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The realized error of an estimate is determined not only by the
efficiency of the estimator, but also by chance. For example, suppose that
we have observed a bivariate normal vector whose expectation is known to
be on a circle. Then, intuitively, the longer that vector happens to be, the
more accurately its angle is likely to be estimated. Yet this chance, though
its information is contained in the data, cannot be accounted for by the
variance of the estimate. One way to capture it is by the direct estimation
of the realized error. In this paper, we will demonstrate that the squared
error of the maximum likelihood estimate, to the extent to which it can be
estimated, can be most accurately estimated by the inverse of the ob-
served Fisher information. In relation to this optimality, we will also
study the properties of several other estimators, including the inverse of
the expected Fisher information, the sandwich estimators, the jackknife
and the bootstrap estimators. Unlike the observed Fisher information,
these estimators are not optimal.

1. Introduction. A problem lying at the foundations of statistical infer-
ence is that of assessing the accuracy of an estimate after an experiment has
been performed. The achieved accuracy is determined partly by the quality of
the estimator and partly, no doubt, by the ‘‘luck of the draw.’’ Although the
proportions in which these two factors affect the result may vary widely, it is
the presence of both that characterizes an error. Before the data is observed,
it is natural to make the assessment based upon the average behavior of the
error over all possible outcomes. After the data is observed, however, the
actual ‘‘postexperimental’’ error associated with that particular sample be-
comes more relevant. To put it in another way}for one may be troubled by
the time element the argument seems to involve}the averaged error is an
attribute of an estimator, the rule by which we draw inference whatever may
be the observations; whereas the postexperimental error is an attribute of the
estimate, the evaluation of the estimator specific to the sample. When we
compare the method of maximum likelihood with the method of moments, for
example, we are interested in how accurate an estimator is on average.
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However, when we attach an error to an estimate, we are concerned with how
accurate we were on that occasion.

That the assessment of accuracy should be specific to a sample is illus-
Ž .trated by an example of Cox 1958 , in which a hypothetical experiment is to

be carried out after the random selection of one of two measuring devices, one
of which is much more accurate than the other. If, by chance, the more
accurate device is chosen, then, after the experiment, there is no reason to
pretend to be unaware of the choice, and average the error over the two
‘‘predata’’ choices, which would result in reporting a much larger error than
actually occurred. In this case, it is clear that we should take into account
that we were lucky to have chosen the better device, and that this should be
done by using only that part of the sample space corresponding to our choice.
The question is: how can this be achieved in general?

This question has been studied by many researchers, via several different
approaches, which include the conditional approach, the Bayesian approach
and, more recently, frequentist estimation of loss. In this paper, we study the
optimal property of the inverse observed Fisher information as an estimator
of loss, and, in doing so, we provide a link to the conditional literature, where
observed information has been intensively investigated.

In the conditional approach, the error is assessed by its conditional expec-
Ž .tation given an appropriate ancillary statistic. Efron and Hinkley 1978

demonstrated that, for translation families and numerous other distributions,
the inverse of the observed Fisher information is superior to that of the
expected Fisher information in approximating the conditional expectation of
the squared error of the maximum likelihood estimate, given an ancillary
statistic. For translation families, they proved that the conditional variance
given the configuration statistics is better approximated by the inverse of the
observed Fisher information than by that of the expected Fisher information.
For nontranslation families, they present some striking numerical examples
showing that the conditional variance given an asymptotic ancillary is also
better approximated by the inverse of the observed Fisher information. The
asymptotic ancillary employed, which is now called the Efron]Hinkley ancil-
lary, is a standardized version of the observed information.

Ž . Ž .Amari 1983 and Skovgaard 1985 investigated, under different assump-
tions, approximate ancillaries in relation to the observed information via the
asymptotic expansions of the conditional densities of certain efficient esti-
mates. In the former, the distribution is assumed to belong to a curved
exponential family; the efficient estimate is a function of the sufficient
statistic; and the approximate ancillary is any statistic which, together with
the estimate, forms a minimal sufficient statistic. In the latter, the underly-
ing distribution need not belong to a curved exponential family; the efficient
estimate is taken to be the maximum likelihood estimate; and the approxi-
mate ancillary statistic is the Efron]Hinkley ancillary. Both studies showed
that the variance of the approximate conditional densities depend on the true
parameter u , and that, when evaluated at the maximum likelihood estimate
in each respective case, they coincide with the inverse of the observed Fisher
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information. However, Skovgaard also pointed out that although the addi-
tional error incurred by the u-estimation is ignorable for translation families,
it is not so in general. Thus, in theory, for nontranslation families, we do not
yet have conclusive knowledge as to the extent to which the observed
information is superior to the expected information in this sense, although
there are ample empirical grounds for such superiority. See also Barndorff-

Ž . wŽ . xNielsen 1980 , Barndorff-Nielsen and Cox 1994 , page 227 and McCullagh
wŽ . Ž . x1984 ; 1987 , Chapter 8 .

Conditioning on ancillary statistics is a difficult matter. In some cases
there is no ancillary statistic; in others there are competing ancillary statis-

w Ž .xtics Basu 1964 . Conditioning on different ancillaries, moreover, can lead to
w Ž .xdifferent inferences see Pedersen 1981 . Cox noted, speaking of these

w Ž .xdifficulties in a recent interview Reid 1994 :

How does the long run become relevant to a particular set
of data? Well, by being suitably conditioned. The argu-
ments for this seem to be absolutely overwhelming; but to
convert that idea into definitions, formulations, algorithms
and so forth, then it gets much more difficult. I think that’s
the point at which people find it hard going. I find it hard
going.

Whether using the conditional or the Bayesian approach, the purpose is
the same: to make the error assessment as true to the experiment that
actually occurred as possible. There is another approach, which seems to
avoid the difficulties with ancillaries, and which we deem more direct. This is
to estimate the error itself by a frequentist method. Let u be the parameter
and X be the observations. In the language of decision theory, we estimate u
by a decision rule d that maps X to an action space, which incurs a loss
Ž Ž ..L u , d X . The realized loss, however, is unknown, because it depends on

both the data and the true parameter. Even so it can be regarded as the
objective to be estimated. One way to do so is to consider the following ‘‘dual’’
decision problem. Let d be a decision rule that maps X to a new action space,

Ž Ž ..whose members are regarded as estimates of the loss L u , d X . Let
� Ž Ž .. Ž .4W L u , d X , d X be the measure of the loss caused by the estimation

Ž Ž .. Uof L u , d X . The new estimation problem is to find the loss estimator d
w � Žthat minimizes, perhaps under certain constraints, the risk E W L u ,u

Ž .. Ž .4x U Ž .d X , d X . If this is possible, then d X seems to be a natural candidate
for the assessment of the actual error. Notice that this approach makes no
reference to any ancillary statistic and does not resort to subjective probabili-

Ž Ž ..ties. Also, the target of loss estimation, L u , d X , depends on both parame-
ter and data, so our investigation falls outside the usual domains of point
estimation or prediction.

This last idea is more recent than the first two, but has undergone
Ž .vigorous advances. In an early, prescient paper, Sandved 1968 considered

the best unbiased estimator of a squared error loss. She showed that if there
was an appropriate ancillary to condition on, then the conditional variance,
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Ž .when independent of u , was the optimal estimator. Johnstone 1988 and Lu
Ž .and Berger 1989a investigated the estimation of the realized loss of three

estimators, the maximum likelihood estimator, the Stein-type estimator and
the generalized Bayes estimator, under a multivariate normal assumption.

Ž .Rukhin 1988a]c considered a joint decision problem, the solution of which
gives simultaneously an estimator and its error assessment. Hsieh and

Ž .Hwang 1993 studied the admissible estimation of the squared error under
the normal assumption and a frequentist validity constraint.

Although we do not consider confidence intervals here, for completeness we
note that, in the same spirit, one’s confidence in a confidence interval should
also be specific to a sample. For example, if we can identify certain subsets in
the sample space, conditioned upon which the coverage probability is smaller
Ž .or larger , for all parameter values, than the unconditional coverage proba-
bility, then it seems that the conditional coverage probability is a better

Ž . Ž . Ž .description of our confidence. See Buehler 1959 , Brown 1967 , Pierce 1973
Ž .and Robinson 1979a, b . One way to make the confidence specific to a sample,

Ž .as formulated in Berger 1985a, b , is to estimate the coverage itself, namely,
the utility function which takes value 1 if the interval covers the parameter

Ž . Ž .and 0 if not. Other important references are Kiefer 1977 , Brown 1978 , Lu
Ž . Ž . Ž .and Berger 1989b , Hwang and Brown 1991 and Goutis and Casella 1992 .

Ž .For a review of these developments, see Goutis and Casella 1995 .
In this paper we will study the observed Fisher information in the spirit of

the third approach, in relation to the assessment of accuracy of the maximum
ˆlikelihood estimate u . Whereas standard statistical arguments would have us

estimate the mean squared error
2ˆnE u y u ,Ž .u

Ž .and the arguments of Efron and Hinkley 1978 would have us estimate the
conditional squared error

2ˆnE u y u ¬ ancillary ,Ž .½ 5u

we instead make the target of our estimation the realized squared error
2ˆn u y u .Ž .

