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ON GUARANTEED ESTIMATION OF THE MEAN
OF AN AUTOREGRESSIVE PROCESS1

By V. Konev and S. Pergamenshchikov

Tomsk University

This paper considers the problem of sequential point estimation of the
mean of a stable autoregressive process with unknown scale and autore-
gressive parameters. The construction of a sequential procedure makes use
of special stopping rules and some modifications of least-squares estimates.
The procedure enables estimating the mean with prescribed mean-square
accuracy uniformly in nuisance parameters. The uniform asymptotic nor-
mality and the asymptotic minimaxity of the sequential estimate are es-
tablished. The asymptotic formula for the mean sample size is obtained.

1. Introduction. Consider the autoregressive AR(p) process

�1:1� xn − µ = λ1�xn−1 − µ� + · · · + λp�xn−p − µ� + dεn;

where �εn� is a sequence of independent identically distributed (i.i.d.) ran-
dom variables with Eεn = 0 and Eε2

n = 1: The vector of initial values
ζ = �x0; : : : ; x−p+1�′ is assumed to be stochastically independent of the se-
quence �εn�; the prime denotes the transposition. The constant parameters
µ;λ1; : : : ; λp; d are unknown with the vector λ = �λ1; : : : ; λp�′ belonging to
the stability region 3 of the process (1.1); that is, all roots of the characteristic
equation

�1:2� zp − λ1z
p−1 − · · · − λp = 0

lie inside the unit circle. The problem is to estimate the parameter µ with
preassigned mean-square accuracy in the presence of nuisance parameters
λ1; : : : ; λp; d by observations of the process xn: The mean µ in the model (1.1)
is customarily estimated by the sample average

�1:3� µ̂n =
∑n
i=1 xi
n

:

Asymptotic properties of estimate (1.3) for model (1.1) and more general sta-
tionary processes have been studied in detail [see, e.g., Anderson (1984)]. This
estimate has several merits: it is unbiased; there are explicit equations for
its variance; it is asymptotically normal. One can note, however, that there
are some difficulties connected with using the estimate (1.3) if the parameters
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λ1; : : : ; λp; d are unknown. For example, in the case of an autoregression of
the first order, the variance of µ̂n is

�1:4� Eθ

(
µ̂n − µ

)2 = d
2∑n

l=1
∑n
k=1 λ

�l−k�

n2�1− λ2� ;

θ = �µ;λ;d�y Eθ denotes the average by the distribution of the process (1.1)
with given parameters µ;λ and d: When the parameter λ is unknown, one
should use estimate (1.3) very carefully because it is no longer guaranteed
in the sense that its mean-square accuracy is unknown. Furthermore, (1.4)
implies that

�1:5� sup
�λ�<1

Eθ

(
µ̂n − µ

)2 = ∞;

that is, for any n ≥ 1, one cannot guarantee the quality of estimate (1.3) of
parameter µ without additional a priori information about parameter λ:

There arises the following natural question: is it possible in principal to
estimate the mean of an autoregressive process AR(p) with preassigned mean-
square accuracy when parameters λ1; : : : ; λp and d are unknown? A similar
problem arose, probably for the first time, when estimating the mean of a
normal population with unknown variance. The solution of this problem has
been obtained by Stein (1945) who proposed the well-known two-stage sequen-
tial procedure. Since then estimation theory has been a fast-growing subject
and many fundamental results have been proved [we refer to Govindarajulu
(1987), Sen (1982), Siegmund (1985) and Woodroofe (1982)]. We cannot go into
detail here and would like only to stress that most of the available literature
considers the situation when observations are independent and there is very
little known for processes with dependent values. Though the results on se-
quential estimation for the i.i.d. observation scheme cannot be applied directly
to the above-stated problem, they are helpful in realizing that dependence of
the mean-square accuracy of estimates of the mean µ on nuisance parameters
λ1; : : : ; λp and d can be overcome only by employing sequential procedures.
This paper proposes one of the approaches to estimation of the parameter µ
in the process (1.1), which makes use of the results on point sequential esti-
mates of parameters λi obtained by Konev and Pergamenshchikov (1981). The
results on sequential estimation of parameters λi in autoregressive schemes
and further references can be founded in Borisov and Konev (1977), Lai and
Siegmund (1983), Sriram (1988), Konev and Lai (1995) and Dmitrienko and
Konev (1994). Different approaches to estimation of the mean of an autore-
gressive process, taking into account the cost of observation, were proposed
by Aras (1990), Fakhre-Zakeri and Lee (1993) and Sriram (1987).

