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ON THE ESTIMATION OF EXTREME TAIL PROBABILITIES

By Peter Hall and Ishay Weissman

Australian National University and Technion

Applications of extreme value theory to problems of statistical infer-
ence typically involve estimating tail probabilities well beyond the range
of the data, without the benefit of a concise mathematical model for the
sampling distribution. The available model is generally only an asymp-
totic one. That is, an approximation to probabilities of extreme deviation is
supposed, which is assumed to become increasingly accurate as one moves
further from the range of the data, but whose concise accuracy is unknown.
Quantification of the level of accuracy is essential for optimal estimation of
tail probabilities. In the present paper we suggest a practical device, based
on a nonstandard application of the bootstrap, for determining empirically
the accuracy of the approximation and thereby constructing appropriate
estimators.

1. Introduction. In many applications of extreme value theory there is
no precise model for the tail of the distribution from which data are drawn,
yet we wish to make inference about the distribution at a point that is well
beyond the extent of the data. For example, we may wish to determine the
probability that the most extreme wave height observed in the next 100 years
exceeds a given value x, where x is considerably in excess of the largest height
observed since data were first collected 50 years ago. We usually do not have
a concise model for the distribution of wave height, but may be prepared
to assume that the chance F̄�x� = 1 − F�x� that wave height in a given
observation interval exceeds x, is approximated by an estimable quantity F̄θ

depending on an unknown parameter θ. This model is typically believed to be
asymptotically correct for large deviations of the distribution F, in the sense
that F̄�x�/F̄θ�x� → 1 as x→∞, although it would not be valid in any exact
sense. Given an estimator θ̂�t� of θ, depending on a tuning parameter t, we
wish to select t so as to optimize the approximation of F̄�x� by F̄θ̂�t��x�.

The fact that the true F̄ is unknown, even up to unknown parameters,
means that the bias of F̄θ̂�t��x� is particularly difficult to quantify. This makes
it quite awkward to implement the procedure outlined above. In the present
paper we suggest a device based on the bootstrap for overcoming this obstacle.
Our approach is founded on “pulling back” the problem to a location within the
range of the data (assumed to be a sample of n independent and identically
distributed random variables), by reducing the values of n and x to m and
y, respectively, such that y is an order of magnitude less than the largest
observed data value. After the problem has been “pulled back” to the range of
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the data, it is feasible to approximate F̄ by the empirical distribution function,
̂̄F. The value of the optimal tuning parameter is relatively easy to estimate
in this setting, and may be calibrated so that it is appropriate for the original
context.

Our approach has points of similarity to accelerated life testing, although
in our application the idea is to study circumstances that are less, rather than
more, extreme. In accelerated life testing, data under normal dose or stress
levels are difficult to obtain, and so experiments are run under higher levels.
The results are then recalibrated to lower, “normal” circumstances.

The main idea, of transforming the scale of an extreme-value problem so
that it is no longer so extreme, has a range of applications. We discuss some of
them here. Our work is based on relatively ad hoc techniques used to solve a
multivariate version of the present problem, although the complexity of that
case makes it inappropriate for a concise theoretical investigation such as
that described in this paper. It concerns the accuracy of navigation systems
on a certain wide-bodied passenger and freight airliner, where different forms
of information (e.g., from the aircraft’s inertial navigation system) are ana-
lyzed “independently” by three on-board computers to determine position on
the earth’s surface. Each computer produces an approximation to the aircraft’s
latitude and longitude. These three values, or estimates, of the coordinate pair
may be used in a number of different ways—in the particular case under in-
vestigation, they were averaged using two different methods, one suggested
by the aircraft manufacturer and the other devised by the company flying the
aircraft. Data consisting of several hundred independent observations of the
three coordinate pairs of estimates, and the true coordinates, were provided.
The problem was to estimate the probability that a given type of coordinate av-
erage was in error by a given number of nautical miles. That specified distance
was significantly in excess of the maximum observed discrepancy between true
and estimated coordinate pairs.

Other multivariate problems, for example involving statements about the
joint distribution of a set of extremes from a univariate distribution, may
also be addressed using the approach described in this paper. A variant of
the method may be employed for dependent data in cases where an appropri-
ate model is available for the type of dependence (e.g., an autoregression of
specified order). Applications to dependent data in less well-specified cases, for
example those where the so-called block bootstrap would typically be employed
for more standard, nonextreme inference, are more problematical.

Our method may be used to tackle a variety of forecasting problems. In
particular, it may be employed to construct a prediction interval for the next
record value, or a confidence interval for an extreme probability. The purpose
of the present paper is to demonstrate its feasibility in a relatively simple
“laboratory” case, where concise theoretical treatment is feasible. In particular,
we address point estimation of an extreme quantile or probability.

The idea of using a sample of smaller size than the original has been noted
before, by for example Beran and Srivastava (1985) and Athreya (1987) to
estimate distributions that do not enjoy normal limits, and by Taylor (1989),
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Faraway and Jhun (1990) and Hall (1990) in the context of statistical smooth-
ing. The latter application is closer in spirit to that in the present paper.