This corresponds to a fully frequentist optimization problem: find the loss
Ž .estimator T X which minimizes, among a general class of estimators, the

asymptotic version of the mean squared error criterion,
22U ˆ1 MSE s E n u y u y T X .Ž . Ž .Ž .½ 5u

Ž .This is the risk framework used by Johnstone 1988 . The Bayes estimators
ˆare simply the posterior squared errors of u . Within this framework, we will

demonstrate a rather general optimality property of the observed Fisher
Ž y3r2 .information. That is, ignoring O n , the solution to the above optimiza-

tion problem is the inverse of the observed Fisher information.
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Compared with the Bayes, conditional and direct frequentist approaches,
the value of the present approach consists, in the main, of the following

Ž .respects: i it does not rely on any ancillary statistic, exact or approximate,
and the result holds for general distributions, translation or nontranslation;
Ž . Ž .ii it does not require a prior distribution; iii it is based on asymptotic

Žexpansions, and thereby avoids any specific distributional assumptions in
contrast, the current literature on estimation of loss is focussed on finite-
sample computations, and therefore applies only to certain specified distribu-

. Ž .tions ; iv it generates helpful geometric interpretations. We show that the
realized squared error of the maximum likelihood estimator can be decom-
posed into three orthogonal parts: an unestimable part; a part that is
determined by the average error of the mle; and a part determined by luck.

The class of estimators among which the inverse of the observed informa-
tion will herein be established optimal is reasonably rich. It includes several

ˆof the most commonly used estimators of the asymptotic variance of u , such
as the inverse of the expected Fisher information, the sandwich estimators,
the jackknife and the bootstrap estimators. It is shown that, unlike the
inverse of the observed Fisher information, these estimators are not optimal
as the estimates of the squared error.

We now outline the logical flow in the derivation of the optimality result.
The strong conditions made here are tentative and will be refined. Let

Ž .X s X , . . . , X be independent and identically distributed random vari-1 n
Ž . Ž .ables, whose joint density is p X , where u is a real parameter. Let j u beu

the negated second derivative of the log likelihood based on a sample of n
ˆ ˆŽ .observations, divided by n, and let i u be its expectation. Let j and i,

respectively, be the valuations of these quantities at the maximum likelihood
˜ Ž . Ž .estimate u . Let b u and b u be the first two Bhattacharyya scoresi 2

2 2 ˆ� Ž . 4 Ž . � Ž . 4 Ž .­ p X r­u rp X and ­ p X r­u rp X , respectively. Let u be anu u u u
ˆ 2Ž .estimate of u , to be specified shortly. Let T be an estimate of n u y u , and

ˆ 2Ž . Ž .let D T be the difference n u y u y T. Let BB be the linear space spanned
² : Ž .by b and b , endowed with the inner product f , f s E f f , for f and1 2 1 2 u 1 2 1

5 Ž .5 2f in BB. In this notation, D T , for example, stands for the mean squared2
Ž .error in 1 . The optimality is established through the following steps.

ˆSTEP 1. Suppose for the moment that u is an unbiased estimator of u and
ˆ 2Ž .T is an unbiased estimator of n u y u . Then it can be verified that

² Ž . : ² Ž . : Ž .D T , b s 0 and D T , b s 2n. Thus the projection of D T onto BB,1 2
BB� Ž .4P D T say, does not depend on T, so we may call it B, and we have

2 2 25 5D T s D T y B q B .Ž . Ž .

5 5 2The term B is thus a lower bound to the risk attainable by any unbiased
T.

ˆSTEP 2. Now let u be the bias-corrected maximum likelihood estimate, so
y1ˆ'� Ž .4 Ž .that E n u y u s O n . Let T be any asymptotically unbiased estima-
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ˆ 2 y1r2Ž . Ž Ž .. Ž .tor of n u y u , in the sense that E D T s O n , and let UU be the
class of all such estimators. Then the decomposition in Step 1 holds approxi-
mately, to the extent that the same random variable B, which does not

BB� Ž .4 Ž y1 .depend on T, satisfies P D T s B q O n , and such that, for all T g UU,p

2 2 2 y3r25 5D T s D T y B q B q O n .Ž . Ž . Ž .
5 5 2We may conclude that B is a lower bound on the risk we can achieve and

5 Ž .5 Ž y3r2 .that, if we are to minimize D T , while ignoring O n , we only need to
5 Ž . 5 2 5 5 2 y1 Ž y1 .minimize D T y B . Note that B s 2 i q O n gives us a fixed

Ž .inherent risk of O 1 , which cannot be improved on.

STEP 3. Consider, within UU, the class of all asymptotically linear estima-
5 5 2tors LL . First, the lower bound B is achieved from within LL to the first

5 Ž .5 2 5 5 2 Ž y1 .order, in the sense that, for each T in LL , D T s B q O n . This
Ž y1 .means, roughly, that if we ignore O n , then the best that can be achieved

ˆ 2Ž .in estimating n u y u can be achieved using an asymptotically linear
estimator. Second, for any T in LL , we have the orthogonal decomposition

22 2y1 y1 y3r2ˆ ˆ5 5D T y B s D j y B q T y j q O n ,Ž . Ž .Ž .
y3r2 2 ŷ1Ž . 5 Ž . 5so that, ignoring O n , D T y B is minimized within LL by j .

2 ŷ1 25 5 5 Ž . 5Further, B q D j y B provides a second-order lower bound on risk.

˜STEP 4. Finally, let u be the ordinary maximum likelihood estimate of u .
˜ 2Ž .We will show that T is asymptotically unbiased for n u y u if and only if it

ˆ 2Ž .is so for n u y u . Thus the classes UU and LL retain the same meaning in the
ˆ 2Ž .context of the estimation of n u y u as they did in the previous steps.

˜ ˜ 2Ž . Ž .Furthermore, let D T be n u y u y T. Then
2 2 2 y3r2˜ 5 5D T s D T y B q B q C q O n ,Ž . Ž . Ž .

where C does not depend on T. The minimization problem, then, reduces to
ŷ1that in the previous steps, and therefore gives the same solution j .

Notice that we investigate first the squared error of the bias-corrected
maximum likelihood estimate, and then that of the maximum likelihood
estimate through its relation with the former, which, though not of logical
necessity, substantially simplifies the presentation.

We illustrate these results by considering a simple example and offering a
Ž . Ž .simulation study. Suppose that X , Y , . . . , X , Y are a random sample1 1 n n

Ž . Ž .from the joint distribution N cos u , 1 = N sin u , 1 . That is, we have a bivari-
ate independent normal distribution, whose mean is known to be on the unit
circle. It is the simplest possible example of a curved exponential family and

wŽ . x Ž .is used by Fisher 1974 , page 138 and by Efron and Hinkley 1978 in the
demonstration and justification of their theories. The Fisher information

ˆŽ .about u in a single pair is i u s 1. The observed information is j s R, where
2 2 2R s X q Y .
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We consider five estimators of asymptotic variance for the maximum
likelihood estimator. The first, OBS, is the inverse of the observed Fisher
information, Ry1. The second, EXP, is the inverse of the expected Fisher
information, evaluated at the maximum likelihood estimate. The third and
fourth, SAND1 and SAND2, are two types of sandwich estimators, which will
be defined in Section 6. The fifth, JACK, is the jackknife estimator, as defined

wŽ . xin Efron 1982 , page 13 . In a setting such as this, SAND2, JACK and the
w Ž .xbootstrap estimator are all asymptotically equivalent see, e.g., Hjort 1992 .

The simulation is based on the samples of sizes n s 11, 12, 13, 14, 15, 17, 19,
21, 13, 25, 30, 40, 50, each of which is replicated 100,000 times. The true value
of u is taken to be 0. The result is reported in Table 1.

In the table, each estimator occupies two columns, MSE and MSEU. In
Ž .columns MSE, we consider T X s OBS, . . . , JACK as the estimators of the

ˆ ˆ 2Ž . � Ž . Ž .4exact variance n var u , and the entries are the average of T x y n var u .
Ž .The EXP, which in this case is exactly i u , is the winner. This is to be

ˆ y1wŽ . x Ž . Ž .expected because, by McCullagh 1987 , page 209 , n var u s i u q
y1 ˆ y1r2Ž . Ž . Ž . Ž . Ž .O n ; whereas, as to be seen, n var u s T X q O n , if T X is onep

U Ž .of the other estimators. In columns MSE , we consider instead the T X ’s
ˆ 2Ž . � Ž .as the estimators of n u y u , and the entries are the average of T x y

ˆ 2 2Ž . 4n u y u . As predicted, there is a much larger error in the columns
MSEU, corresponding to an asymptotically unestimable fragment of magni-

5 5 2 y2tude B s 2 i s 2. Moreover, as predicted, the observed information does
better than the other four estimators. In fact, applying the results provided in
the Appendix, we computed the second-order expansion of MSEU of OBS,
EXP, SAND2 and JACK to be, respectively, 2 q 7rn, 2 q 8rn, 2 q 10rn and

TABLE 1
ˆŽ .The comparison of five estimators as the estimators of the variance, n var u , and as those of

2ˆŽ .the realized squared error, n u y u ; for the entries with}, the estimators do not perform
very stably in the simulation, and so the results are not presented

OBS EXP SAND1 SAND2 JACK
U U U U Un MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE

