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An error bound in the normal approximation to the distribution of the
double-indexed permutation statistics is derived. The derivation is based
on Stein’s method and on an extension of a combinatorial method of
Bolthausen. The result can be applied to obtain the convergence rate of
order n~'/2 for some rank-related statistics, such as Kendall’s tau, Spear-
man’s rho and the Mann—Whitney—Wilcoxon statistic. Its applications to
graph-related nonparametric statistics of multivariate observations are
also mentioned.

1. Introduction. Let (i, j, k,1), i,j,k,l € N=1{1,...,n}, be real num-
bers depending on n. We are interested in the double-indexed permutation
statistics (DIPS) of the general form X, ;{(i, j, w(i), w(j)), where 7 is uni-
formly distributed on the set &2, of all permutations of N. The DIPS of the
restricted form X, ;a;,b, ;.;, Was first investigated by Daniels (1944) in the
study of a generalized correlation coefficient with Kendall’s tau and Spear-
man’s rtho being special cases. Daniels gave a set of sufficient conditions for
their asymptotic normality as n — . Further investigations along this direc-
tion have been done by Bloemena (1964), Jogdeo (1968), Abe (1969), Shapiro
and Hubert (1979), Barbour and Eagleson (1986) and Pham, Mocks and
Sroka (1989). In these contexts, the so-called scores a,; and b,; are either

symmetric (a,; = a;, b;; = b;) or skew-symmetric (a;; = —a;;, b,; = —b;).
The uses of DIPS have diversely been suggested by Friedman and Rafsky
(1979, 1983) and Schilling (1986) in multivariate nonparametric tests, by
Hubert and Schultz (1976) in clustering studies, by Mantel and Valand
(1970) in biometry, and by CIliff and Ord (1981) in geography.

The purpose of this paper is to derive a bound for the error in the normal

approximation to the distribution of the DIPS of the general form
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X, ;¢G, j, w(@), w(j)). This bound can be used to yield the convergence rate
O(n~1/2) for some well-known statistics, such as Kendall’s tau, Spearman’s
rho and the Mann-Whitney—Wilcoxon statistic. In Section 2 the DIPS,
X, ¢, j, m(@), w(j)), is converted to the form of X,a(i, 7(i)) +
nle’i,jb(i,j, (i), w(j)). (Throughout this paper, XT; ; denotes T, ;,.;) A
Berry—-Esseen type of inequality for the latter is stated as Theorem 1. The
result for DIPS, straightforwardly implied by Theorem 1, is stated as Theo-
rem 2. In Section 3 the applications of Theorem 2 to Daniels’ generalized
correlation coefficient, the number of edges in the random intersection of two
graphs and the Mann—-Whitney—Wilcoxon statistic are demonstrated. The
essential theoretic part of this paper, that is, the proof of Theorem 1, is
presented in Section 4. Our derivations are based on Stein’s method (1972)
and an extension of the combinatorial method of Bolthausen (1984).
Bolthausen successfully employed his combinatorial method combined with
Stein’s method to obtain a result on the convergence rate for the single-
indexed permutation statistics of the form ¥, a(i, w(i)). Our Theorem 1 re-
duces to Bolthausen’s result when all b(i, j, 2,1) = 0. These two methods
were also used by Schneller (1989) to establish the Edgeworth expansion for
general linear rank statistics.

There has been little success in establishing the Berry—Esseen bound of
order n"1/% for general classes of statistics which are asymptotically nor-
mally distributed. For the importance of and the historic developments in the
study of departures from normality, the reader is referred to an earlier
survey paper by Bickel (1974). The possibility of applying Stein’s method in
such investigations is also pointed out therein.

2. Main results. For each 4-tuple real array (x(i, j, £, 1)) and each real
matrix (y(i, k)), i, j, k,I € N, the following notation is used:

x(i,j,k,-)=n"1 Y x(i, ], k1), x(i,j,-,-)=n"2) x(i,j kD),
l k,l
x(i, -, )=n"2Y x(,jk,0), x(,--, ) =n"" Y, x@,j, k1)
Jr k1 i,j, k,1
y(@,-)=n"1 Yy, k), ¥y, ) =n"2 Yy, k),
k i,k

and others defined similarly.
Let A = (a(i, k)), i,k € N, be a given real matrix such that

(2.1) a(i,’) =a(-,k) =0,
(2.2) Z}aaz(i,k) =n—1.