We discuss only first-order properties of the estimator, with the aim of show-
ing that first-order optimality is achieved by the bootstrap. In the context stud-
ied here, implementation of the bootstrap requires choice of a bivariate tuning
parameter, t = �m1;m2�; see (3.3). The cases addressed by Taylor (1989), Far-
away and Jhun (1990) and Hall (1990) also require tuning parameters. We
do not discuss optimal selection of such quantities, although this topic could
be addressed. It requires second-order asymptotic theory, which is unlikely
to provide a good account of properties in real samples unless sample size is
particularly large. An account of numerical selection of tuning parameters is
beyond the scope of this paper, not least because in practice it is often quite ad
hoc, based on trial and error. Typically, the final choice of t is based on simu-
lating from distributions whose tail behavior is suggested by pilot estimators
of θ.

Hall and Welsh (1985) described nonbootstrap approaches to extreme-value
inference in Pareto-type distributions. Our method is actually less complex
than the one suggested by Hall and Welsh, which requires choice of three
(rather than our two) tuning parameters [the quantities s, t1 and t2 in Hall
and Welsh’s notation—see Section 5 of Hall and Welsh (1985)]. At the same
time, our approach enjoys significantly more general application.

We employ mean squared error as the criterion of optimality, although it
will be clear that other approaches could easily be adopted, requiring only
minor modification of our procedure. Thus, we wish to select t so that

�1:1� D1�tyn;x� = E
{
F̄θ̂�t��x� − F̄�x�

}2

is minimized. In the event that we choose to estimate the �1 − p�th quantile
of F for a given value of p, that is, the solution x of F̄�x� = p, we would select
t so as to minimize

�1:2� D2�tyn;p� = D1
{
tyn; F̄−1�p�

}
= E

[
F̄θ̂�t�

{
F̄−1�p�

}
− p

]2
:

Theory describing properties of D1 and D2 is developed in Section 2. To esti-

mate those quantities we replace F̄ in (1.1) and (1.2) by ̂̄F, and F̄θ̂�t� by its
bootstrap version, calculated for resamples of size m� n drawn from the orig-
inal n-sample. Let this approximant be F̄θ̂∗�t�. Then our bootstrap estimators
of D1 and D2 are, respectively,

D̂1�tym;y� = E′
{
F̄θ̂∗�t��y� − ̂̄F�y�

}2
;(1.3)

D̂2�tym;q� = E′
[
F̄θ̂∗�t�

{̂̄F
−1
�q�

}
− q

]2
;(1.4)

where E′ denotes expectation conditional on the original data. Details about
the bootstrap are presented in Section 3. All proofs are given only in outline,
and are collected together in Section 4.
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At least two critical issues must be settled before methodology for the
bootstrap may be developed. First, the manner in which �n;x� is related to
�m;y� must be determined. We contend that in cases where the asymptotic
model F̄θ for F̄ is of Pareto type, for example, regularly varying of the form
F̄�θ1; θ2� = θ1x

−θ2 where θ1, θ2 > 0, the most important thing is to ensure that
the ratio �log x�/�log n� is preserved, at least approximately, by the trans-
formation that takes �n;x� to �m;y�. Second, the method of calibrating our
estimate of t so that it applies in the back-transformed context, where �m;y�
is replaced by �n;x�, must be addressed. This we do in Section 3.

In the present paper we concentrate on the Pareto-type model introduced
above, although it will be clear that other possibilities could also be considered.
We relabel the model as

�1:5� F̄α; c = cx−α;
and estimate α and c as in Hill (1975). The estimators proposed there are
based on the k largest order statistics; k plays the role of t. Specifically, if
X�1� ≤ · · · ≤ X�n� denote the order statistics of a sample X = �X1; : : : ;Xn�
then

α̂ = α̂�k� =
(
k−1

k∑
i=1

logX�n−i+1� − logX�n−k�

)−1

;

ĉ = ĉ�k� = �k/n��X�n−k��α̂:
Optimal choice of k requires the tuning parameter to increase with increasing
sample size, at a rate depending on the difference F̄− F̄α; c between the true
distribution tail and that of the model [Hall (1982), Smith and Weissman
(1987)].

Related work on tail estimation using Pareto-type models includes that of
Davis and Resnick (1984) and Smith (1987). Anderson (1978, 1984) discussed
conditions under which the relative error of estimates in such models con-
verges to zero. Regular variation in very general terms has been described in
detail by Bingham, Goldie and Teugels (1987).

By way of notation, for positive sequences an and bn we shall say that “an
is of size bn” if the ratio an/bn is bounded away from zero and infinity as n
increases. If an should be a random variable then by the phrase “an is of size
bn in probability” we mean that an/bn and bn/an are both Op�1�.

2. Asymptotic properties of D1 and D2. Since

D2�kyn;p� = D1�kyn; F̄−1�p��
then it suffices to treat D1. For that purpose we assume that the true distri-
bution tail F̄ is regularly varying with remainder

�2:1� F̄�x� = cx−α
{
1+ dx−β + o�x−β�

}

as x→∞, where α;β > 0, c > 0 and −∞ < d <∞. (An example of this kind is
the Frèchet distribution, for which F�x� = exp�−cx−α�, β = α and d = −c/2.)
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We ask that x = x�n� increase with sample size at such a rate that

�2:2� �log x�/�log n� is bounded away from zero and infinity as n→∞:
Our asymptotic, quasi-parametric approximation to F̄ is F̄α; c, given by (1.5),
and represents the first-order term on the right-hand side of (2.1).