10 0.172 4.43 0.025 4.91 0.249 5.14 } } } }

11 0.153 3.78 0.019 4.14 0.218 4.34 } } } }

12 0.137 3.74 0.015 4.07 0.197 4.26 1.176 } } }

13 0.124 3.37 0.011 3.63 0.178 3.80 1.084 5.23 } }

14 0.113 3.09 0.009 3.30 0.161 3.45 0.983 4.77 } }

15 0.103 3.09 0.007 3.28 0.148 3.42 0.895 4.01 } }

17 0.087 2.64 0.005 2.76 0.129 2.88 0.723 3.32 } }

19 0.075 2.46 0.004 2.55 0.113 2.65 0.633 3.08 1.213 }

21 0.066 2.48 0.003 2.56 0.101 2.66 0.533 2.87 0.967 2.95
33 0.059 2.41 0.002 2.48 0.092 2.57 0.465 2.78 0.623 2.87
25 0.053 2.36 0.002 2.42 0.084 2.50 0.406 2.61 0.502 2.65
30 0.042 2.29 0.001 2.33 0.070 2.40 0.312 2.45 0.347 2.47
40 0.030 2.21 0.001 2.25 0.052 2.29 0.207 2.32 0.220 2.32
50 0.023 2.15 0.000 2.17 0.041 2.20 0.152 2.22 0.159 2.22
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2 q 10rn. Here, the ‘‘luck of the draw’’ is represented by the distance of
Ž .X, Y from the origin: intuitively, the larger this distance is, the more

ŷ1 ŷ1accurately we can estimate u , a fact that is captured by j but not by i .
For this problem, it can be verified that the MSE and MSEU of OBS, EXP and
JACK are independent of u . Hence the above comparisons among these
estimators also apply to other values of u .

We will proceed as follows. In Section 2 we describe the notation and
summarize a few well-known results that will be frequently used. Steps 1 and
2, somewhat combined, will be carried out in Section 3. In Section 4, we
derive the expansion of a number of random quantities involved in the mean

Ž .squared error 1 . Step 3 will then be carried out in Section 5. The perfor-
mance of the observed Fisher information is then compared, in Section 6,
with several other commonly used estimators. Section 7 will be devoted to
Step 4. Finally, in the Appendix, we will derive the expansions of the lower

ˆ 2Ž .bounds for the mean squared error of the estimators of n u y u and
˜ 2Ž .n u y u .

2. Preliminaries. We now introduce the notation and present several
known results that are important for our development. The delivery of the
ideas relies on the machinery of likelihood-related expansions, in conjunction
with the analyses of the magnitude of projections in L2. For these we refer to

Ž . Ž .the monographs by McCullagh 1987 , Barndorff-Nielsen and Cox 1994 and
Ž .Small and McLeish 1994 .

2.1. Standardized and orthogonalized likelihood scores. Let X , . . . , X1 n
be independent and identically distributed random variables with probability

Ž .density function p x . The assumption of identical distribution is notu 1
essential to our discussion and can be replaced by fairly mild assumptions in

w Ž . xthe spirit of the Lindeberg]Feller condition McCullagh 1987 , page 208 . In
order to focus on the main ideas, however, we shall present our results only

� r 4under the identical distribution assumption. Let u s u : r s 1, . . . , p be a
Ž .p-dimensional vector-valued parameter. Let l u , X be the log likelihood

n Ž . Ž .Ý log p X . Let U , U and so on be the derivatives of l u , X ; foras1 u a r r s
2 Ž . r s a aexample, U s ­ l u , X r­u ­u . Occasionally we use U , U and so on tor s r r s

denote the derivatives of the log likelihood for the single observation X . Leta

k denote the cumulants of the derivatives of the log likelihood corresponding
to a single observation; for example,

k s cum Ua , k s cum Ua , Ua and k s cum Ua , Ua .� 4 � 4 � 4r s r s r , s r s r , st r st

The standardized likelihood scores, denoted by indexed Z, are the derivatives
of log likelihood centered by its expectation and scaled by n1r2 ; for example,

Z s ny1r2U and Z s ny1r2 U y nk .Ž .r r r s r s r s
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For reasons that will soon become evident, it is easier first to orthogonalize Zr
and Z ; letr s

2 Y s Z and Y s Z y k k t , uZ ,Ž . r r r s r s r s , t u

Ž .so that cov Y , Y s 0 for r, s, t s 1, . . . , p.r st

2.2. Bias correction of maximum likelihood estimate. Ordinarily the max-
˜r y1Ž .imum likelihood estimate, here denoted by u , has a bias of order O n ;

˜r r -1 y3r2Ž . Ž . Ž .that is, E u y u s O n . The bias can be reduced to O n by adding
Ž y1r2 . wŽ .a correcting statistic of magnitude O n . From McCullagh 1987 , pagep

x209 ,
1r2 ˜r rE n u y uŽ .� 4
s yny1r2k r , sk t , u k q k r2 q O ny3r2Ž . Ž .s , t , u s , tu3Ž .
' yny1r2lr u q O ny3r2 .Ž . Ž .

ˆr ˜r y1r2 r ˜ ˆrŽ .So, if we let u s u q n l u , then u will have a bias of magnitude
y3r2 ˆŽ .O n . The estimate u will be called the bias-corrected maximum likeli-

hood estimate. Because of its frequent appearance in our discussion, we
r r rˆ' Ž .abbreviate the scaled error n u y u by « .

2.3. Bhattacharyya scores and Hilbert spaces. The Bhattacharyya scores
w Ž .xBhattacharyya 1946 play a fundamental role in a likelihood theory]based
inference partly because its intrinsic relation with the lower bound of the

Ž .mean squared error of an unbiased or approximately unbiased estimator. In
Ž .some problems, a sharp achievable lower bound can be established using

only the first-order Bhattacharyya scores, as is the case of the classical
Cramer]Rao inequality. In other problems, such as the present one, the´
second- or higher-order Bhattacharyya scores are needed in order to obtain a
sharp bound.

We shall only be concerned with the first and second Bhattacharyya scores,
which are defined by

­ p X r­u r ­ 2 p X r­u s ­u tŽ . Ž .u u
b ' and b ' , r , s, t s 1, . . . , p ,r stp X p XŽ . Ž .u u

Ž .where p X denotes the probability density of the joint observation X su

Ž .X , . . . , X . The Bhattacharyya scores and the likelihood scores have the1 n
following relation:

4 b s U s n1r2Z and b s U U q U s n Z Z y k q n1r2Z .Ž . Ž .r r r st s t st s t s , t st

� 4Let BB be the linear space spanned by b , b : r, s, t s 1, . . . , p . We viewr st
2Ž .BB as a subspace of L P , the class of all random variables square-integrableu

2Ž .with respect to the density p . We consider L P as a Hilbert space with itsu u

² : Ž .inner product defined by h , h s E h h . Evidently, BB is a closed sub-1 2 u 1 2
2Ž .space of L P . For convenience we introduce the orthogonalized version ofu

b , as follows:st

5 bU s b y r st , ub ,Ž . st st u
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where r st, u, to be specified shortly, are the unique coefficients satisfying
Ž U .cov b , b s 0, for all r, s, t s 1, . . . , p.r st

Ž y1 .There are a few notational oddities. In several instances we use O nr st
Ž y1 .to denote an array with each entry of the magnitude O n . When it leads to

Ž y1 .no ambiguity, we will simply use O n to denote such arrays. The symbol
Ž y1 .O n , however, will always denote the probabilistic order of magnitude. Top

facilitate the projection argument, we sometimes denote a joint moment by
Ž .an inner product or a norm. For example, E Y Y Y Y is sometimes writteni j k l

² :as Y , Y Y Y , The symbol ‘‘cum’’ denotes cumulant. Occasionally, when it isi j k l
necessary to emphasize that an expectation is taken under the probability

Ž .density p x , we write E . When the index u is omitted, the symbols E,u u

� 4‘‘cov’’ and ‘‘cum’’ always mean E , cov and cum . We use a, b, . . . , h ,u u u

� 4 � 4i, j, . . . , q or r, s, . . . , z to denote different components of the p-dimen-
sional parameter u , and we use a to denote n different observations.

3. Decomposition of mean squared error. The key idea underlying
the main result is that, for any asymptotically unbiased estimator T, we can

5 r s 5 2decompose the mean squared error « « y T into two approximately
orthogonal pieces, one of which is completely free of T. The consequence is
twofold. First, it results in the lower bounds of the mean squared error.

5 r s 5 2Second, it simplifies the minimization of « « y T because we can ignore
the part that is free of T. The decomposition is achieved by an approximate
projection onto the space spanned by the Bhattacharyya scores.

We begin with a definition of asymptotic unbiasedness. By the classical
definition, a random variable T is an unbiased estimator of another random

Ž . Ž .variable U if E T y U s 0 for all u . This implies that, if E T y U isu u

differentiable with respect to u , then all the derivatives with respect to u are
also zero. Along the same lines, we have the following definition of asymptotic
unbiasedness.

DEFINITION 1. A statistic T is said to be an asymptotically unbiased
estimator of « r« s if

E « r« s y T s O ny1r2 ,Ž . Ž .u

and if this expectation is twice differentiable so that

­ E « r« s y T r­u t s O ny1r2 , ­ 2E « r« s y T r­u t ­u u s O ny1r2Ž . Ž . Ž . Ž .u u

for r, s, t, u s 1, . . . , p. The set of all such estimators will be written as UU.