Let B = (b(i, j, k,1)),1,j,k,l €N, be a given 4-tuple real array such that
(2.3) b(i,j,k,")=0(i,j, ,l)=0b(i,",k,1)=0(,j,k,1)=0.
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Consider the random variable
W= Za(i,w(i)) +n1 Zfb(i,j,qr(i),ﬂr(j)),
i i)
where 7 is uniformly distributed on %,. We have the following result.
THEOREM 1. There is an absolute constant K > 0 such that, for n > 2,
sup| P(W <x) — ®(x)]| < K{n_1 Yla(i, B) +n % ¥ |b(i,j,k,l)|3},
x ik

i,J, k1

where ® is the standard normal distribution function.

Now, consider the asymptotic normality of the DIPS

D= Yi(i,j, (i), ().

For given (£(i, j, k,1)),i, ], k,l €N, let
CF( 0k, 1) = L0 k1) = 186G 7, k) + £(0, 50, 1)
(i, k) + (0 k)]
+[¢Gi, g, ) +¢(i, k) +2(i,,,1)
+0(C g k) + Lo, ) + L R D]
—[{(i,',',') + §(',j,‘,‘) + {(',',k,') + {(',',',l)]

+§(.,.,.’.)_
Then
C*(ig, k) =85k, 1) =07 (0, k1) = 07(, 0, k1) =0
and
D= Yo (i, m(i), 7()) + n L Ll w(i). ")
Fn L (o m ()~ n%C )

= X0 (g m (i), m () + Lali, w(i)

= ng*(i,j,w(i),w(j)) + Za*(i,ﬂ'(i)) + na(-,-),
where

a(i, k) =¢*(i,i,k, k) +nl(i, ,k,") +nl(-,i, -, k) —ni(,",,")
and
a*(i,k) =a(i,k) —a(i,) —a(-, k) +a(-,-).
Note that a*(i, ) = a*(-, k) = 0. Defining and assuming that

(2.4) o= z}ea*z(i,k)/(n—l)>0,
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we have
D — na(-,") 1 ' , n o . .
- T Z ;a*(z,w(z)) +nt Z";é’*(l,],ﬁ(l),w(])).

g

Thus, we can apply Theorem 1 to obtain the following result.

THEOREM 2. There is an absolute constant K > 0 such that, for n > 2,
D — na(-,-
p 2t

g

sup
x

Sx) - ®(x)

s S Tleeml s X kP,

o ik i, k.1
provided condition (2.4) is satisfied.

3. Applications. In this section the applications of Theorem 2 are
demonstrated by three examples. In addition to those well-known testing
statistics stated below, Theorem 2 reveals the potential for creating new
nonparametric testing statistics, especially for multivariate observations, due
to its generality.

ExampLe 1 (Mann-Whitney-Wilcoxon statistic). Let x;,...,x, and
Y1s+++» Yn,» Ny T Ny =n, be independent univariate random samples from
unknown continuous distributions Fy and Fy, respectively. The Mann—
Whitney—Wilcoxon statistic for testing the hypothesis H,: Fy = Fy is defined
to be the total number of pairs (x;, y,) for which x; <y, Let #(i),i = 1,..., n,,
denote the rank of x; and w(n, +j), j =1,..., n,, denote that of y; in the
combined sample. Then the Mann—Whitney—Wilcoxon statistic can be ex-
pressed as =, ;{(i, j, w(i), w(j)), where

cCibd) - |

and 7 is uniformly distributed on %, under H,. Applying Theorem 2 with
straightforward calculations, we obtain

Ll ,m(1),7(J)) - SIOL
1/2
(%’%”2(” + 1))
The Mann—-Whitney—Wilcoxon statistic is one of the members of U-statis-
tics of degree two. The Berry—Esseen bounds and the Edgeworth expansions
for U-statistics have been extensively studied; see Bickel, Gétze and van Zwet

(1986) and the references therein. For a systematic presentation of the theory
of U-statistics, the reader is referred to Koroljuk and Borovskich (1994).

1, ifl<i<n,ny+1<j<nandl<k<l<n,
0, otherwise;

1/2
P 2

sup
X

<x| - ®(x)|<K(n;"+ny")

ExamMpPLE 2 (Daniels’ generalized correlation coefficient). Let (d(i, j)) and
(e(i,j)), i, j € N, be two real matrices. Daniels (1944) considers a generalized
correlation coefficient X, ;d(i, j)e(w(i), 7(j)), where the scores d(i,j) and
e(i, j) are skew-symmetric and 7 is uniformly distributed on ,. Applying
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Theorem 2, we have
P( Zi,jd(i’j)e(ﬂ-(i)’ m(J)) <

(oa

sup
x

x) —CID(x)‘
sé{nzyd(i,-)e(k,-)f

+ X (d@,j) —d(i,-) —d(-,)))

ikl

(3.1)

x(e(k, 1) — e(k,") - e(-,l))ls},

where o = 4n*(n — D7'L; ,d?(, - e (k, ).