We adopt the convention that, in the very unlikely event that F̄α̂; ĉ�x� takes
a value greater than 1, we redefine F̄α̂; ĉ�x� = 1. This point is hardly of any
practical importance, but it does ensure that the random variable whose ex-
pected value is taken in (1.1) is always less than 1 in absolute value, and so
there can be no argument over the finiteness of D1. We also suppose that the
distribution of X is bounded below by a positive constant. This assumption
rules out the possibility that logX�i� is not well defined for some i, and avoids
our having to qualify results by tedious caveats. Theorem 2.1 describes prop-
erties of D1 up to an order of accuracy which, in most circumstances, enables
us to determine first-order properties of the optimal k; see the subsequent
discussion.

Theorem 2.1. Under these assumptions, and (2.1) and (2.2),

�2:3�

E
{
F̄α̂; ĉ�x� − F̄�x�

}2
F̄α; c�x�−2

= D1�kyn;x�F̄α; c�x�−2

= E
[
δ1�k/n� − δ2�x� + k−1/2Y1

+ αf�k/n; x��k−1/2Y2 − a�k/n�β/α�
]2

+ o
[
�k−1 + �k/n�2β/α��1+ f�k/n; x�2�

+ �k−1 + �k/n�2β/α�1/2�δ2�x��
]

uniformly in 1 ≤ k ≤ n1−ε for any ε > 0, where Y1, Y2 are independent
random variables with zero mean and unit variance; the quantities δ1�k/n�
and δ2�x� depend only on the indicated arguments and satisfy δ1�k/n� =
dc−β/α�k/n�β/α + o��k/n�β/α� and δ2�x� = dx−β + o�x−β� as n;x → ∞, re-
spectively; a = dc−β/αβ�α+ β�−1; and f�k/n; x� = log�x/F̄−1

α; c�k/n��.

The theorem may be employed to derive asymptotic properties of the value
k0 of k that minimizes D1�kyn;x�, and also of the value of D1�k0yn;x�, as we
show in the corollary below. Of course, both quantities can depend significantly
on x, even to first order. We shall consider only relatively large x’s, satisfying

�2:4� xn−�1/�α+2β��−ε is bounded away from zero for some ε > 0:

The expansion at (2.3) is sufficiently detailed to yield accurate approximations
to k0 and D1�k0yn;x� in the case of smaller x’s, but there we can find little
motivation for going into detail. Bear in mind that under condition (2.1), and
for each fixed l, the order statistics X�n�; : : : ;X�n−l� are all of size n1/α in prob-
ability, and n1/α is of larger order than n�1/�α+2β��+ε for some ε > 0. Therefore,
if x should be of smaller order than n�1/�α+2β��+ε for each ε > 0 then x is well
within the confines of the sample, and so F̄�x� may be estimated relatively
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accurately without even considering the asymptotic approximation F̄α; c�x�.
Indeed, the empirical distribution function is consistent in this setting, in the

strong, relative-error sense implied by E�F̄�x� − ̂̄F�x��2/F̄�x�2 → 0.

Corollary 2.1. Assume the conditions of Theorem 2.1, with (2.2) strength-
ened by asking that the ratio �log x�/�log n� have a finite, positive limit l as
n→∞. Suppose too that (2.4) holds and that d 6= 0. Then (i) result (2.3) holds
uniformly in �k− k0� ≤ λk0 for each λ > 0; and (ii) k0 ∼ C1n

2β/�α+2β� and

D1�k0yn;x� ∼ C2n
−2β/�α+2β��log n�2x−2α;

where C1 = �α/�2a2β��α/�α+2β� and

�2:5� C2 = 1
2c

2α2β−1�α+ 2β�−1�l�α+ 2β� − 1�2�2a2β/α�α/�α+2β�:

Note that by (2.4) it is always true that l > �α+ 2β�−1 + ε for some ε > 0.
In particular, the term l�α + 2β� − 1 appearing in (2.5) is guaranteed to be
strictly positive.

Our final result in this section addresses the problem of empirical choice of
the optimal value of k. Again we focus on the context of Corollary 2.1, where
(2.4) holds, since other cases are not so clearly motivated. We shall prove
that an empirical bandwidth selection rule that estimates k0 with sufficient
accuracy achieves the levels of approximation discussed above. That is, it min-
imizesD1�kyn;x� up to terms of order o�η�, where η ≡ n−2β/�α+2β��log n�2x−2α.

Let k0 denote the value of k that minimizes D1�kyn;x�, and let k̂ be a
function of the data X , satisfying

�2:6� P��k̂− k0�/k0 > ε� = o�η�
for each ε > 0. DefineD10�n;x� to be that version ofE�F̄α̂; ĉ�x�−F̄�x��2 where
k (in the construction of α̂ and ĉ) is replaced by k̂ before the expectation is
taken. In this context, recall our convention that we replace F̄α̂; ĉ�x� by 1 in
the unlikely event that F̄α̂; ĉ�x� > 1.

Theorem 2.2. Assume the conditions of Corollary 2.1 and also that (2.6)
holds. Then

D10�n;x� −D1�k0yn;x� = o�η�
as n→∞.

3. Bootstrap methods and calibration.

3.1. The bootstrap. We assume throughout that the true distribution func-
tionF satisfies (2.1), and that the asymptotic, quasi-parametric approximation
F̄α; c with which we are working is that defined at (1.5). For the sake of brevity
we concentrate on the criterion D1, although D2 may be treated similarly.