The remainder of this paper is arranged as follows. In Section 2 we con-
sider fixed precision estimators of the parameter µ of model (1.1) with un-
known parameters λ1; : : : ; λp; d: The sequential plan of estimating µ is a pair
�T�H�; µ̃�H��; in which T�H� is a special stopping rule, µ̃�H� is a sequential
estimate of the parameter µ at the moment T�H� and H is a positive param-
eter. It is shown (Theorem 2.1) that this plan has the following properties: for
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any 0 < L <∞ and 0 < H <∞,

�1:6�
T�H� <∞; Pθ a.s.,

sup
θ∈2

Eθ

(
µ̃�H� − µ

)2 ≤ κ/H;

where 2 = �θ = �µ;λ;d�x �µ − µ0� ≤ q; λ ∈ 3; d 6= 0�, κ and µ0 are known
constants.

By the second inequality (1.6), parameter µ in model (1.1) can be estimated
with any preassigned mean-square accuracy by making use of sequential plan
�T�H�; µ̃�H�� for an appropriate value of the procedure parameter H: The
construction of sequential estimates in Section 2 is rather cumbersome but
there is one excuse for it. By (1.1), information about the parameter µ has to
be extracted from observations xn; satisfying the following equations:

�1:7�
xn =m+ λ1xn−1 + · · · + λpxn−p + dεn;
m = µ�1− λ1 − · · · − λp�:

From here one can see that information about the parameter µ in the sample
�x1; : : : ; xn� may be small if the sum λ1+ · · · +λp is close to 1. Therefore even
good estimates of parameters λ1; : : : ; λp do not ensure by themselves fixed
precision estimation of µ and specific stopping rules are needed.

In Section 3 the asymptotic behavior of the mean duration of the proposed
sequential plan has been studied under the assumption that the parameter λ
belongs to some compact set in the stability region 3 (Theorem 3.1). We refer
the reader to Shiryaev and Spokoiny (1993) for the other results on asymp-
totic properties of stopping moments associated with sequential estimation of
parameters in autoregression. In Section 4 uniform asymptotic normality of
the estimate µ̃�H� is shown (Theorem 4.1). In Section 5 we prove asymptotic
optimality in the minimax sense of the proposed estimate in a certain class of
sequential and nonsequential procedures (Theorem 5.1).

2. Fixed-accuracy estimate for parameter m. We consider model (1.1)
assuming that

�2:1� µ ∈ �µ0 − q;µ0 + q�;
where −∞ < µ0 <∞; q > 0; µ0 and q are known constants; the distribution
function of the noise εn has a bounded density f�x�; that is,

�2:2� f�x� ≤ f∗; x ∈ �−∞; ∞�:
The mean µ will be estimated by observations yn = xn−µ0, which according

to (1.7) satisfy the equations

yn =m+ λ1yn−1 + · · · + λpyn−p + dεn;(2.3)

m = �µ− µ0��1− 1′pλ�y(2.4)
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1p = �1; : : : ;1�′ is the vector of dimension p: The basic idea of estimation of
µ is to sample until enough information is gathered and to use least-squares
estimates of parametersm and λi, i = 1; : : : ; p: To realize it, we need a system
of guaranteed estimates of these parameters. At first we assume that there
exists a sequence ãk = �m̃k; λ̃

′
k�′, k = 1;2; : : : of estimates of the vector

a = �m;λ′�′ such that

�2:5� sup
−∞<µ<∞; λ∈3;d6=0

Eθ

∥∥ãk − a
∥∥2 ≤ ek;

where �ek� is a numerical sequence with

�2:6� ρ1 =
∑
k≥1

ek <∞y

�a�2 = a′a: Then (2.4) may be rewritten as

�2:7� m̃k = �µ− µ0�β̃k + 1̃k;
where

�2:8�
β̃k = 1− 1′pλ̃k;