Consider ordered pairs of univariate observations (x,, y,), i € N. Kendall’s
tau (letting d(i, j) = sign(x; — x,) and e(i, j) = sign(y; — y,)) and Spearman’s
rho (d(i, j) = rank(x;) — rank(x;) and e(i, j) = rank(y,) — rank(y,)) are two
statistics for testing the hypothesis H,: no correlation between X and Y.
Applying (3.1), we conclude that the null distribution of both (standardized)
statistics converges to ®(x) with the rate O(n~1/2).

ExamMpPLE 3 (Number of edges in the random intersection of two graphs).
Friedman and Rafsky (1983) extend the notion of association measures for
univariate observations, such as Kendall’s tau, to multivariate observations.
The lack of ordering in multivariate observations is conquered by construct-
ing interpoint-distance based graphs, such as the £ minimal spanning tree
and the % nearest-neighbor graph. Then, various measures for association or
others can be defined in terms of the number of edges in the intersection of
two graphs. The reader is referred to Friedman and Rafsky (1979, 1983) for
details.

Now, let G,(N, E,) and G,(N, E,) be two graphs consisting of the same set
of nodes, N ={1,...,n}, and sets of edges E;, and E,, respectively. The
number of edges in the random intersection of G, and G, is defined as
U' =Y, L e pyliniy, =iy e 1, Here, I, denotes the indicator of the set D.
Let d; denote the degree of node i in G, that is, the number of edges in E;
that are incident to i. Let p; denote the total number of edges in E;. Then
p1 = 32,;d;. Similarly, define the degree d; of node i in G, and the total
number p, of edges in E,. Applying Theorem 2, we obtain

P(F —4n"2(1+n"Yp,py Sx) ~ o)

o

sup
x

K
< ?{n“ Y |(d = 207 d,)(d — 207 ) [

1

* |(I((i,j>eE1) —-n'(d; +d;) + 2n72p1)

Jk
iJ,k,1

X (In,1ye my — 0~ N(dj, + dp) + 2n2p2)|3},
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where 0® = 4n"%%L, ,(d; — 2n"'p)*(d}, — 2n" p,)*. Note that if the degrees
d; and d) of each node grow linearly with n, then the convergence rate
reaches O(n~1/2).

4. Proof of Theorem 1. In order to create sufficientindependence needed
in the proof of Theorem 1, we first extend Bolthausen’s combinatorial method
as follows.

Define a random vector (I, J,, I,, J,, K,, L;, K,, L,) in N® in the follow-
ing way: first, let (I, J;), (I,, J,) and (K, L) be independent and identically
distributed with

0, ifi =j,
=3 =7) = 1
P(Il l’Jl .]) , 1fl7&_]
n(n —1)

Given these I, #J,, I, +#+J, and K, # L,, (K,, L,) and its conditional
distribution are defined according to the following rules:

1. If I, =1, and J, = J,, then K, =K, and L, = L,.

2. If I, = I, and J, # J,, then K, = K, and L, is uniformly distributed on
N -{K,,L}.

3. If I, # I, and J, = J,, then L, = L, and K, is uniformly distributed on
N —-{K,,L,}.

4. If I, # I, and J, # J,,then K, # K|, L, # L, K, # L,, and furthermore,
(a)if I, = J, and I, = J;, thenK, = L, and L, = K;; (b) if I; =, and
I, # J,, then K, = L, and L, is uniformly distributed on N — {K;, L,};
(0)if I, # J, and I, = J,, then L, = K, and K, is uniformly distributed
on N—-{K,,L}; (d if I, # J, and I, # J,, then (K,, L,) is uniformly
distributed on the set of all ordered pairs of distinct elements in N —
{K,, L,}.

Next, let 77; be a random permutation which is uniformly distributed on
&£, and independent of (I, J,, I,, J,, K;, L;, K,, L,). Define

I; = 7TII(K1)a J3 = 77{1(141)’ I, = WII(Kz), Jy = WII(Lz)a
Ky =m(1,), Ly = m(Jy), Ky = (L), Ly = m(Jy),

and denote I = (I;, I,, I, I,), and similarly for J, K and L. Thus, I, = I, &
I=1,J,=dyeody=d,],=Jdy,o I, =J;and I, =J, ® I; =J,. Let

M= {(;,_') eNS: i +j . m=1,..,4,
and satisfy the equivalence relations
by =1y iy =1y, J1 =Jo ©Js =Jss
iy =Jy = iy =jyand iy = j; < iy = jy}.