First we describe the bootstrap algorithm. Let m, the resample size, be
an order of magnitude smaller than n, and denote the resample by X ∗ =
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�X∗1; : : : ;X∗m�. It is assumed to be drawn randomly, with replacement, from
the full sample X = �X1; : : : ;Xn�. Write X∗�1� ≤ · · · ≤ X∗�m� for the order
statistics of the resample, and put

α̂∗ = α̂∗�k� =
(
k−1

k∑
i=1

logX∗�m−i+1� − logX∗�m−k�

)−1

;

ĉ∗ = ĉ∗�k� = �k/m��X∗�m−k��α̂
∗
:

Define D̂1 and D̂2 as at (1.3) and (1.4), with ̂̄F denoting the empirical distribu-
tion function of X , E′ representing expectation conditional on X , k replacing
the tuning parameter t, and the vector �α̂∗�k�; ĉ∗�k�� denoting θ̂∗�t�.

Our main result in this subsection, Theorem 3.1, describes estimation of
the optimal value of k after the pair �n;x� has been transformed to �m;y�.
To simplify our mathematical argument we assume that we search for an em-
pirical optimum only locally, in the vicinity of the true optimum; lengthier
arguments can cope with more global optimization problems. Thus, given ar-
bitrary but fixed constants 0 < a1 < 1 < a2 <∞, and values of m and y, we let
k0�m;y� denote the value of k that minimizes D1�kym;y�, and write k̂�m;y�
for the value of k in the interval �a1k0; a2k0� that minimizes D̂1�kym;y�.
Thus, k̂�m;y� denotes a bootstrap estimator of k0�m;y�. We are particularly
interested in the performance of k̂�m;y� as an estimator of k0�m;y�. In a
slight abuse of notation we shall in Section 3.2 use the notation k̂�n;x� not
for the version of k̂�m;y� evaluated at �m;y� = �n;x�, where the definition is
anyway not practical, but rather for the calibrated version of k̂�m;y�.

Our theorem is valid only when the order of magnitude of y is sufficiently
small. To determine an appropriate definition of “sufficiently small,” note that
the empirical distribution function tail, ̂̄F�y�, is unbiased for F̄�y� and has
standard deviation of order n−1/2y−α/2 as n and y increase. Bearing in mind
that we wish this error not to be of larger order than the remainder o�y−α−β� in
our asymptotic approximation to F̄�y� [see (2.1)], we ask that n−1/2y−α/2 be an
order of magnitude smaller than y−α−β, or equivalently that y = o�n1/�α+2β��.
This consideration motivates the assumption

�3:1� y = O
(
n�1/�α+2β��−ε)

for some ε > 0.

Theorem 3.1. Assume (3.1), and the conditions of Corollary 2.1, but im-
posed on �m;y� rather than �n;x�. Then for each ε; λ > 0,

P��k̂�m;y� − k0�m;y��/k0�m;y� > ε� = O�n−λ�:

The assumption that the conditions of Corollary 2.1 hold for �m;y� demands
that ym−�1/�α+2β��−ε1 be bounded away from zero and infinity for some ε1 > 0
[compare (2.4)], which in company with (3.1) implies that m = O�n1−ε2� for
some ε2 > 0.
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3.2. Calibration. We begin by describing a method for calibration. Our aim
is to convert the estimator k̂�m;y� into a quantity k̂ = k̂�n;x� that satisfies
the crucial condition (2.6), and so also satisfies Theorem 2.2.

In order to appreciate the context of our approach, recall from Theorem
2.1 that the nature of the solution to the problem of minimizing D1�kyn;x�
with respect to k depends critically on the limit l of �log x�/�log n�. Provided
that �log y�/�logm� = �log x�/�log n�; l is preserved by the transformation
�n;x� 7→ �m;y�, whence by Corollary 2.1 and Theorem 3.1,

log k̂�m;y� = logC1 + γ logm+ ξ�m;y�;
where C1 is exactly as in Corollary 2.1, γ = 2β/�α+ 2β� and

�3:2� P��ξ�m;y�� > ε� = O�n−λ�
for all ε; λ > 0. Linear regression of log k̂�m;y� on logm for just two values
of m may be used to produce estimators Ĉ1 and γ̂ of C1 and γ. We take

k̂�n;x� = Ĉ1n
γ̂

as our estimator of the unknown k0 = k0�n;x�.
For example, if

log y1

logm1
= log y2

logm2
= log x

log n
;

m1 = nξ1 and m2 =mξ2
1 , where 0 < ξ1, ξ2 < 1 and each ξj = ξj�n� is bounded

away from 0 and 1, then by (3.2),

P��Ĉ1 −C1� > ε� +P��γ̂ − γ� > ε�log n�−1� = O�n−λ�
for all ε; λ > 0. It follows that P��k̂ − k0�/k0 > ε� = O�n−λ� for all ε; λ >
0, which is stronger than the crucial condition (2.6). Therefore, k̂ satisfies
Theorem 2.2.

4. Proofs. We shall derive Theorem 2.1 and Corollary 2.1 in moderate
detail. Proofs of the other results will be only sketched, since the techniques
employed in all of them bear a filial resemblance to those used to derive The-
orem 2.1 and Corollary 2.1.