1̃k = m̃k −m+ �µ− µ0�1′p
(
λ̃k − λ

)
:

Here 1̃k is an unobservable sequence (noise). Now we apply the sequential
least-squares method to estimate the parameter µ from (2.7). Define a stopping
rule

�2:9�
ν = ν�H� = inf

{
l ≥ 1x

l∑
k=1

β̃2
k ≥H

}
; 0 < H <∞;

(
inf�\� = +∞

)

and the sequential estimate for the parameter µ at the moment ν (on the set
where ν < +∞)

�2:10� µ̃ = µ̃�H� =
ν∑
k=1

β̃km̃k

/ ν∑
k=1

β̃2
k + µ0:

According to (2.9) the sample volume is measured in terms of accumulated
energy of “the useful signal” β̃k:

Proposition 2.1. Let a sequence of estimates ãk = �m̃k; λ̃
′
k�′; k = 1;2; : : :

of the vector a = �m;λ′�′ in (2.3) satisfy conditions (2.5), (2.6).
Then for any 0 < q < ∞; −∞ < µ0 < ∞ and 0 < H < ∞, the sequential

plan (2.9), (2.10) has the following properties:

�2:11�
ν�H� <∞; Pθ-a.s.; λ ∈ 3y

sup
�µ−µ0�≤q; λ∈3

Eθ

(
µ̃�H� − µ

)2 ≤ κ/H; κ = �1+ pq2�ρ1:
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Proof. Under conditions (2.5) and (2.6), the estimate ãk is strongly con-
sistent and for all µ ∈ �−∞;∞� and λ ∈ 3,

�2:12� lim
k→∞

β̃k = 1− λ1 − · · · − λp > 0 a.s.

Therefore the first inequality, (2.11), holds. From (2.9) and (2.10) by the
Cauchy–Bunyakovskii inequality, we obtain

Eθ

(
µ̃�H� − µ

)2 = Eθ

( ν∑
k=1

β̃k1̃k

/ ν∑
k=1

β̃2
k

)2

≤ Eθ

ν∑
k=1

1̃2
k/H ≤ κ/H; �µ− µ0� ≤ q; λ ∈ 3:

Hence Proposition 2.1. 2

To complete the construction of a sequential estimate for the parameter
µ, it remains to choose a sequence of estimates �ãk; k ≥ 1� satisfying con-
ditions (2.5), (2.6). Note that ordinary least-square estimates of parameters
m;λ1; : : : ; λp do not fit, because in the general case their mean-square accu-
racies depend on the values of these parameters. We will make a choice of
estimates ãk with the required properties by exploiting the method of guaran-
teed estimation of autoregressive parameters proposed by Konev and Perga-
menshchikov (1981) and its modification for the case of unknown variance
[Dmitrienko and Konev (1994)]. This method is realized in two steps.

Step 1. Let us introduce a system of stopping moments �τ�z�; z > 0� by

�2:13�

τ�z� = inf
{
l > r�z�x

l∑

j=r�z�+1

�Y�2 ≥ zR�z�
}
; z > 0;

Yj = �1; yj−1; : : : ; yj−p�′;

R�z� =
r�z�∑
j=1

y2
j/r�z� + 1; r�z� = 6+ �z/l�z��;

where �a� denotes the whole part of a number a: Here lx �0;∞� → �0;∞� is a
slowly increasing function in the sense that

�2:14� lim
z→∞

l�z� = ∞; lim
z→∞

l�z�/zγ = 0

for any γ > 0 and the function z/l�z� is also assumed to be increasing [for
example, l�z� = ln�z+ e�].