For each (i, j) € M, we fix once and for all permutations #,(i, j) and #,(i, j) of
N with the properties described in Table 1. ) )
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TABLE 1
Definition of the permutations ¢,(i, j) and t5(i, j)

i J1 iy Ja ig Js iy Ja N —{iy,esigs i Ja)
t1(i,j) iy Ja is Js SRUTITNN FH0 TERR Y,
tz(b._f) iy Ja € {iy, ig, 1, Jo) Remain fixed

Finally, define 7y = 7, °¢,(I,J) and 74 = 7 ° t5(I, J). Summarizing the
above definitions, we have Table 2 which shows how 7, 7, and 7; map I
and J.

LemMA 1. () The terms 1y, my, and w5 are independent of (I, J) and
have the same law.

(ii) The term m, is independent of (I, J,, K, L, I,, J,, K,, L,) and 7, is
independent of (I, J,, Ky, L,).

Proor. (i) For given 7, €%, and each (i, j) € M, by the definition of ,
and the independence of =, and (I,,,J,,,K,,, L, ,m = 1,2),

P(_I=é,¢_7=__]',7T1=7TO)
= P(Im = im’ Jm :jm’ Km = 77-0(im+2)’ Lm = 77-0(.].m-¢—2)? m = 1’2)
XP(my = m)
ZP((II’I2’K17K2) =1, (Jy,Jdy, Ly, Ly) =J)P(W1 = ).

Summation over all =, €%, gives that (I,J) and (I, I,, K;, K,),
(Jy, Jy, Ly, Ly)) have the same law. Hence, 7, is independent of (I, J). It
then implies that

P(I=i,d=j,my=my) =P(I=1i,d =j)P(m = mot7(i,]))
1
= —P(I=i,dJ=)).
The assertion for 7, follows. The assertion for 75 can be proved similarly.

(i1) Similarly to (i), by the independence of 7, and (I, J), the assertion for
7, follows. O

TABLE 2
Values of I and J under my, wy, mg

I, Jy I, Jy I3 Jg I, Jy N-{I,,..., I, dq,..., Jy)
7 Kg Lg K, L, K, L, K, L, eN-{K4,..., K, Lyq,..., Ly}
T3 K, L, K, L, e{K,,..., Ky, Ly,..., L,} Same as 7

Ty K, L, e{K,,K,, Ly, Ly} Same as 7y Same as 7
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Proor oF THEOREM 1. We use ¢ to denote a positive constant which
depends only on the formula where it appears. It may stand for different
values even in consecutive inequalities.

Let T = X,a(i, (1)) and S =X ;b(i, j, 7(i), w(j)). Using (2.1), (2.2) and
(2.3), we easily obtain

4.1 ET=0, ES=—"Yb(i,i,k,k),

(4.1) n(n—l)i% (i,i,k, k)

(4.2) ET2=1 and ES2<cn? Y b%(i,j,k,1).
i,7,k,1

Let ay =X, ,la(i,k)> and By =X, , 16G,j, k,DI>. Then, by (2.2) and
Jensen’s inequality,

(4.3) ay >cen'/?, n>=2,

and

(4.4) n 32N b%(i, 4,k 1) <ce(n B +n7?).
NN

For arbitrary but fixed n, > 8 and &, > 0, the statement of the theorem is
true if 2 <n <n, or @, + n 28z > gyn. Therefore, we assume that n > n,
and a, +n By < gyn, where n, and g, will be specified later on but
ny > 8.

For y > 0, let

M,(y) = {(A, B): A and B satisfy (2.1), (2.2), (2.3) and a, + n %8z < v}.

For large n, we may assume that y > 1 due to (4.3). For z,x € R, A > 0,
define

h, (x)=((1+(z—-x)/A) A1) VO and hy,o(x) =1_. 4(x).
Let
8(A,y,n) =sup{|Eh, ,(W) — ®(h, ,)|: 2 €R, (A, B) € M,(v)}

and 8(y, n) = 8(0, v, n). Here, ®(h, ,) is the standard normal expectation of
h, ,. Thus,

(4.5) 8(y,n) <8(A,y,n) + A2m) /2
and what we aim to prove is
(4.6) sup{nd(vy,n)/y:y=1,n>ny} < .

From now on, we write & instead of A, , for convenience. To use Stein’s
method, we let

f(x) = exp(x2/2) [ (h(t) — ®(h))exp(~¢*/2) dt,

which satisfies the differential equation f'(x) — xf(x) = h(x) — ®(h). Also,
as stated in Bolthausen (1984), page 381,

(4.7) [f(x) <1, |af(x)| <1, |f(x)|<2 forall x R
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and

4.8) |f'(x+y)—f(x) < Iyl(l + 2[x| + A‘I/;)II[Z’ZH](x + sy) ds]|.