Proof of Theorem 2.1.
Step (i). Formula for D1. In this step we produce a tractable expression

for D1�kyn;x�, by Taylor-expanding the functional F̄α̂; ĉ. Let C1;C2; : : : denote
positive constants depending only on their arguments, which will be indicated.
Put ξ = α−1 and ξ̂ = α̂−1, and observe that if �ξ̂−ξ� ≤ 1

2ξ then �α̂−α+α2�ξ̂−ξ�� ≤
C1�ξ��ξ̂ − ξ�2. Therefore, if �ξ̂ − ξ� ≤ min� 1

2ξ; �log x�−1� then

�4:1�
x−α̂ = x−α exp�−�α̂− α� log x�
= x−α�1+ α2�ξ̂ − ξ� log x+R1�x��;

where �R1�x�� ≤ C2�ξ��ξ̂ − ξ�2�log x�2.
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Put δ3 = �F̄−1�k/n� − F̄−1
α; c�k/n��/F̄−1

α; c�k/n� and

1 = �X�n−k� − F̄−1�k/n��/F̄−1�k/n�;

and observe that

ĉ = �k/n��X�n−k��α̂

= c exp
[
α log�1+ δ3� + α log�1+ 1�
+ �α̂− α��log F̄−1

α; c�k/n� + log�1+ δ3� + log�1+ 1��
]
:

Therefore, if simultaneously

�4:2� �ξ̂ − ξ� ≤ min
{ 1

2ξ; �log x�−1
}
; �δ3� ≤ 1

2 and �1� ≤ 1
2

then

ĉ = c
{
1+ αδ3 + α1− α2�ξ̂ − ξ� log F̄−1

α; c�k/n� +R2
}
;

where, for l = 2,

�4:3� �Rl� ≤ C3�α; c�
{
δ2

3 + 12 + �ξ̂ − ξ�2�log n�2
}
:

It follows from this result and (4.1) that if (4.2) holds and x ≥ x0 then F̄α̂; ĉ ≤ 1
and

F̄α̂; ĉ�x� = ĉx−α̂

= F̄α; c�x�
[
1+ αδ1 + α1+ α2�ξ̂ − ξ� log

{
x/F̄−1

α; c�k/n�
}
+R3

]
;

where R3 satisfies (4.3). Equivalently, defining δ2 = �F̄�x�− F̄α; c�x��/F̄α; c�x�
we have

F̄α̂; ĉ�x� − F̄�x� = F̄α; c�x��αδ1 − δ2 + α1+ α2�ξ̂ − ξ� log�x/F̄−1
α; c�k/n�� +R3�:

Hence,

�4:4�
E�F̄α̂; ĉ�x� − F̄�x��2

= F̄α; c�x�2E
[
αδ3 − δ2 + α1+ α2�ξ̂ − ξ� log

{
x/F̄−1

α; c�k/n�
}]2 + r1;

where r1 = r1�x� and, provided �δ1� ≤ 1
2 ,

�r1� ≤ C4�α; c�F̄α; c�x�2

×
(
�δ3�3 +E�1�3 +E�ξ̂ − ξ�3��log n�3 + �log x�3�

+ �δ2�
[
�δ3�2 +E�12� +E�ξ̂ − ξ�2��log n�2 + �log x�2�

]

+P
[
�ξ̂ − ξ� > min

{ 1
2ξ; �log x�−1

}]
+P

(
�1� > 1

2

))
:

(4.5)



1320 P. HALL AND I. WEISSMAN

Step (ii). Approximation to ξ̂ and 1. In this step we introduce representa-
tions for extreme order statistics X�i�, and thereby obtain tractable formulas
for the quantities ξ̂ and 1 in (4.4) and (4.5). First, note that in view of (2.1),
F̄−1�y� = �c/y�ξ�1+ ξdc−ξβyξβ + o�yξβ�� as y→ 0, and so

�4:6� log F̄−1�e−z� = ξ�log c+ z� + ξdc−ξβe−ξβz + r2�z�;
where �r2�z�� = o�e−ξβz� as z→∞. Next, observe that we may write

�4:7� X�i� = F̄−1�exp�−Si��; 1 ≤ i ≤ n;
where

Si =
i∑

j=1

Zj�n− j+ 1�−1 = ζi +Ti;

the Zj’s are independent exponential random variables with unit mean,

ζn−i+1 =
n∑
j=i
j−1 = log�n/i� +O�n−1�

uniformly in 1 ≤ i ≤ n/2, and Ti =
∑i
j=1�Zj−1��n−j+1�−1. Therefore, with

Ui ≡ Sn−i+1 − log�n/i� we have

P
(

sup
1≤i≤n/2

�Ui� > nε−�1/2�
)
= O�n−λ�

for all ε; λ > 0. Hence, exp�−ξβSn−i+1� = �i/n�ξβ�1+Vi� where

P
(

sup
1≤i≤n/2

�Vi� > nε−�1/2�
)
= O�n−λ�:

Consequently, by (4.6) and (4.7), ξ̂ − ξ = A�k� +B�k� +R4�k�, where

A�k� = ξ
{
k−1

k∑
i=1

n−i+1∑
j=1

�Zj − 1��n− j+ 1�−1 −
n−k∑
j=1

�Zj − 1��n− j+ 1�−1
}

= ξk−1
n∑

j=n−k+1

�Zj − 1�;