3.1. The inner products of Bhattacharyya scores and their orders of magni-
tude. In order to approximate the projection of « r« s y T onto BB, we need
the inner products between the vectors in BB and their orders of magnitude.
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Ž .Using 4 , these are computed to be

² :m ' b , b s nkr , s r s r , s

² :m ' b , b s n k q l ,Ž .r , st r st r , s , t r , st

² : 2m ' b , b s n k k q k kŽ .r s , tu r s tu r , t s , u r , u s , t

6Ž .

q n k q k q k q k .Ž .r , s , t , u r , s , tu t , u , r s r s , tu

st, u Ž .In this notation the projection coefficient r in definition 5 may be
v, u Ž . Ž . v, uwritten as m m , which, by 6 , equals k q k k . The innerst, v st, v s, t, v

products between the transformed functions bU arest
U ² U U :m ' b , br s , tu r s tu

s n2 k k q k kŽ .r , t s , u r , u s , t7Ž .
q n k q k q k q kŽ .r , s , t , u r , s , tu t , u , r s r s , tu

y n k q k k q k k v , w ,Ž . Ž .r s , v r , s , v tu , w t , u , w

Ž . Ž .as can be verified by 5 and 6 .

3.2. Generalized inverse and projection. A complication that we encounter
in deriving the projection of « r« s y T onto BB is that, when u is a vector-

� U 4valued parameter, the Bhattacharyya scores b , b : r, s, t s 1, . . . , p arer st
linearly dependent, because both bU and bU , which are the same vectors, arest t s
included in the set. In theory we can always exclude those bU for which s ) tst

� Uand carry out the projection on the set of vectors b , b , 1 F r F p, 1 F s Fr st
4t F p . Doing so, however, would destroy symmetry and make the presenta-

tion rather complex. We shall circumvent this complication by employing the
generalized inverse of a matrix.

In the next proposition, we summarize a few properties of the generalized
Ž . w Ž .x Ž .inverse that will be used. Part i is well known Kruskal 1975 ; parts ii

Ž . � 4and iii are tailored for our use. Let HH be a Hilbert space, and let A , . . . , A1 k
Ž .be a possibly linearly dependent set in HH. We are interested in the pro-

� 4jection of a vector in HH, A say, onto the subspace spanned by A . Let V0 j
�² : 4be the matrix of inner products A , A : i, j s 1, . . . , k , let M be thei j
�² : 4column matrix of inner products A , A : j s 1, . . . , k and let A be0 j
� 4the column matrix of vectors in HH, A : j s 1, . . . , k . A generalized inversej

Vy of V is any k = k matrix satisfying VVyV s V. The following properties
hold.

Ž . yPROPOSITION 1. i The generalized inverse V exists; the projection of A0
� 4 T yonto span A : j s 1, . . . , k may be written in the form M V A, indepen-j

dently of the choice of Vy.
Ž . Ž 2 . Ž . Ž .ii Suppose V s O n , V s W q O n and A s O 1 . Then0

5 T y T y 5 2 y28 M V A y M W A s O n ,Ž . Ž .
where Vy and Wy are generalized inverses of V and W, respectively. This is
true independently of the choices of generalized inverses.
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Ž . Ž 2 . Ž . Ž .iii Suppose V s O n , A s O 1 and V s W q O r , where r is either0 n n
n or 1. Let Vy be a generalized inverse of V, and let Wy be an approximate

y Ž .generalized inverse of W in the sense that WW W s W q O r . Thenn

5 T y 5 2 5 T y 5 2 29 M W A s M V A q O r rn .Ž . Ž .n

Ž . � 4PROOF. ii Write the projection of A onto span A as P A0 j 1 1
T T Ž .q ??? qP A ' P A. On the one hand, P A must be of order O 1 becausek k

5 T 5 5 5 Ž . 5 T 5 2 T Ž 2 .P A F A s O 1 . On the other hand P A s P V P s PO n P. This0
Ž y1 .implies that there is a choice of P each of whose entries is of order O n .

y1Ž .T y1 Ž . TThus we write P s n p , . . . , p s n p , so that p s O 1 . Then M s1 k
ny1p T V. Hence

5 T y T y 5 2 y2 T y y y y yM V A y M W A s n p V V y W VV V V y W Vp .Ž . Ž .
However, by the definition of generalized inverse,

V Vyy Wy V s V y W q O n Wy W q O n s V y W q O n s O n .� 4 � 4Ž . Ž . Ž . Ž . Ž .
Ž . y Ž y2 . Ž .This, together with p s O 1 and V s O n , implies 8 .

Ž . Ž .iii Similarly to the proof of part ii ,

5 T y 5 2 y2 T y y yM W A s n p VW VV VW Vp .
By assumption,

VWyV s W q O r Wy W q O r� 4 � 4Ž . Ž .n n

s WWyW q O r s W q O r s V q O r .Ž . Ž . Ž .n n n

5 T y 5 2 y2 T Ž 2 .Therefore M W A s n p Vp q O r rn . Now it is easy to verify thatn
5 T y 5 2 y2 TM V A can be written as n p Vp . I

Now suppose HH consists of a set of square-integrable random variables.
Ž .Then ii implies that

10 M T VyA s M T WyA q O ny1 ,Ž . Ž .p

as can be easily verified by the Chebyshev inequality.

3.3. Projection onto Bhattacharyya scores. We now calculate the exact
projection of « r« s y T onto BB, and then observe that the terms in the
projection depending on T can be ignored without incurring error large

r s Ž .enough to be concerned. From now on, we write « « y T as D T , or simplyr s
as D when it does not cause ambiguity. Let P BBD be the projection of Dr s r s r s

ˆt tŽ . Ž . Ž . Ž .onto BB. Set E D s c u and E u y u s d u , r, s, t s 1, . . . , p.u r s r s u t

LEMMA 1. If T is an asymptotically unbiased estimator of « r« s, then

P BBD s n d d q d d mU tu , v w bUŽ .r s r , t s , u r , u s , t uw
11Ž .

q O ny1r2 mt , ub q O ny1r2 mU tu , v w bU ,Ž . Ž .r st u rstu v w

U tu, v w Ž . Uwhere m is any generalized inverse of the array m .i j, k l
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PROOF. Differentiating the equations

12 E « r« s y T s c and ny1r2E « r s dŽ . Ž . Ž .r s r

with respect to u , we findt

E D b s c q n d d q d d andŽ . Ž . Ž .r s t r s r , t s s , t rt

ny1r2E « rb s d q d ,Ž .Ž .t r r , tt

13Ž .

Ž . Ž .where d equals 1 if r s s and 0 otherwise, and c and d denote ther , s r s t r u
Ž . t Ž . uderivatives ­c u r­u and ­ d u r­u , respectively. Differentiating ther s r
Ž .first equation in 13 with respect to u , we haveu

y n1r2d E « rb y n1r2d E « sb q E D bŽ .Ž . Ž .s , u t r , u t r s tu

s c q nd d q nd d .Ž . Ž . Ž .r s r , t s s , t rtu u u

14Ž .

Ž . Ž .Substituting the second equation in 13 into 14 results in

E D b s n d d q d d q cŽ . Ž . Ž .r s tu r , u s , t r , t s , u r s tu

q n d d q d d q d d q d d .� 4Ž . Ž . Ž . Ž .r , u s s , t r r , t s s , u rt u u t

15Ž .

Ž . Ž y3r2 . Ž . Ž y1r2 . Ž . Ž y1r2 .By assumption, d s O n , c s O n and c s O n .r t r s t r s tu
Ž . Ž .Hence the first equation in 13 and equation 15 imply that

² : y1r2D , b s O n andŽ .r s t r st
16Ž .

² : y1r2D b s n d d q d d q O n .Ž . Ž .r s , tu r , u s , t r , t s , u rstu

Ž . UFrom 16 and the definition of b it follows thattu

² U : ² tu , v :D , b s D , b y r br s tu r s tu v
17Ž .

s n d d q d d q O ny1r2 .Ž . Ž .r , u s , t r , t s , u rstu

Ž . Ž . Ž .Now 17 , the first equation in 16 and Proposition 1 i imply the assertion of
the lemma. I

Ž .A further analysis of 11 indicates that

18 P BBD s n d d q d d mU tu , v w bU q O ny1 ' B q O ny1 .Ž . Ž . Ž . Ž .r s r , t s , u r , u s , t v w p rs

Ž 1r2 . t, u Ž y1 .This is because b s U s O n and m s O n ; so the second term inu u p

Ž . Ž y1 . Ž . U tu, v w Ž y2 . Ž . U11 is of order O n . Also, by 7 , m s O n and, by 5 , b sp v w
Ž . Ž . Ž y3r2 .O n . So the first and the third terms are O 1 and O n , respectively.p p p

Ž .Another consequence of Lemma 1 is that the first term in 11 , B , isr s
Ž y3r2 .orthogonal to the remainders with an error of order O n , because the

Ž y1r2 . t, ulargest remainder term O n m b is exactly orthogonal to B . Thisr st u rs
fact is essential to the decomposition of D .r s

THEOREM 1. If T is an asymptotically unbiased estimator of « r« s, then

² : y3r219 D y B , B s O n .Ž . Ž .r s r s r s
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PROOF. By the property of projection,

² BB BB :D y P D , P D s 0r s r s r s

BB Ž BB .Set P D s B q P D y B and expand this equation. We obtainr s r s r s r s

² : ² BB :D y B , B q D , P D y Br s r s r s r s r s r s
20Ž .