To prove the theorem, we fix (A, B) € M,(y) and estimate
(4.9) |ER(W) — ®(h)| =|Ef' (W) — EWF(W)].
By the same truncation used in Bolthausen (1984), pages 381 and 382, we
may assume
(4.10) la(i,k)| <1 foralli,k €N.
Denote the set of these pairs (A, B) € M, (y) by M2(y).

To prove Theorem 1, we need only estimate |Ef'(W)— ETf(W)| and
|En~1Sf(W)|, which will be completed in Lemmas 2 and 3. However, in order
to show the utility of the independence created in Lemma 1, parts of the proof

of Lemma 2 are contained in the proof of Theorem 1. To this end, let =,
m = 1,2, 3, be defined as in Lemma 1 and define
W, =T, +n'S, =Ya(i,m, (i) +n 'Y 0(i,j,m (), m(]))
i ij
and
Afrm = Tm+1 - Tm'
Then AT, € o(1,J, K, L) and AT, € o(1,J,, 15, J,, K;, L, K,, L,), where
0 (X) denotes the o-field generated by X. Also, define

§*= Y b(i,J, m(i), m(J)),

which plays a vital bridge role in our derivations.

The independence of 7; and I; [Lemma 1()] and 74(I;) = K, imply that
(4.11) nEa(l,, K,)f(W;) = nE{E[a(II, 773([1))f(W3)|773]} = ET;f(W;).
We claim that
(4.12) |nEa(I, Ky)(f(Ws) = f(Ts + n~1S*))| < en™ty.

Using the mean-value theorem, |f'(x)| < 2 of (4.7) and (2.2), we have
|nEa(1,, K,)(f(Ws) — f(Ts + n"'S*))|

<2El|a(I, K,)(S; — 8%)|
(4.13) < 2(Ea2(11, K\)E(S; - S*)z)l/z

<onV2(E(S, - §)3)"

From Table 2, we see that S; — S* can be expressed as a sum of terms of
the forms Y;.; b(1,, j, m3(L,), m3(j)), X,.; b(, J,,, m3(i), m4(J,)) and
—b(1,,, d,,, my(L,), m(J, Ny . ; ,, and the number of these terms is
bounded Here, by Lemma 1() and (2.3), the second moment of the first one is
<cen L, ;4,60 j, k, 1) and that of the third one is <cn 'Y, ;, 0%, J,

k,1). Thus, by (4.4), (4.12) can be proved.
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Since, also, |[nEa(I,, K)(f(Ty +n"'S)) — f(T; + n"1S*) <cn 'y, we
have

(4.14) |nEa(I,, K)(f(Ws) — f(Ts + n71S;))| < en”ly.
Similarly,
(4.15) |nEa(1,, K,)(f(W,) — f(Ty + n~18;))| < enty.

Since 7, and (I, K,) are independent [Lemma 1(ii)], and using (2.1), (4.14)
and (4.15), we obtain

nEa(I;, Ky)f(Ws)
= nEa(I,, K))(f(Ts + n='S;) — f(Ty + n7'S;)) + O(n"'y)

(416) = nEa(L,, K)) AT, [((f/(T, +n 'S, + tAT;) = f/(W,)) dt
0

+ nEa(I,K,) AT, f'(W,) + O(n"'vy)
=H,, +H,, +O(n"'y) say.
By Lemma 1Gi), (4.1) and (4.2),
H,, = n(Ea(l,, K;) AT, )(Ef'(W,))
= n(Ea(1,, K,)Ts)(Ef' (W,)) = Ef'(W,).

Now, combining (4.11), (4.16) and (4.17), it remains to estimate H,, and
In"'ES, f(W,)|. These include a series of inequalities on orders of magnitudes
and complicated conditional arguments, which will be presented in the proofs
of Lemmas 2 and 3. From those lemmas and (4.9),

(4.17)

|[ER(W) — ®(h)| < cnfly(l +(nA) 'y + A7t max 8(cyy,n — m)),
2<m<8
where c¢; is an absolute constant. By (4.5),
8(vy,n) < cgnfly(l +(nA) 'y + A7 max 8(cyy,n — m)) +A(2m)V?
2<m<8
for some absolute constant c, > 0. Taking A = 2¢,c,n ! v, we then have
8(y,n) <cen ly+ (201)_1 max 6(c;y,n —m).
2<m<8