B�k� = ξdc−ξβ
{
k−1

k∑
i=1

�i/n�ξβ − �k/n�ξβ
}
∼ −ξdc−ξββ�α+ β�−1�k/n�ξβ

and, for each ε1; ε2, λ > 0, and for l = 4,

�4:8� P
[

sup
1≤k≤n1−ε1

�Rl�k���k−1/2 + �k/n�ξβ�−1 > ε2

]
= O�n−λ�:

Since B�k� = −ξa�k/n�ξβ + o��k/n�ξβ� where a = dc−ξββ�α+ β�−1 then

�4:9� ξ̂ − ξ = A�k� − ξa�k/n�ξβ +R5�k�;
where R5 satisfies (4.8).
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Similarly,

X�n−k� = F̄−1�exp�−Sn−k��
= cξ�n/k�ξ�1+ ξTn−k + ξdc−ξβ�k/n�ξβ +R6�k��;

whereR6 satisfies (4.8). Hence, since F̄−1�k/n� = cξ�n/k�ξ�1+ξdc−ξβ�k/n�ξβ+
o��k/n�ξβ�� then

�4:10� 1 = ξTn−k +R7�k�;
where R7 satisfies (4.8).

Step (iii). Conclusion. It is straightforward to prove that for all ε1; ε2, λ>0,

sup
1≤k≤n1−ε1

�E�ξ̂ − ξ�λ +E�1�λ� = O�nε2�:

Therefore, if E = E �k� denotes an event satisfying supkP�E � = O�n−λ� for all
λ > 0, then for all ε1; ε2; λ1; λ2 > 0,

sup
1≤k≤n1−ε1

�E��ξ̂ − ξ�λ1I�E �� +E��1�λ1I�E ��� = O�n−λ2�;

where I denotes the indicator function. Observe that δ3 = ξdc−ξβ�k/n�ξβ +
o��k/n�ξβ� and �f�k/n; x�� = O�log n�. We put δ1 = αδ3. Combining these
results with (4.4), (4.5) and (4.8)–(4.10), we deduce that for any ε1 > 0 we
have uniformly in 1 ≤ k ≤ n1−ε1 ,

E�F̄α̂; ĉ�x� − F̄�x��2

= F̄α; c�x�2
{
E
[
δ1 − δ2 +Tn−k + α2�A�k� − ξa�k/n�ξβ�f�k/n; x�

]2

+ o
[
�k−1 + �k/n�2ξβ��1+ f�k/n; x�2�

+ �k−1 + �k/n�2ξβ�1/2�δ2�
]}
:

(4.11)

Theorem 2.1 follows from (4.11), on replacing Tn−k and A�k� by k−1/2Y1
and k−1/2ξY2, respectively.

Proof of Corollary 2:1.
Step (i). Preliminaries. Expanding the right-hand side of (2.3) we obtain,

�4:12�

E�F̄α̂; ĉ�x� − F̄�x��2F̄α; c�x�−2

= α2f�k/n; x�2�k−1 + a2�k/n�2β/α� + k−1

+ 2aαf�k/n; x��k/n�β/α�δ2�x� − δ1�k/n��
+ terms that are either negligible or do not depend on k:

Here, “negligible” means of the same order as the “o” remainder term in (2.3).
Let c1; c2; : : : denote positive constants depending only on c; d; α and β. Note
that the quantity k−1+a2�k/n�2β/α appearing on the right-hand side of (4.12)
is minimized by taking k = k1 = c1n

2β/�α+2β�, say. (In fact, c1 = C1, the latter
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defined in Corollary 2.1.) When k = k1, the function f�k/n; x� is rendered
equal to zero by taking x = c2x1, say, where x1 = n1/�α+2β�. In this notation,
the condition that xn−�1/�α+2β��−ε be bounded away from zero is equivalent to
asking that x/�x1n

ε� be so bounded.
To explain why the term δ1�k/n�2 is not included in (4.12), we assume

without essential loss of generality that kδ1�k/n�2 has a limit, L say, either
finite or infinite. If L = 0 then δ1�k/n�2 is negligible relative to an earlier
term, k−1, in (4.12), and so may be dropped. If L = ∞ then k is of strictly
larger order than n2β/�α+2β�, in which case it follows from step (iii) below that

�4:13� p�k� ≡ α2f�k/n; x�2
{
k−1 + a2�k/n�2β/α

}
+ k−1

is of size at least �k/n�2β/α�log n�2, which in turn is of strictly larger size then
δ1�k/n�2. Therefore, again δ1�k/n�2 may be dropped from (4.12). Finally, if
0 < L <∞ then, also by step (iii), p�k� is of size n−2β/�α+2β��log n�2, which is
of strictly larger size than δ1�k/n�2, implying once more that the latter may
be dropped from (4.12).

In the steps that follow, particularly Step (v), the remark that k is “in the
vicinity of k0” means that �k− k0� < λk0 for some λ > 0, sufficiently large.