² BB : 5 BB 5 2y 2 P D y B , B y P D y B s 0.r s r s r s r s r s

Ž . Ž y2 .By 18 , the last term on the left-hand side is O n . By Lemma 1 and the
discussions preceding the theorem,

² BB : y1r2 U tu , v w² U :P D y B , B s O n m b , BŽ .r s r s r s r stu v w rs

s O ny1r2 O ny2 O n s O ny3r2 .Ž . Ž . Ž . Ž .
Ž .Finally, by Lemma 1 and by 16 ,

² BB :D , P D y Br s r s r s

y1r2 t , u² : y1r2 U tu , v w² U :s O n m D , b q O n m DŽ . Ž .r st r s u rstu rs , b v w

s O ny1r2 O ny1 O ny1r2 q O ny1r2 O ny2 O n s O ny3r2 .Ž . Ž . Ž . Ž . Ž . Ž . Ž .
The theorem now follows. I

Ž y3r2 . 5 r sA consequence of Theorem 1 is that, ignoring O n , minimizing « «
5 2 5 r s 5 2y T amounts to minimizing « « y T y B , becauser s

5 r s 5 2 5 r s 5 2 5 5 2 y3r221 « « y T s « « y T y B q B q O n ,Ž . Ž .r s r s

where B does not depend on T.r s

4. Expansions.

PROPOSITION 2. The realized squared error « r« s has the following expan-
sion:

r , t s , u y1r2 s , u r , t w x v , wk k Y Y q n k k 2 kŽ .t u

1 x , y= Y Y Y y k k q k Y Y Y y k YŽ . Ž .� 4t v w u w y , t w , y , t u v x v , x u222Ž .

qO ny1 ,Ž .p

s, u r , tw x s, u r , t r , u s, twhere k k 2 denotes the symmetric array k k q k k .

1r2 ˜r rŽ .PROOF. Expressing the expansion of n u y u , as given in McCullagh
wŽ . x � 41987 , page 209 , in terms of Y , Y , and then subtracting from it the biasr st

1r2 ˆr rŽ . Ž .3 , we obtain the expansion of n u y u , as follows:
1r , s y1r2 r , s t , u r , u s , v t , wk Y q n k k Y Y y k k k k q k Y Y y kŽ . Ž .� 4s st u v w , u u , v , w s t s , t2

q O ny1 .Ž .p

Ž .From this we then carry out the expansion 22 . I
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ˆPROPOSITION 3. The inverse of the observed Fisher information, j sr , s
y1 ˜Ž .yn U u , has the following expansion:r s

r̂ , s r , s y1r2 r , t s , u v , w y123 j s k q n k k Y q k q k k Y q O n .� 4Ž . Ž . Ž .tu tuv tu , v w p

PROOF. By Taylor’s theorem,

ˆ y1 y1 ˜t t y1j s yn U u q n U u u y u q O nŽ . Ž . Ž .Ž .r , s r s r st p

s k y ny1r2 Z q k k t , uZ q O ny1 .Ž .Ž .r , s r s r st u p

24Ž .

Ž .Invert the above equation, and express Z ’s in terms of Y ’s, to obtain 23 . I

PROPOSITION 4. The random variable B has the following expansion:r s

B s k r , wk s , v Y Y y k q ny1r2 Y y k k x , y YŽ .� 4Ž .r s v w v , w v w v , w , x y

q O ny1 .Ž .p

25Ž .

PROOF. First observe that

w x i , k j , l w x w xk k 2 k k k k 2 s 2 k k 2 .Ž . Ž .Ž .r , i s , j k , t l , u r , t s , u

i, k j, l Ž 2 . USo k k r 2n is a generalized inverse of the leading term of m . Nowr s, tu
Ž . � U 4apply part ii of Proposition 1. To do so we identify span b : v, w s 1, . . . , pv w
� 4 � U tu, v w4 y � i, k j, l Ž 2 .4 y �² U :4with span A , u with V , k k r 2n with W and D , bj r s tu

Ž .with M. By 10 ,

1
U U tu , v w U U Ut , v u , w y1² : ² :D , b m b s D , b k k b q O n .Ž .r s tu v w rs tu v w p22n

Ž .This, together with 18 , implies that

1
U Ut , v u , w y1² :B s D , b k k b q O n .Ž .r s r s tu v w p22n

Ž . Ž .Substituting 5 and 17 into this expression, and after some computations,
Ž .we obtain 25 . I

Finally, we assemble Propositions 2]4 to obtain the expansion of « r« s y
r̂ , sj y B .r s

r s r̂ , sPROPOSITION 5. The random variable « « y j y B can be expanded asr s
y1r2Ž r , s r , s r , s r , s. Ž y1 .n I q J q K q L q O n , wherep

r , s s , u r , t w x v , wI s k k 2 k Y Y Y y Y ,Ž .Ž . t v w u tu

J r , s s k r , tk s , uk v , w yk y k q k Y ,Ž .tuv tu , v t , u , v w

1r , s s , u r , t y , ww xK s k k 2 k k q k Y ,Ž .Ž . w y , t w , y , t u2

26Ž .

1r , s s , u r , t v , w x , yw xL s y k k 2 k k k q k Y Y Y .Ž .Ž . w y , t w , y , t u v x2

r s r̂ , s y1r2 r , s r , s Ž .We denote « « y j y B by n D , so that D s O 1 .r s p
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5. Second-order optimality of the observed Fisher information.

5.1. Asymptotically linear estimators. We shall now demonstrate that, if
y3r2 r̂ , sŽ .we ignore an error of magnitude O n , then j is the optimal estimator

of « r« s among a wide class of estimators, which includes all those that are
asymptotically linear, as defined below.

DEFINITION 2. A statistic T is said to be an asymptotically linear estima-
tor of « r« s if it has the form

n
r , s y1 y127 T s k q n c u , X q O n ,Ž . Ž . Ž .Ý a p

as1

Ž .where c u , X is square integrable and unbiased in the sense thata
2Ž . Ž .E c u , X - ` and E c u , X s 0 for all u . The class of all asymptoticallyu i u i

linear estimators is written as LL .

For further discussions of the properties of an asymptotic linear estimator,
Ž . wŽ . xsee Hampel 1974 and Bickel, Klaasen, Ritov and Wellner 1993 , page 19 .

r̂ , sŽ .From expansion 25 we see that j belongs to LL , with

n
y1r2 r , t s , u v , wn c u , X s k k Y q k q k k Y .� 4Ž . Ž .Ý a tu tuv tu , v w

as1

Notice that, under regularity conditions, LL is contained in UU, the class of
asymptotically unbiased estimators.

Since we are to estimate « r« s, which is asymptotically nonlinear, from
within the asymptotically linear class LL , it is natural to ask: how much do
we lose by focussing on LL ? This will be addressed by the next theorem.

5 r s 5 2 5 5 2 Ž y1 .THEOREM 2. For each T in UU, « « y T G B q O n ; whereas,r s
5 r s 5 2 5 5 2 Ž y1 .for each T in LL , « « y T s B q O n .r s

Ž y1 .This means, roughly speaking, that, ignoring O n , the best that can be
achieved in estimating « r« s can be achieved within the class LL . We will say
that LL is first-order efficient.

Ž .PROOF. The first assertion follows immediately from decomposition 21 .
Ž . Ž .Now let T belong to LL . By expansions 22 and 25 and the definition of T in

LL ,
n

r s y1 y1r2 y1r2« « y T y B s n c u , X q O n s O n .Ž . Ž . Ž .Ýr s a p p
as1

Ž . Ž y1 .Hence the first term in decomposition 21 is O n , and the second asser-
tion follows. I
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5.2. Optimality of the observed Fisher information. A further decomposi-
Ž .tion of the right-hand side of 21 gives, for each T in UU,

r s 2 r s r̂ , s 2 r̂ , s 25 5 5 5 5 5« « y T s « « y j y B q T y jr s

r s r̂ , s r̂ , s² :q 2 « « y j y B , T y jr s28Ž .
5 5 2 y3r2q B q O n .Ž .r s

Ž . Ž y3r2 .We now show that for T ’s in LL the inner product term in 28 is O n so
r̂ , s5 5 Ž .that, since B does not depend on T, j minimizes 28 within LL if wer s

Ž y3r2 .ignore O n .

r̂ , sTHEOREM 3. The estimator j is second-order efficient in the sense that,
for each T in LL ,

r s r̂ , s 2 r s 2 y3r25 5 5 5« « y j F « « y T q O n .Ž .

r̂ , s r̂ , sŽ .PROOF. By 23 , j belongs to LL . Hence T and j can be written,
respectively, as

n
r , s y1 y1k q n c u , X q O n , i s 1, 2,Ž . Ž .Ý i a p

as1

r̂ , sfor some c and c satisfying Definition 2. Therefore T y j has the form1 2
y1r2 Ž y1 .n C q O n , wherep

n
y1r2C s n c u , X y c u , X .� 4Ž . Ž .Ý 1 a 2 a

as1

Notice that C is a centered and standardized sum of independent random
variables. Now since

r̂ , s y1r2 r , s y1 r , s y3r2² : ² :T y j , n D s n C , D q O n ,Ž .
it suffices to show that

² r , s : y1r229 D , C s O n .Ž . Ž .
r , s r , s r , s r , s r , s Ž y1r2 .Recall that D s I q J q K q L q O n . By definitionp

1r2 r , s y1r2 1r2 r̂ , s y1r2C s n T y j q O n s n D T y D j q O n .Ž . Ž . Ž . Ž .� 4Ž .p r s r s p

r̂ , s y1Ž . ² Ž . Ž . : Ž .From the first equality of 16 , D T y D j , Y s O n . It followsr s r s t
² : Ž y1r2 . r , s r , sthat C, Y s O n , and hence, by the definitions of J and K int

Ž . ² r , s: Ž y1r2 . ² r , s: Ž y1r2 .26 , we have that C, J s O n and C, K s O n . Further-
wŽ . xmore, by McCullagh 1987 , page 29 ,

² :Y Y Y , C s cum Y , Y , Y , C q k cum Y , CŽ . Ž .u v x u v x v , x u

q k cum Y , C q k cum Y , C ,Ž . Ž .u , x v u , v x

30Ž .