For each moment τ�z� we define the modified least-square estimate as

�2:15� a�z� =
(
m�z�
λ�z�

)
= G+�z�

( τ�z�−1∑

j=r�z�+1

Yjyj + α�z�Yτ�z�yτ�z�

)
;
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where

G�z� =
τ�z�−1∑

j=r�z�+1

YjY
′
j + α�z�Yτ�z�Y

′
τ�z�y

G+ denotes the inverse of the matrix G if detG > 0 and G+ = 0 otherwise;
α�z� is a weight multiplier which is determined from the equation

�2:16�
τ�z�−1∑

j=r�z�+1

�Yj�2 + α�z��Yτ�z��2 = zR�z�:

Note that 0 < α�z� ≤ 1:

Remark. The estimate (2.15) for the vector a = �m;λ′�′ is based on the
sample �Y1; : : : ;Yτ� of random size τ: One can see that the initial sample
�Y1; : : : ;Yr� of nonrandom size r�z� is used only to calculate the function
R�z� in (2.13). This function is due to the unknown variance of the noise in
model (1.1). [see Dmitrienko and Konev (1994)]. The estimate (2.15) coincides
with the corresponding LSE of the vector a based on the sample �Yr+1; : : : ;Yτ�
if α�z� = 1: The weight multiplier α�z� and the function l�z� are needed to
ensure some nice properties of the estimates.

The system of estimates (2.13), (2.15) is the basis for construction of the
sequential estimate for the vector a: We need also the following function:

�2:17� b�z� =
{
R−2�z�z−2�G−1�z��−2; if detG�z� > 0y
0; otherwise;

�A�2 = trAA′:

Step 2. Let �ck� be a nondecreasing sequence of positive constants such
that

�2:18� ρ2 =
∑
k≥1

1/ck <∞:

By putting z = ck in (2.13), (2.15) and (2.17), we obtain

�2:19� τk = τ�ck�; ak = a�ck�; bk = b�ck�; rk = r�ck�:
Define the sequential estimate of the vector a as a weighted average

�2:20� a∗�h� =
∑σ
k=1 bkak∑σ
k=1 bk

;

where σ determines the number of estimates ak used in the average. Define
σ as

�2:21� σ = σ�h� = inf
{
l ≥ 1x

l∑
k=1

bk ≥ h
}
; 0 < h <∞:
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The sample size which is required for calculating the estimate (2.20) is

�2:22� N�h� = τ�cσ�:
Further, we shall need the property of guaranteed accuracy of estimates (2.20),
(2.22) contained in the following assertion.

Proposition 2.2. Let process (1.1) be stable, that is, λ ∈ 3; and �εn� be a
sequence of i.i.d. random variables with Eεn = 0; Eε2

n = 1 and the density
f�x� satisfying (2.2).

Then for any h > 0

N�h� <∞; Pθ-a.s.;(2.23)

sup
−∞<µ<∞; d6=0; λ∈3

Eθ�a∗�h� − a�2 ≤ ρ3/h;(2.24)

where

�2:25�
ρ3 = π�f∗�2

∑
k≥1

gk/ck; gk =
r2
k

�0�rk/2��2/rk�rk − 2� ;

0�a� =
∫ ∞

0
ta−1 exp�−t�dt; a > 0:

Proof. It is well known [see, for example, Anderson (1984)] that for −∞ <
µ <∞ and λ ∈ 3, the limiting relationship

�2:26� lim
N→∞

∑N
i=1YiY

′
i

N
= F

holds. Here

�2:27�

F = F�θ� =




1
::: �µ− µ0�1′p

: : :
::: : : :

�µ− µ0�1p
::: �µ− µ0�21p1′p +F0



;

F0 = F0�θ� =
∑
k≥0

AkB�A′�k;

A =
[
λ1 : : : λp

Ip−1 y 0

]
; B =



d2 0 : : :0

: : : : : :

0 0 : : :0


y

Ip is a unit matrix of order py F is a positive definite matrix. From (2.17),
(2.19) and (2.26) we have

�2:28�

∑
i≥1

�Yi�2 = ∞; Pθ-a.s.;

lim
z→∞

b�z� = b0 = b0�θ� =
(
trF�F−1�

)−2
; Pθ-a.s.
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From here and (2.19), (2.21) and (2.22), we obtain (2.23). From (2.15), (2.19)
and (2.3) it follows that