Step (ii). Bound for early terms in (4.12). Here we derive lower and upper
bounds to p�k�. Now, k−1 is of smaller order than r = n−2β/�α+2β��log n�2 if
and only if �n/k�1/α is of smaller order than x1�log n�2/α. Furthermore, in the
event that x/��n/k�1/αnε� is bounded away from zero for some ε > 0, the ratio
�f�k/n; x��/ log n is also so bounded. Additionally, if

x/�x1n
2ε� = ��n/k�1/α/�x1n

ε���x/��n/k�1/αnε��
is bounded away from zero for some ε > 0 then so too is

��n/k�1/α/�x1n
ε�� + �x/��n/k�1/αnε��;

and hence, in view of the points made in the previous two sentences, k−1r−1+
�f�k/n; x���log n�−1 is also bounded away from zero. When k−1r−1 ≥ c3 we
clearly have p�k� ≥ c3r; and when �f�k/n; x���log n�−1 ≥ c3 then, since the
minimum value of k−1 + a2�k/n�2β/α is c4k

−1
1 and is attained at k = k1, then

f�k/n; x�2�k−1 + a2�k/n�2β/α� is bounded below by a constant multiple of r.
Hence, when x/�x1n

ε� is bounded away from zero the minimum over k of the
quantity at (4.13) is bounded below by a constant multiple of r. Taking k = k1
and noting that �log x�/�log n� is bounded, we see that the minimum is also
bounded above by a constant multiple of r. Therefore,

�4:14� inf
k
p�k� � r:

Step (iii). Asymptotic formula for argminp�k�. Here we show that the
value k′0 of k which produces a minimum of p satisfies k′0 ∼ k1. In view of
(4.14), and since p�k� ≥ k−1, the smallest k at which p can be minimized is
c5r
−1 = c5c

−1
1 k1�log n�−2, for some c5 > 0. Should k be of larger order than

k1 then, since x/��n/k�1/αnε� would be bounded away from zero for some
ε > 0, �f�k/n; x��/ log n would also be bounded away from zero. Hence, p�k�
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would be of order at least equal to that of �log n�2�k/n�2β/α, which in turn
would be of larger order than r. Therefore, in view of (4.14), such a value of
k cannot minimize p. It follows that the value of k′0 must lie in the interval
I = �c5r

−1; c6k1� for some c6 > 0. With g�n;x� = log x−α−1 log�n/k1� we have
f�k/n; x� = g�n;x� + o�log n� uniformly in k ∈ I , and also, since x/�x1n

ε� is
bounded away from zero for some ε > 0, �g�n;x��/ log n is bounded away from
zero. The latter ratio is clearly bounded away from infinity. Therefore,

�4:15�
p�k� = �1+ o�1��α2g�n;x�2�k−1 + a2�k/n�2β/α� + k−1

= �1+ o�1��α2g�n;x�2�k−1 + a2�k/n�2β/α�

uniformly in k ∈ I . The value of k that minimizes the last line is of course
asymptotic to k1, and therefore k′0 ∼ k1.

Define p1�k� = 2aαf�k/n; x��k/n�β/αδ1�k/n� and

p2�k� = 2aαf�k/n; x��k/n�β/αδ2�x�:

Step (iv). Negligibility of p1�k�. Here we show that

�4:16�
inf
k
�p�k� − p1�k�� ∼ inf

k
p�k�;

argmin�p�k� − p1�k�� ∼ argminp�k�:

Note that p1�k� = O��log n��k/n�2β/α�. From the deliberations leading to
(4.14) we know that k−1r−1 + �f�k/n; x���log n�−1 is bounded away from zero,
and so

k ≤ c7r
−1 = O

{
n2β/�α+2β� �log n�−2}

= o
{
n2β/�α+2β� �log n�−α/�α+2β�}:

It follows that kp1�k� → 0, which, since p�k� ≥ k−1, implies that p1�k� is of
smaller order than p�k�. That implies (4.16).

Step (v). Conclusion. We know from steps (iii) and (iv), particularly (4.15)
and (4.16), that

inf
k
�p�k� − p1�k�� ∼ α2g�n;x�2�k−1

1 + a2�k1/n�2β/α�;

and that the value k′′0 of k which minimizes p�k� − p1�k� satisfies k′′0 ∼ k1. If

�log n��k1/n�β/αx−β = o��log n�2�k1/n�2β/α�;

or equivalently,

�4:17� x−1 = o�n−1/�2β+α��log n�1/β�;

then p2�k1� = o�r� and so

�4:18� inf
k
�p�k� − p1�k� + p2�k�� ∼ α2g�n;x�2�k−1

1 + a2�k1/n�2β/α�;
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and the value k′′′0 of k that minimizes p�k� − p1�k� + p2�k� satisfies k′′′0 ∼ k1.
Condition (4.17) is implied by (2.4). Formula (2.5) follows from (4.12) and
(4.18).

Proof of Theorem 2:2. In view of (2.6), we may choose a sequence εn of
positive constants that decrease to zero so slowly that

P��k̂− k0�/k0 > εn� = o�η�:

Put k̃ equal to k̂ if �k̂ − k0�/k0 ≤ εn, and otherwise equal to the smallest
integer not less than k0�1+ εn�. Let D11�n;x� denote the version of D10�n;x�
in which k̃ replaces k̂. Since D10�n;x� and D11�n;x� both represent expected
values of quantities whose absolute values are bounded by 1 then, by (2.6),
D10�n;x� − D11�n;x� = o�η�. Therefore it suffices to prove the theorem for
D11�n;x� instead of D10�n;x�:

�4:19� D11�n;x� −D1�k0yn;x� = o�η�:

As a prelude to proving (4.19) we note that the argument given during the
proof of Corollary 2.1, starting from (4.12), shows that