Ž y1 .where, on the right-hand side, the first term is O n and the rest are
Ž y1r2 . Ž . Ž y1r2 . ² r , s:O n because, for example, cum Y , C s O n . So C, L is ofu
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Ž y1r2 . ² r , s : Ž y1r2 .order O n . It remains to show that I , C s O n . By the defini-
r , s Ž .tion of I in 26 , it suffices to verify that

v , w² : ² : y1r231 k Y Y Y , C s Y , C q O n .Ž . Ž .t v w u tu

Ž . ² :As in 30 , the inner product Y Y Y , C can be represented in terms oft v w u
cumulants. However, since Y is orthogonal to Y and Y , only the followingt v u w
two terms are present:

² :Y Y Y , C s cum Y , Y , Y , C q k cum Y , CŽ . Ž .t v w v t v w u u , w t v

s k cum Y , C q O ny1 ,Ž . Ž .u , w t v

32Ž .

Ž .from which 31 follows. I

Ž .Theorem 3, combined with decomposition 28 , implies that
r s 2 2 r s r̂ , s 2 y3r25 5 5 5 5 5« « y T G B q « « y j y B q O n .Ž .r s r s

5 5 2 Ž .Here, B s O 1 is the first-order lower bound for the mean squaredr s
2 r s r̂ , s 2 y15 5 5 5 Ž . Ž .errors of estimators in UU, and B q « « y j y B s O 1 q O nr s r s

is the second-order lower bound for estimators in LL . The expansions of these
bounds will be given in the Appendix.

6. Comparison with several other estimators. In this section we
compare the performance of several other commonly used estimators with the

r̂ , soptimal estimator j . We shall focus on two types of estimators: the inverse
of expected Fisher information and a sandwich estimator. It is known that
the jackknife and the bootstrap estimators are asymptotically equivalent to

w Ž .xthe sandwich estimator Hjort 1992 . Hence the comparisons apply to these
estimators as well.

The comparison is based on the increment in mean squared error from the
second-order lower bound, when these alternative estimators are used. This
is the loss of accuracy incurred by not using the efficient estimator. As we
shall see these alternative estimators are asymptotically linear and first-order
efficient. However, none of them is second-order efficient.

As a consequence of Theorems 2 and 3, for any T in LL ,
r s 2 r̂ , s 2 y3r25 5 5 533 « « y T s second-order lower bound q T y j q O n .Ž . Ž .

r̂ , s 25 5Thus the increment in mean squared error is simply T y j .

6.1. Expected Fisher information. Recall that the expected Fisher infor-
mation is defined by the following relation:

ˆ34 y ni s U h , x p x dx .Ž . Ž . Ž .Hr , s r s h
hsu

r̂ , sPROPOSITION 6. The inverse of expected information, i , is not second-
order efficient in estimating the realized squared error « r« s. The increase in

r̂ , sthe mean squared error, compared with j , is
r̂ , s r̂ , s 2 y1 r , t s , u r , i s , j v , k y3r25 535 j y i s n k k k k k y k k k q O n .Ž . Ž .Ž .tu , i j tu , v i j , k
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The leading term on the right-hand side is the multivariate version of the
Ž .square statistical curvature introduced by Efron 1975 .

Ž . Ž .PROOF OF PROPOSITION 6. We abbreviate HU u , x p x dx as HU p, andr s u r s
Ž . Ž . twe denote the derivative of HU h, x p x dx with respect to h , evaluatedr s h

Ž .at u , as HU p . By the Taylor expansionr s t

ˆ y1 y3r2 1r2 ˜t t y1yi s n U p q n U p n u y u q O nŽ .Ž .� 4H Hr , s r s r s pž /
t

s k q ny1r2 k q k k t , uZ q O ny1 .Ž . Ž .r , s r st r s , t u p

Inverting the above expansion, we find

r̂ , s r , s y1r2 r , t s , u v , w y136 i s k q n k k k k q k Y q O n .Ž . Ž . Ž .tuv tu , v w p

r̂ , s r̂ , s5Thus i belongs to LL . So the increment in mean squared error is j y
r̂ , s 2 y1r2 r , t s, u y15 Ž . Ž . Ž .i . Subtracting 36 from 23 gives n k k Y q O n , whosetu p

Ž .squared norm equals the right-hand side of 35 . I

6.2. Sandwich estimators. The sandwich estimator with which we shall
be concerned has the form

n
r , s y1 r , t s , uˆ ˆ ˆ ˜ ˜37 k s n j j U u , X U u , X .Ž . Ž . Ž .Ý t a u a

as1

This is the SAND2 in the Introduction. Another definition of a sandwich
r̂ , s r̂ , s westimator, the SAND1, replaces j by i in the above expression see

Ž . xBarndorff-Nielsen and Cox 1994 , page 114 . These two estimators are not
ˆ r , sequivalent to the second order. To analyze k it is necessary to augment the

notational system described in Section 2. Let
n n

a a a aU s U U and U s U U .Ý Ýt , u t u tu , v tu v
as1 as1

The cumulants of these random variables can be expressed in terms of the
k ’s. Several of these cumulants, which will be used the subsequent analysis,
are listed below:

cum U s nk , cum U , U s nk ,Ž . Ž .t , u t , u t , u v t , u , v

cum U , U s nk ,Ž .tu v , w tu , v , w38Ž .
w xcum U , U s n k q k k 2 .Ž . Ž .t , u v , w t , u t , v u , w

As in Section 2, we use the Z ’s to denote the standardized U ’s, centered by
1r2 y1r2Ž .their expectations and scaled by n , for example, Z s n u y nk ,t, u t, u t, u

and we use Y to denote the projection of Z onto the orthogonal space oft, u t, u
Z ; for example,v

39 Y s Z y cum Z , Z k v , wZ s Z y k k v , wZ .Ž . Ž .t , u t , u t , u v w t , u t , u , v w
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ˆ r , sPROPOSITION 7. The sandwich estimator k is not efficient in estimating
r s r̂ , s« « , and the increase of mean squared error, compared with j , is

ˆ r , s r̂ , s 25 5k y j

s ny1 k r , tk r , ik s , uk s , j k q k q k� Ž tu , i j tu , i , j i j , t , u

w xqk q k k 2 .t , u , i , j t , i u , j40Ž .

y k q k k k , v k q kŽ . Ž . 4i , j , k i j , k t , u , v tu , v

q O ny3r2 .Ž .

NOTE. The SAND1 is also inefficient in estimating « r« s, but with a
different increment of the mean squared error. The analysis is similar to that
presented here and will be omitted.

n ˜ ˜� Ž . ŽPROOF OF PROPOSITION 7. We first analyze the factor Ý U u , X U u ,as1 t a u
ˆ.4X ' U . By Taylor expansion,a t, u

ˆ ˜v v41 U s U q U u y u q O 1 ,Ž . Ž . Ž .Ž .t , u t , u t , u pv

Ž . vwhere U is the derivative of U with respect to u , evaluated u . Noticet, u v t, u
that

U s U q U s n1r2 Z q Z q n k q k .Ž . Ž . Ž .t , u t v , u t , uv t v , u t , uv t v , u t , uvv

Ž .Equation 41 , rewritten in terms of Z ’s and rearranged according to the
powers of n, becomes

ˆ 1r2 v, wŽ . � Ž . 4 Ž .42 U s nk q n Z q k q k k Z q O 1 .r , s t, u t, u t v, u t, uv w p

r̂ , s ˆ Ž . Ž .Substituting the expansions of j and U , as given by 23 and 42 , intot, u
Ž .definition 37 , we find, after some computations, that

ˆ r , s r , s y1r2 r , t s , u v , wk s k q n k k Z q k k ZŽ .tu tuv w

q ny1r2k r , tk s , u Z q Z q k q k q k k v , wZ� 4Ž . Ž .tu t , u tuv t v , u t , uv w

q O ny1 .Ž .p

On the right-hand side of the last equality, the sum of the first two terms is
r̂ , s Žexactly j . Next, apply the Bartlett identity, k q k q k s y ktuv t v, u t, uv t, u, v

