares extremely well as compared with
the Newton—Raphson algorithms, even with respect to the number of iterations
required for convergence.

Lange, Hunter and Yang (2000) discuss a method for accelerating an MM
algorithm using a quasi-Newton approach. The idea is to construct a hybrid
algorithm that attempts to retain the best features of both MM and Newton—
Raphson. To do this, the algorithm begins as an MM algorithm, gradually building
at each iteration an approximation to the inverse of the Hessian matrix that
would be used in a Newton—Raphson algorithm. When the approximate inverse
Hessian may be used productively in a Newton—Raphson step, it is used; until
then, however, it is merely updated at each iteration using information in the MM
algorithm iterations. Given the speed with which the unaltered MM algorithm
converged in the example of Section 6, such an acceleration scheme was not
needed—however, Lange, Hunter and Yang (2000) apply this quasi-Newton
technique with dramatic effect in an example involving the original Bradley—Terry
model (1).

Improved means for formulating standard error estimates via MM algorithms is
an area where further research is called for. One possibility is to adapt known
results from the EM algorithm literature, such as the SEM algorithm idea of
Meng and Rubin (1991), to the more general MM case; however, the overhead
for implementing SEM is great for problems with many parameters. Another
possibility is to rely on an estimated inverse Hessian matrix obtained through a
quasi-Newton acceleration of an MM algorithm, as described in Lange, Hunter and
Yang (2000). Still another approach is a parametric bootstrap approach in which
the model is fitted and then all comparisons are repeatedly resimulated according
to the model. The problem with this approach is that, with positive probability,
a simulated set of comparisons will violate Assumption 1. With many bootstrap
samples being taken, even an event with a small probability can be quite likely to
show up at least once. One possibility for avoiding this problem, and for making
Assumptions 1-3 unnecessary, might be to give each individual a tiny fraction
of a “win” against every other individual before fitting the model. The effect this
correction might have on the estimates produced is as yet unknown.
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APPENDIX

PROOF OF LEMMA 1. Part of the main idea of this proof may be found in
the proof by Ford (1957) that algorithm (4) converges to the maximum likelihood
estimator. Let Q ={y e R":Y ", yi = 1}.

(a) Consider what happens to £(y) as y approaches the boundary of . If
y lies on the boundary of €2, then y; =0 and y; > 0 for some i and j. As
noted earlier, if individuals are nodes of a directed graph in which edges represent
wins, then Assumption 1 implies that a directed path exists from i to j. Therefore,
there must be some individual a with 7, = 0 who defeated some individual » with
yp > 0, which means that, for y € 2, taking limits in

L(y) <Iny, —In(ya + v»)

gives lim,, _, ; £(y) = —oo. Thus, for any constant c, the set {y € Q:£(y) > c} is
a closed and bounded, hence compact, set.

Conversely, suppose that the individuals may be partitioned into two groups
A and B such that nobody from A ever beats anybody from B. The log-likelihood
cannot decrease if every y; with i € B is doubled, then the resulting vector
renormalized so that ), y; = 1. In this way, ¥y may be driven to the boundary
of  without decreasing the log-likelihood.

Note that these arguments apply equally well to the original Bradley—Terry
model (1), the triple comparison model (8) or the Plackett—Luce model (24).

(b) As in part (a), suppose that (p, 5) is on the boundary of the parameter
space, which is 2 x (1, oo) for model (6) or 2 x (0, co) for model (7). It suffices
to show that

31) lim  £(y,0) = —oc.

(7.0)—(7.0)
If p is on the boundary of €2, the proof of part (a), with minor modifications, proves
that (31) holds regardless of the value of 6. On the other hand, if yeQ,thenT >0

implies (31) immediately if @ = 1 in the case of model (14) or § = 0 in the case of
model (16). Furthermore, since

L(p,0) <Iny; —In(y; +0y;)
in the case of (14) or
€p.0) <Iny; —In(y; + 7; + 0V7i7))

in the case of (16), we see that for 6 = oo we also obtain 31).

(c) Note that, for y € Q, if 6 = 0 then Assumption 2 implies (31) because
there must be at least one home win; similarly, at least one home loss implies (31)
if 6 = 0o and € Q. On the other hand, if  is on the boundary of €2, then by the
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argument of part (a), there exist a and b such that y, =0, y, > 0 and a defeated b
with a at home. Therefore,

L(y,0) <In(0y,) —InOya + v»)

implies (31) as long as § < oco. Similarly, since there also exist @’ and »’ such that
Vo =0, ppy > 0 and o’ defeated b’ with b’ at home,

L(y,0) <In(yy) —In(yy +0yp)

implies (31) even if 0=00. O
PROOF OF LEMMA 2. Let Q' = {B € R™:8; = 0}. Recall the definition of
strict concavity given after inequality (22).

(a) In the case of the Bradley—Terry model (1), take &, 8 € " and p € (0, 1).
By the equality condition for Holder’s inequality (21), equality in (22) implies, in
particular, that 8; — a; = B; — «; for all i and j for which max{w;;, w;;} > 0.
Thus, Assumption 3 plus the fact that §; = o1 = 0 means that « = f and so the
concavity is strict.

Conversely, if Assumption 3 is violated, then the individuals may be partitioned
into two groups, A and B, such that no intergroup comparisons take place. One of
the groups, say A, does not contain individual 1, so there are no constraints on the
parameters in group A. Thus, adding the same constant to each of the g; for i in
group A does not change the likelihood, and the concavity fails to be strict.

By a nearly identical argument, the same results hold for the triple-comparison
model (8) and the Plackett—Luce model (24).

(b) Let A(B,¢) denote the log-likelihood function, either (14) or (16) as
the case may be, after the reparameterization. In the case of the Rao—Kupper
model (6),

(32) Ap(e, @) + (1 = p)(B. ¢2)] = pilee, ¢1) + (1 — P)A(B, $2)

implies by the equality condition for Holder’s inequality that, whenever
max{w;j, t;j} > 0, i —o; = Bj —aj + ¢ — ¢1. However, when T > 0 the log-
likelihood includes the strictly concave term In[exp(2¢) — 1], so (32) implies
¢> = ¢1. Thus, Assumption 3 along with 8; = «; = 0 implies that («, ¢1) =
(B, ¢2) and the concavity is strict.

In the case of the Davidson model (7), (32) implies by the Holder equality
condition that, whenever max{w;;, wj;, t;;} > 0, we obtain

Bi+Bj—ai—aj
5 :

But (33) implies both 8; — a; = B; — a; and @1 = ¢, so Assumption 3 implies
(r, 1) = (B, $2).

For the converse, the argument for both models is the same as in part (a).

(33) Bi—ai=pj—aj=¢r—¢1+
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(c) With A(B, ¢) denoting the log-likelihood function for the reparameterized
home-field advantage model, (32) implies by the Holder equality condition that
¢1 — ¢2 + Bi —a; = B; — a; whenever i is home in a comparison against j.
Therefore, the existence of a loop as described in the lemma implies that s(¢; —
¢2) + Bi, — i, = Bi, — o, for some positive integer s, which means that ¢ = ¢».
Therefore, Assumption 3 implies 8 = « as in part (a). [J
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