�4:20�
D1�k0yn;x� = F̄α; c�x�2

[
α2g�x;n�2�k−1

0 + a2�k0/n�2β/α� + k−1
0

+ 2aαg�x;n��k0/n�β/αδ2�x� + δ2�x�2
]
+ o�η�:

To derive (4.19) we rework the arguments in the proofs of Theorem 2.1
and Corollary 2.1, but obtaining the various remainder terms uniformly in
�k − k0� ≤ εnk0 rather than for a single k. This is quite straightforward,
since quantities such as A�k� and Tn−k admit invariance principles where the
remainders, calculated in terms of the difference away from their counterparts
with k = k0, are appropriately small. In particular, with W�k� denoting either
A�k� or Tn−k we have

E
(

max
kx�k−k0�≤εnk0

�W�k� −W�k0��λ
)
= o�k−λ/20 �

for all λ > 0. Arguing thus we may derive the version of (4.20) in which the
left-hand side is replaced by either

E
[

max
kx �k−k0�≤εnk0

�F̄α̂�k�; ĉ�k��x� − F̄�x��2
]

or

E
[

min
kx �k−k0�≤εnk0

�F̄α̂�k�; ĉ�k��x� − F̄�x��2
]
;

and the right-hand side is unchanged. It follows that (4.20) is valid if the left-
hand side is changed to D11�n;x�. Let the resulting formula be (4.20′). The
desired result (4.19) follows on subtracting (4.20) from (4.20′).
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Proof of Theorem 3:1. Observe that for all ε ∈ �0; 1
2� and λ > 0,

P
{

sup
x>0
�̂̄F�x� − F̄�x��F̄�x�ε−�1/2� > nε−�1/2�

}
= O�n−λ�:

With this result in hand one may rework the proof of Theorem 2.1 in the
context where �α̂∗; ĉ∗;m� replaces �α̂; ĉ; n� and probabilities and expectations
are interpreted conditionally. Arguing in that manner, it may be proved that
under the conditions of Theorem 3.1, and uniformly in k ∈ �a1k0; a2k0� for any
0 < a1 < 1 < a2 <∞ [where k0 = k0�m;y�], we have the following expansion:

E′�F̄α̂∗; ĉ∗�y� − ̂̄F�y��2F̄α; c�y�−2 = δ2�y�2 + α2g1�m;y�2�k−1 + a2�k/m�2β/α�
+ bg1�m;y��k/m�β/αy−β/α +R�k;m;y�;

where g1�y;m� = log y− α−1 log�m/k0�m;y�� and, for all ε; λ > 0,

�4:21� P
{

max
k∈�a1k0; a2k0�

�R�k;m;y�� > εk0�m;y�−1�log n�2
}
= O�n−λ�:

The argument in the proof of Corollary 2.1 may be employed to derive Theo-
rem 3.1 from (4.21).

Acknowledgments. We are particularly grateful for a very helpful report
from an Associate Editor, who pointed out that in the first version of this paper
we had defined the function δ2 incorrectly. The second author is grateful to the
Centre for Mathematics and its Applications, Australian National University,
for its hospitality during the summer of 1994 and to the Israel–US Binational
Fund for partial support.

REFERENCES

Anderson, C. W. (1978). Super-slowly varying functions in extreme value theory. J. Roy. Statist.
Soc. Ser. B 40 197–202.

Anderson, C. W. (1984). Large deviations of extremes. In Statistical Extremes and Applications
(J. Tiago de Oliveira, ed.) 325–340. Reidel, Dordrecht.

Athreya, K. B. (1987). Bootstrap of the mean in the infinite variance case. Ann. Statist. 15 724–
731.

Beran, R. and Srivastava, M. S. (1985). Bootstrap tests and confidence regions for functions of
a covariance matrix. Ann. Statist. 13 95–115.

Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge Univ.
Press.

Davis, R. A. and Resnick, S. I. (1984). Tail estimates motivated by extreme value theory. Ann.
Statist. 12 1467–1487.

Faraway, J. J. and Jhun, M. (1990). Bootstrap choice of bandwidth for density estimation.
J. Amer. Statist. Assoc. 85 1119–1122.

Hall, P. (1982). On some simple estimates of an exponent of regular variation. J. Roy. Statist.
Soc. Ser. B 44 37–42.

Hall, P. (1990). Using the bootstrap to estimate mean squared error and select smoothing pa-
rameter in nonparametric problems. J. Multivariate Anal. 32 177–203.

Hall, P. and Welsh, A. H. (1985). Adaptive estimators of parameters of regular variation. Ann.
Statist. 13 331–341.



1326 P. HALL AND I. WEISSMAN

Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. Ann.
Statist. 3 1163–1174.

Smith, R. L. (1987). Estimating the tails of probability distributions. Ann. Statist. 15 1174–1207.
Smith, R. L. and Weissman, I. (1987). Large deviations of tail estimators based on the Pareto

approximation. J. Appl. Probab. 24 619–630.
Taylor, C. C. (1989). Bootstrap choice of the smoothing parameter in kernel density estimation.

Biometrika 76 705–712.

Centre for Mathematics
and its Applications

Australian National University
Canberra ACT 0200
Australia

Technion–Israel Institute
of Technology

Haifa 32000
Israel
E-mail: ieriw01@ie.technion.ac.il