. Ž . Ž .q k . Hence, by 2 and 39 , the third term is the projection of Z q Ztu, v tu t, u
� 4onto the orthogonal space of Z : v s 1, . . . , p . In other words,v

ˆ r , s r̂ , s y1r2 r , t s , u y143 k s j q n k k Y q Y q O n .Ž . Ž . Ž .tu t , u p

ˆ r , sFrom this it follows that k also belongs to LL . The increment in mean
squared error is given by

22r , s r , s y1 r , t s , u y3r2ˆ ˆ5 5k y j s n k k Y q Y q O n .Ž . Ž .tu t , u
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r , t s, uŽ . r , t s, uŽ .Since k k Y q Y is the projection of k k Z q Z onto thetu t, u tu t, u
� 4orthogonal space of Z , the squared norm of the former is simply thew

squared norm of the latter less the squared norm of the projection of the
latter. In symbols,

2 2r , t s , u r , t s , uk k Y q Y s k k Z q ZŽ . Ž .tu t , u tu t , u

2r , t s , u v , wy k k k q k k Z .Ž .tu , v t , u , v w

Ž .Using the cumulants formulae in 38 , this is computed to be the right-hand
Ž .side of 40 . I

6.3. Interpretations of the comparisons. One way to sum up the compari-
r̂ , s r̂ , s ˆ r , sson of j against i and k , and, in fact, against any estimator in LL , is to

view the realized error « r« s as coming from three sources: one that is
unestimable; one that is determined by the quality of the estimator; and one
that is determined by luck. In symbols,

« r« s s E q E q E ,U Q L

where E represents error; U, unestimable; Q, quality; and L, luck. It will be
argued that, in LL , no estimator can estimate E ; every estimator doesU

r̂ , sequally well in estimating E ; and only j estimate E correctly. This hasQ L
to do with the innate structures of the realized error and the estimators in LL ,
to which we now turn our attention.

PROPOSITION 8. Any estimator T in LL can be written as

r̂ , s y1r2 y144 T s i q n C q O n ,Ž . Ž .p

Ž .where C s C u , X is unbiased and square integrable estimating function, in
Ž . 2Ž .the sense that, for all u , E C u , X s 0 and E C u , X - `. Moreover,u u

r̂ , s y1r2 y3r2² :45 i , n C s O n .Ž . Ž .

r̂ , s r , sPROOF. Since T and i belong to LL , they can be written as k q
y1 n Ž . Ž y1 .n Ý c u , X q O n for some c and c satisfying Definition 2.aq1 i a p 1 2

Ž . y1r2 n � Ž . Ž .4Thus 44 holds with C s n Ý c u , X y c u , X . By an argumentas1 1 a 2 a

Ž .similar to that in the proof of Theorem 3, immediately above expression 30 ,

² : y1r2C , Z s O n , u s 1, . . . , p ,Ž .u

Ž .which implies 45 . I

Now write « r« s as

r s r̂ , s r̂ , s r̂ , s r̂ , sB q « « y B y j q i q j y i .Ž . Ž .r s

The first term, B , is unestimable by an asymptotically unbiased estimator,r s
in the sense that its best asymptotically unbiased estimator is 0. The second

r s r̂ , sterm, « « y B y j , is unestimable by an asymptotically linear estimator in



OBSERVED FISHER INFORMATION 2193

the same sense. These facts are, in essence, contained in Theorems 1 and 3
and will not be verified. Hence the first two terms constitute the unestimable

r s r̂ , spart of « « . We view the third term, i , as determined by the quality of the
maximum likelihood estimator, since it estimates the ‘‘predata’’ assessment

Ž r s.of error, E « « , and since it does so in such a way as to depend on the datau

only through the maximum likelihood estimate itself. By Proposition 8, this
term is the same for every estimator in LL . The last term is, by Proposition 3,

r̂ , s r̂ , s r̂ , s r̂ , s y3r2² : Ž .orthogonal to i , to the extent that j y i , i s O n . Thus it is
associated with that part of the error that is estimable, but it is not accounted
for by the estimated variance of the maximum likelihood estimate. It assesses
the luck, good or bad, in the realized nature of the experiment. Notice that
this term lies in the same space as does ny1r2 C in Proposition 8, and that

y1r2 r̂ , s r̂ , s r̂ , sthe only estimator in LL whose n C agrees with j y i is j .

7. Optimal estimation of the squared error of ordinary maximum
likelihood estimate. So far we have been concerned with the optimal
estimation of « r« s, the squared error of the bias-corrected maximum likeli-

ˆ r̂ , shood estimate u . We now show that j is also optimal for estimating the
˜squared error of the ordinary maximum likelihood estimate u . We write

r r r˜' Ž .n u y u as « .˜
r s r s Ž y1r2 .To begin with, we note that « « y « « s O n . Therefore, by Defini-˜ ˜ p

tion 1, a random variable T is an asymptotically unbiased estimator of « r « s˜ ˜
if and only if it is an asymptotically unbiased estimator of « r« s. The following
decomposition is the key to the optimal estimation of the squared error of the
maximum likelihood estimate.

LEMMA 2. For any asymptotically unbiased estimator T of « r « s, we have˜ ˜
5 r s 5 2 5 r s 5 2« « y T s « « y T y B˜ ˜ r s

46Ž .
5 y1r2 r s , u y1 5 2 y1q B q n l Y q n R q O n ,Ž .r s u rs

� r s, u4where the array l , to be specified shortly, consists of constants of magni-
Ž . Ž . � r s, u4tude O 1 , and R s O 1 . Neither l nor R depends on T.r s p rs

PROOF. From the discussion in Section 4.1 it follows that
1r s r s y1r2 s , u r , t w , yw x« « s « « q n k k 2 k k q k YŽ .˜ ˜ Ž . w y , t w , y , t u2

y ny1R q O ny3r2Ž .r s p

' « r « s y ny1r2lr s , uY y ny1R q O ny3r2 ,Ž .˜ ˜ u rs p

Ž .for some R s O 1 . Hence we have the following decomposition:r s p

5 r s 5 2 5 r s 5 2 5 y1r2 r s , u y1 5 2« « y T s « « y T y B q B q n l Y q n R˜ ˜ r s r s u rs

² r s y1r2 y1r2 r s , u y1 :q 2 « « y T y B , B q n q n l Y q n Rr s r s u rs

q O ny3r2 .Ž .
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Ž y1 .We now show that the inner product term is O n . By Theorem 1, for any T
in UU,

² r s : y3r247 « « y T y B , B s O n .Ž . Ž .r s r s

By the Cauchy]Schwarz inequality,

² r s y1 : y148 « « y T y B , n R s O n .Ž . Ž .r s r s

� 4Since Y : u s 1, . . . , p is a subset of BB, by the property of projection,u
² : ² BB : Ž . BB Ž y1 .D , Y s P D , Y . However, by 18 , P D y B s O n , and sor s u rs u rs r s p
² BB : Ž y1 .P D y B , Y s O n . This impliesr s r s u

² r s y1r2 r s , u : y3r249 « « y T y B , n l Y s O n .Ž . Ž .r s u

Ž . Ž . Ž .The lemma now follows from 47 , 48 and 49 . I

r̂ , sWe now present the second-order optimality of j for the estimation of
« r « s.˜ ˜

Ž .THEOREM 4. i The class LL is first-order efficient in the sense that, if
T g LL and S g UU, then

5 r s 5 2 5 r s 5 2 y1« « y T F « « y S q O n .Ž .˜ ˜ ˜ ˜
r̂ , sŽ .ii Among the estimators in LL , j is second-order efficient. That is, for

every T g LL ,

r s r̂ , s 2 r s 2 y3r25 5 5 5« « y j F « « y T q O n .Ž .˜ ˜ ˜ ˜

r̂ , sŽ .PROOF. i This follows from Theorem 2, Lemma 2 and the fact that j
belongs to LL .

Ž . 5 r s 5 2ii Let T belong to LL . From the proof of Theorem 2, « « y T y B sr s
Ž y1 . ² r s y1 : Ž y3r2 .O n . Hence « « y T y B , n R is at most O n , which, to-r s r s

Ž . Ž .gether with 47 and 49 , implies that

5 r s 5 2 5 r s 5 2 5 y1r2 r s, u y1 5 2« « y T s « « y T y B q B q n l Y q n R˜ ˜ r s r s u rsŽ .50 y3r2Ž .qO n .

From the proof of Theorem 3, the first term on the right-hand side is
r̂ , sminimized by j . By definition, the second term does not depend on T. I

APPENDIX

Lower bounds for mean squared errors. We now highlight the
5 r s 5 2 5 r s 5 2derivations of the lower bounds of « « y T and « « y T .˜ ˜
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A.1. First-order lower bounds.

5 r s 5 2 5 r s 5 2PROPOSITION A1. The mean squared errors « « y T and « « y T˜ ˜
are both bounded below, for all T in UU, by

51 k r , sk r , s q k r , rk s , s q O ny1 .Ž . Ž .