If n > 16, then

sup{nd(y,n)/y} <c+ ézinax sup{(n —m)&(y,n —m)/vy}.
y =m=S

This implies (4.6) and the theorem is proved. O

LEMMA 2. There exists an absolute constant ¢, such that

|Ef" (W) —ETSf(W3)|scnfly(1+(n)\)7ly+/\*l max 3(cly,n—m)).
2<m<8

Proor. We first claim that

(4,]_8) HY, =|nEa(11,If1) ATZ(]N(WI) —f’(Tl 4 n*ls*))|
<c(nVA) nly.
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Since | f"(x)| < 2/A[see Stein (1986), page 251, H;, < 2\ 'El|a(I,, K,)AT,(S,
— S*)l. Here, AT, is a sum of +a(u,v), ue{l,J,I,,J,} and v e
(K, L, K,,Ly}; and S; — S* is similar to S; — S* except replacing
by ;. Thus, we need to estimate n,, = Ela(u, v)a(l;, K\)¥; . ; b(1,,, j, m(I,),
771(.]))|, ”’7;/n = Ela(u, v)a(ll? Kl)zi#- me(i’ Jm7 Wl(i)7 Wl(Jm))| and nmm’ =
Ela(u,v)a(l;, Kb, J,,, 7(L,), 7(J,,NL; .5 i, for m, m =1,...,4 Let
&I,) = X, b, j, m(L,), m(j). Since Ela(u,v)I’ = Ela(l,, K,)°, by
Hoélder’s inequality,
3, 1/3 3\1/6 9 1/2

M = (E|a(u,v)| ) (Ela(II’Kl)l ) (E|a(11’K1)§ (Im)|)

~ (Bla(1, K)P)(Bla(1, K ex(1,)])”
By the independence of 7; and (I, K;), using (2.3), we obtain
E|a(Il’K1)§2(I1)| =E(|a(Il,K1)|E(§2(Il) |11’K1))
S(/'7172‘E|a(ll’lzl)| Z sz(Il’j’k’Z)
J#I k1
3\ 1/3 2/3
< ¢(nEla(I, K,)[) (n3 Y |8(i, k1)
i, k1

Therefore, n, < cn~3/%y. Also, from the independence of 7, and (I, K, I,,),

and £(Iy) = X, g b(w (K, 71 1(D), K, 1), similar arguments lead to 7,, <
en 3%y, m =2,3. All 7, can be estimated similarly and have the same
bound. Also, 7,,,, < cn”?y. Therefore, (4.18) is proved.

Similar to (4.18), we have

|nEa(I,, Ky) ATy(f'(Ty + n~1S; + ¢ AT,)
(4.19) — (T, + n1S* + t ATy))|
<c(n¥2) 'n-ly forallt € [0,1].
From (4.16), (4.18) and (4.19), we can write
(4.20) H,, = H,, + O((nV%) 'n"ly),
where
1
H,, = nEa(I,, K,) AT, [ (f/(T, + n~1S* + t AT,
(4'21) 3 (1 1) 2[)( (2 2)
—f'(Ty +n~'8%)) dt.
By (4.8), if we let V, = |a(I,, K,) AT,|(|AT,| + |AT,]), then
H,,| < nEVl(l +2|W, - n (8, — §%)|
(4.22)
1,1
+)r1f ] I, i (Ty + n7'S* + s AT, + st AT,) dsdt |.
0“0
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Note that AT, is a sum of +a(u,,vy), u, €{ly,...,1,,Jq,...,dJ,} and
v, €{K,,...,K,,Lq,...,L,}. Therefore,
(4.23) nEV, < cnE|a(I, K1)|3 <ecnly.

Also, AT, is a sum of ta(u,v), ue{l,I,,J,,J,), v e{K,,K,, L, Ly}
From the independence of W, and |a*(I;, K,) AT,|, (4.2) and a4 + n By <
gon, we have

1/2

nE|\V,W,| < n(E(IAT,| + |AT2|)2|ATZ|)1/2(E|a2(11, K,) AT, |W2)
1/2
< n(Ela(I,, K,)[)
1/2
x{[E|a2(11,K1) AT, ||| B(T, - n*lsl)Q]}

(4.24) )1/2

< cn(E|a(1, Ky)[’

1/2
X {E|a(Il,K1)|3(1 +nt Y bZ(i,j,k,Z))}
i,j,k,1

<cn oy (1 + n_l/zeo)l/z <cn ly.
From (4.10) and the derivation of (4.18),
nE|a(I,, K1) AT, |(IAT| + |AT2|)|n_1(S1 - S*)|
< cE|a(I;, K;) AT,(S; — S*)| <en™ty.

Now the only remaining part of H;, to be estimated is

(4.25)

(426) H,, =nA BV, [ ['I. (T, +n 'S* + s AT, + st AT, ) dsdt.
070

Note that the conditional distribution of 7, given I =i, J =j, K=k and
L =1 can be described as follows: 7, takes each ¢ €%, , which satisfies
(i) =k, ., and ¢(j,) =1, ., for m = 1,2, and ¢(i,,) =k, _, and ¢(j,,)
=1,_, for m = 3,4, with equal probability. For each 4-tuple B and given
i € N, define the I-row i of B,

B(i,N,N,N) = {b(i,j,k,1): (j, k,1) € N?}.

The Il-row j of B, B(N,j, N, N), the I-column % of B, B(N, N, k, N), and
the II-column ! of B, B(N, N, N, 1), are defined similarly. Let A denote the
matrix obtained from A by deleting the rows i,,...,i,,j;,...,Js, and the
columns k,,...,k,,1;,...,1,. Let B denote the 4-tuple obtained by deleting
the I-rows and the Il-rows iy,...,i4,J;,-.-,Js, and the I-columns and the
II-columns k,,..., k4, L1,...,1,. Then T} + n~1S*, conditionedon I =i, J = j,
K =k, L =, has the same law as i

)y a(i,m(i)) + X a(i,7(i)) +n=t X b(i,J,7(i),7())),

i€{ig, . igs s ja) i=1 i,j=1
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where m is the number of distinct elements of {i,,..., i, ji,.--,J,} and 7 is
uniformly distributed on %, _,,, 2 < m < 8. Let M*(y) be the set of all pairs
(A, B), which can be obtained from (A, B) M?(y) by deleting m rows and
m columns of A, and m I-rows, m II-rows, m I-columns and m II-columns of
B. Introducing

a(A,y,n) = sup{”P(T1 +n1S*e[z,z+ A] |1, d, I_{,L)”m:

4.27) z € R,(A,B) € MY(y)},

where [|g(")ll.. = sup|g(-)], we have

a(A,y,n) < sup

P(”imd(m(i))

i=1

(4.28) +n1_ni_7715(i,j,7(i),7-(j)) elz,z+A]

z€R,(4A,B) eM,;"(y),zsmss}.

Let 0'A-2 =(n-m - 1)’1222’1‘1(d(i, k) —a(i,-) —aC, k) +a(,-)? and
a*(i, k) = (a(i, k) — a(i, ) — aC, k) + a(, - ))/oz. Since (A, B) € M"(y),
la(i, -l 1aC-, )l and |a(, - )| are less than or equal to cn~!. Therefore,

1 1 -
7 T DOk S oy R k) + o(D),

where ¥ is the sum over the deleted elements of A. Furthermore, if ¢, is
taken small enough and n, taken sufficiently large, then since Ya?(i, k) <
cney’? when n >n, and a, +n ’Bz < gyn, we have |o? — 1/ < 1/2 and
hence O'A~2 > 1/2. Therefore, for sufficiently large n, and n > n,,

supP(n_Zm a(i, (1))

i=1

+n1 .ni_’/nlg(i,j,T(i),T(j))) e [z,z + )\]

(4.29) o
< supP( Y a*(i,7(i))

z i=1
1

n—m

+

”i’? b(i,j,7(i),7(j))/ os€[z,2+ 2)\]).

i,j=1
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62(iaj" ) = g(l’.], ) — (6(L’ ;0e0) + g(a]: ’)) + by,

by(i,j,k,") =b(i,j, k,") — (b(i,j,-,) +b(i, ,k,) +b(-, 4, k,"))
+(Z;(i,- o y0) + 5(',j,' ) + 5(’ ,k,-)) _50,

b*(i,j,k,1) =b(i,j, k1) — (b(i,j, k,") +b(i, ], 1)
+b(i, k1) +b(-,j, k1))

+(b(i,j,,) +b(i, k") +b(i,,-,1)

+b(-,j,k,") +b(-,j, 1) +b(-, k1))

—(b(i, ) + by ) B, k)

+b(-, e, )) + b,.
Straightforward calculations give

Zlb(z 1 7(1),7(J))
1 n-m
- L 650 7(8),7())
1 n—-m _
_=Zl {bs(isi,7(i),") + by(i,i,-,7(i))
(4.30) +05(i,+,7(0),7(D)) + by( i, 7(0),7(D)))
n—m-—1n_m

+———— 2 {by(i,-, (i), ") + by(-, i, ,7(0)))

n—m

n —

n—m

1 nom -
_— ; {0o(i, -, 7)) + by(-, 0, 7(i), )}

+(n—m—1)b, — -21 {by(i,i, ) + by(eyryis i)

=U,_, +A; +A, + Ay + A, say.