5 r s 5 2PROOF. By Theorem 2, the first-order lower bound of « « y T is
5 5 2 5 r s 5 2 5B . By Lemma 2, the first-order lower bound of « « y T is B q˜ ˜r s r s

y1r2 r s, u y1 5 2n l Y q n R , which, since B is orthogonal to Y , is equal tou rs r s u
5 5 2 Ž y1 .B q O n . Hence the two mean squared errors in question are bothr s

5 5 2 Ž y1 . Ž . Žbounded below by B q O n . By part iii of Proposition 1 taker s
.r s n ,n

22 U Ut , v u , w 2 y15 5 ² :B s D , b k k r 2n b q O n .� 4Ž . Ž .r s r s tu v w

Ž . Ž . Ž .Substitute in 7 and 17 , expand and simplify, to obtain 51 . I

A.2. Second-order lower bounds.

PROPOSITION A2. In the notation of Lemma 2, for each T in LL ,

5 r s 5 2 5 r s 5 2 y1 ² : 5 r s , u 5 2« « y T s « « y T q n 2 B , R q l Y� 4˜ ˜ r s r s u
52Ž .

q O ny3r2 .Ž .

Ž .PROOF. Expanding the second term on the right-hand side of 50 , we find

5 5 2 y1r2² r s , u : y1² :B q 2n B , l Y q 2n B , Rr s r s u rs r s

y1 5 r s , u 5 2 y3r2q n l Y q O n .Ž .u

By definition, B is orthogonal to Y . Therefore the second term abover s u
Ž . Ž .vanishes, and 50 reduces to 52 . I

5 r s 5 2 5 5 2By Theorem 3, the second-order lower bound of « « y T is B qr s
y1 5 r , s 5 2 5 r s 5 2 5 5 2n D , and, by Proposition A2, that of « « y T is B q˜ ˜ r s
y1�5 r , s 5 2 ² : 5 r s, u 5 24n D q 2 B , R q l Y . We now expand the quantities in-r s r s u

volved in these bounds.
5 r s, u 5 2 r r s, s r s r , s s r s, r s s r , rFirst, l Y is computed to be l l k q l l k q l l k q l l k .u

5 5 2Second, we expand B . For this we need an approximation to ther s
U r , s t, u Ž 2 . Ž .generalized inverse of m more accurate than k k r 2n . Rewrite 7r s, tu

2�Ž w x.. y1 4as n k k 2 q n l , wherer , t s, u r s, tu

l s k q k q k q kr s , tu r , s , t , u r , s , tu t , u , r s r s , tu

y k q l k q k k v , w .Ž . Ž .r s , v r , s , v tu , w tu , w

Observe that l satisfies the symmetric property: l s l s lr s, tu r s, tu tu, r s tu, sr
s l .ut, sr
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Ž y2 . y2 ULEMMA A1. Ignoring O n , a generalized inverse of n m isr s, tu

1 1 1 1
r , t s , u r , i s , j t , k u , l r , t s , u rs , tu53 k k y k k l k k ' k k y l ,Ž . i j , k l2 4n 2 4n

in the sense that
1 1

U U Uy2 i , k j , l i j , k l y2 y2 y2n m k k y l n m s n m q O n .Ž .Ž .Ž .r s , i j tu , k l r s , tuž /2 4n

This can be verified by direct computation, using the symmetry of l .r s, tu
Note that li j, k l is not the inverse of l , and that li j, k l has symmetryr s, tu
properties similar to those of l .r s, tu

Ž . Ž . Ž .Now by 17 , Lemma A1, and Proposition 1 iii take r s 1 ,n
22 Uy3r2 y2 a , c b , d ab , cd5 5 w xB s n d d 2 q O n n k k r2 y l r 4n b� 4Ž . Ž .� 4r s r , a s , b rsab cd

q O ny2Ž .
2Ur , c s , d r s , cd y3r2w xs k k 2 r2 y l r 2n b rn q O nŽ . Ž . Ž .� 4Ž . cd

s k r , sk s , r q k r , rk s , s y ny1lr s , r s q O ny3r2 .Ž .
y1 5 r , s 5 2 r , s r , s r , s r , sNext, we expand n D . Write I s M q N , where M s

Ž s, u r , tw x. v, w r , s Ž s, u r , tw x. 5 r , s 5 2k k 2 k Y Y Y and N s y k k 2 Y . Decompose D ast v w u tu

² r , s r , s: ² r , s r , s: ² r , s r , s: ² r , s r , s: ² r , s r , s:D , J q D , K q D , N q J , M q K , M
² r , s r , s: ² r , s r , s: ² r , s r , s r , s:q L , N q 2 L , M q M , M q N
² r , s r , s: ² r , s r , s r , s:q J , L q K q L , L ' I q ??? I .1 10

² r , s : ² r , s : Ž y1r2 . ² :It can be verified that D , Y , D , Y s O n and Y Y Y , Y su tu t v w u i

Ž y1 . Ž y1r2 . Ž y1 .O n , which implies that I , I , I s O n and I , I , I s O n . Fur-1 2 3 4 5 6
wŽ . xthermore, by McCullagh 1987 , Chapter 3 ,

² : y1Y Y Y , Y Y Y s O n ,Ž .t v w u i j k

² : y1w xY Y Y , Y Y Y s k k k 15 q O n ,Ž .t u v i j k t , i u , j v , k

² : u , k y1w xY Y Y , Y Y Y s k y k k k k k k 3 q O n .Ž .Ž .Ž .t v w u i j k l t v , i j t v , u k , i j u , w u , w k , l

Ž y1 .By the first equality, I s O n . Applying the second and the third, we7
obtain

r , t s , uw x r , i s , j w x w xI s k k 2 k k 2 k k 2Ž . Ž . Ž .8 w , j u , l

=k v , wk k , l k y k k u , kk q O ny1 ,Ž .Ž .t v , i j t v , u k , i j

1 v , w x , y r , i s , j k , l r , t s , uw x w xI s y k k k k k k k 2 k k 3Ž .Ž .9 u , v x , l2

= yk y k q k k q k q O ny1 ,Ž . Ž . Ž .i jk i j , k i , j , k w y , t w , y , t

1 r , t s , u r , i s , j v , w x , y k , l m , nw x w xI s y k k 2 k k 2 k k k k k q kŽ .Ž . Ž .10 w y , t w , y , t4

w x w x y1= k q k k k k 3 y k k k 15 q O n ,Ž . Ž .� 4Ž .ln , i l , n , i x , v u , j k , m u , j v , k x , m

w xwhere the meaning of 2 is the same as that in Proposition 2.
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y1 ˆr² : ŽFinally, we expand n R , B . From the definition of u see Sectionr s r s
r r y1r2 t ˜ r r , t u, v. Ž . Ž . Ž .2.2 , « s « q n l u , where l u s k k k q k r2. By ex-˜ t, u, v t, uv

r ˜Ž .panding l u about u , we obtain

« r s « r q ny1r2lr q ny1 lr k t , uY q O ny3r2 ,Ž . Ž .˜ t u p

Ž r . rŽ . twhere l denotes the derivative ­l u r­u , which is computed to bet

1r r , u v , wl s k k k q k q k q kŽ . Žt ut , v , w u , t v , w u , v , w t u , t , v , w2

qk q k q k .ut , v w u , v w t u , v w , t

1 r , v u , w x , y r , u x , v y , wy k k k q k k k k q kŽ . Ž .u , x , y u , x y2

= k q k q k .Ž .vt , w w t , v v , t , w

It follows that
r s r s y1r2 r s w x y1 r s r t , u s w x« « s « « q n l « 2 q n l l q l k « Y 2Ž .� 4˜ ˜ ˜ ˜t u

q O ny3r2 ,Ž .p

54Ž .

w xin which the two 2 ’s represent the permutation of r and s. From McCullagh
wŽ . x1987 , page 209 ,

55 « r s k r , t Y q ny1r2 a r tuv Y Y q b r tuY Y q O ny1 ,Ž . Ž .˜ Ž .t tu v t u p

where
1r tuv r , t u , v r tu r , v t , w u , xa s k k and b s y k k k k q k .Ž .w x , v w , x , v2

Ž . Ž .Substituting 55 and 54 , we find
r s r s y1r2 r s , uw x y1 r stuv w x« « s « « q n l k 2 Y q n l a 2 Y YŽ .˜ ˜ Ž .u tu v

y1 r suv r t , u s , v w xq n l b q l k k 2 Y YŽ .� 4Ž .t u v
56Ž .

q ny1lrls q O ny3r2Ž .
' « r « s y ny1r2lr s , uY y ny1R q O ny3r2 .Ž .˜ ˜ u rs

Ž .By 56 and Proposition 4,

² : r , w s , x r stuv ² :w xB , R s yk k l a 2 Y Y y k , Y YŽ .r s r s w x w , x tu v

r , w s , v² r s:y k k Y Y y k , l lv w v , w

r , w s , x r suv r t , u s , v ² :w xy k k l b q l k k 2 Y Y y k , Y YŽ .� 4Ž .t w x w , x u v

q O ny1r2 .Ž .
It is easy to verify that, on the right-hand side, the second inner product is

Ž y1r2 .zero, and the first is O n . Hence only the third term is present, which is
computed to be

² : r sr s r t , r s , s s r r s s t , r r , sB , R s y l b q l k k y l b q l k k� 4 � 4Ž . Ž .t tr s r s

y lrb ssr q lr k t , sk s , r y lsb r sr q ls k t , sk r , r� 4 � 4Ž . Ž .t t

q O ny1r2 .Ž .
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