Let N;, N,, N, and N, be the sets of indices of those m I-rows, m Il-rows, m
I-columns and m II-columns, respectively, that were deleted while forming B

n—m
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from B. Also, let the index in B corresponding to the index i in B be denoted
as i'. We have

- 1

Blidiko) = T Bk = = B BT,
eN-N, EN,

- 1

b(i}"k") = Z b(ilyj,k,al),

(n —m)* jEN,,IEN,
etc. Hence, we get E(Z?;l’"l;3(i, i, 7(i), - ))? < cn_SEi’j’k’lbz(i, 7, k1),

E(CrombyG, -, 7(0), - )? < en Y, ; ,.,b%(, j, k, 1), and some other similar in-
equalities. These can be used to derive

P(|(Ag + Ay + Ay) oz | = n71/2) < enE{(Ag)" + (8,)" + (4,)%)

<cn ly.

(4.31)

Therefore, from (4.29), (4.30) and (4.31),

supP(f;rlnd(i,fr(i)) +n ! ‘ni‘;’nll;(i,j,r(i),fr(j)) €lz,z+ A]
supP(and*(i,T(i))

i=1

IA

(4.32) + (U

n

m FAF A+ Ay o € [z,z+2A])

supP(nEm a*(i, (1))

i=1

IA

b*(i,4,7(i), 7(Jj))

1
A+ —

Vn

Since g > 1/2, there exists an absolute constant ¢, > 1, such that

1

e[z,z+2 +cn .

n—m n—m

(433) ¥ @ (i, k) <ciay and Y |op'6*(i,j, k,1)| <y Bs.
i, k=1 i,j.k,l=1

From (4.28), (4.32), (4.33) and the definition of 8(:, n), we have

a(A,y,n) <2 max &(cyy,n —m)
(434) 2<m<8
+2(A+n V) (27) VP 4 enty.
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From (4.26), (4.23) and (4.34), and noticing the definition (4.27) of a(A, vy, n),
we obtain

(4.35) H <cn_17(1+ (nA) 'y + A" max 8(cl'y,n—m)).
2<m<8

4n =
Therefore, tracing back to (4.11), (4.16), (4.17), (4.20)-(4.26) and (4.35), we
complete the proof. O

LEMMA 3. There exists an absolute constant ¢, such that

|En*153f(W3)| < cnfly(l + (n/\)_1 y+A"! max 8(cyy,n — m))
2<m<8

ProOF. Since |f'| < 2, using (4.2) and (4.4), we have
(4.36) E|n"'Sy(f(Ws) — f(Ty))| <enty.

By the independence of mw; and (I, J;), (n — DEb(I,, J,, K, L)f(Ty) =
n 1ES;f(T5). Since |f| < 1, and with (4.1), (n — DEb(I,, J,, K,, L)f(T,)| <
cn YES,| < c(n” % + n~"8p). Therefore,

n\ES, f(Ts)
= (n — ) Eb(1,, Iy, Ky, L)(F(Ty) — f(Ty)) + O(n~'y)
— (n - 1)Eb(1,, J,, K,, L,) AT,
(4.37) X [(F(Ty + ATy + £AT,) — £/(T,)) dt
0

+(n = 1)Eb(1y, Jy, Ky, Ly) AT, f(Ty)
+0(n"'y)
=H;, + H;, + O(n"'vy) say.
Using Lemma 1 and (2.1)-(2.3), we can prove that
(4.38) |Hg,| < 2n|Eb(1;, J;, Ki, L) ATy | <cn™ty.
Denoting V, = |b(1;, J;, K;, L) AT,|(JAT,| + |AT,]) and using (4.8) and (4.37),

we have

|H,,| < nEV2(1 +2|T]

(4.39)
A [ L (T + S AT, + st ATY) dsdt).
070
Note that
1/3 1/3 1/3
(4.40) "EVe = (EIAT,P) (E(IAT,| + 1AT,))’) (Bl b( 1, Jy, Ky, L) )

<cn ly.
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By the independence of b(I;, J,, K;, L,;) AT, and T,, and Holder’s inequality,
using (4.40) and ET? = 1, we obtain

IA

1/3
nE(V,|T,|) )

n(E(IAT,| + |AT, )’
X [(El b(Il’ Jla K11 Ll) ATZ |3/2)(E|T1|3/2)]2/3

(4.41)

A

< n(E(AT, + ATy)) " (EIAT,?)

x(E|b(1,, Jy, Ky, L) ) (ET2)
< cnfly.

By similar but simpler derivations for estimating H,,, that is, letting b = 0,
we can get

nA BV, [T, (T, + s AT, + st AT,) dsd

(4.42) 00

< cn_ly(l +(nA) 'y +A! max 8(cyy,n — m))
2<m<8

Therefore, (4.39)-(4.42) imply that
|Hy,| < cnfly(l +(nA) 'y + A7t max 8(cyy,n — m)),
2<m<8
and hence, combining with (4.36)-(4.38), we complete the proof. O
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