�2:29�
�a∗ − a�2 ≤

( σ∑
k=1

bk�a�ck� − a�/h
)2

≤
σ∑
k=1

bk�a�ck� − a�2
/
h ≤ d2

∞∑
k=1

�M�ck��2/c2
kR

2�ck�;

where

�2:30� M�z� =
τ�z�−1∑

j=r�z�+1

Yjεj + α�z�Yτ�z�ετ�z�:

Taking into account (2.16) we have

Eθ

(
�M�z��2

∣∣Y1; : : : ;Yr�z�+1
)

≤ Eθ

( τ�z�−1∑

j=r�z�+1

�Yj�2 + α�z��Yτ�z��2
∣∣∣∣Y1; : : : ;Yr�z�+1

)
= zR�z�:

Combining this estimate with (2.28) we obtain

�2:31�
Eθ�a∗ − a�2 ≤

1
h

∑
k≥1

1
ck
Eθ

d2

R�ck�

≤ 1
h

∑
k≥1

rk
ck
Eθ

d2

∑rk
j=1 y

2
j

≤ π�f
∗�2∑k≥1 gk/ck

h
:

The last inequality is due to condition (2.2) and can be proved along the lines
of Proposition 2 in Dmitrienko and Konev (1994). Hence Proposition 2.2. 2

Remark. The sequence gk in (2.25) is convergent:

lim
k→∞

gk = 2e

and is bounded:

�2:32� max
k≥1

gk ≤ g0; g0 = 3 exp�1+ 1/4πe�:

Now we can define the sequence of estimates �ak� satisfying conditions
(2.5), (2.6). Let

�2:33� ãk =
(
m̃k; λ̃

′
k

)′ = a∗�hk� =
(
m∗�hk�;

(
λ∗�hk�

)′)′
;

where �hk� is a nondecreasing sequence of positive numbers such that

�2:34� ρ4 =
∑
k≥1

1/hk <∞:

The sequence of estimates (2.33) satisfies (2.5), (2.6) with

�2:35� ek = ρ3/hk:
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If one uses the estimate of the mean µ of the process (1.1), defined by (2.9),
(2.10) and (2.33), then the total duration of the estimation procedure is

�2:36� T�H� =N�hν�H�� = τ�cσ�H��; H > 0:

Theorem 2.1. Let process (1.1) be stable and �εn� be a sequence of i.i.d.
random variables with density f�x� satisfying (2.2) and Eεn = 0; Eε2

n = 1:
Then the sequential plan �T�H�; µ̃�H�� defined by (2.9), (2.10), (2.33) and
(2.36) possesses the properties: for any 0 < H <∞ and 0 < q <∞,

T�H� <∞; Pθ-a.s.; λ ∈ 3;(2.37)

sup
θ∈2

Eθ

(
µ̃�H� − µ

)2 ≤ κ1/H;(2.38)

where 2 = �θ = �µ;λ′; d�x �µ− µ0� ≤ q; λ ∈ 3; d 6= 0�; κ1 = �1+ pq2�ρ3ρ4:

The assertion of Theorem 2.1 follows directly from Propositions 2.1, 2.2.

3. The mean duration of the procedure. In this section we will study
asymptotic properties of the moment (2.36) as H→ ∞: In addition to condi-
tions imposed in Sections 1 and 2 on the distribution of the noise εn in (1.1),
we assume that

�3:1� Eε8
1 <∞; E�ζ�8 <∞:

Also the sequences �ck� and �hk� will be chosen as functions of the parameter
H: Let

�3:2�
ck = ck�H� =

{
H; k ≤ n0�H�y
c∗k; k > n0�H�y

hk = hk�H� = ck�H�y

where c∗k = k1+δ; 0 < δ <
√

2−1y n0�H� = �Hl�H�� and the function l�H� sat-
isfies (2.14). Such choice of these sequences is associated with the asymptotic
behavior of the basic least-squares estimates of the vector a and their se-
quential modifications (2.15). As a result, the two-step procedure (2.20), (2.22)
transforms, as will be shown below, into the sequential estimate (2.15) with
z =H and for large H,

a∗�H� ≈ a�H�; T�H� ≈ τ�H�:
The following theorem assesses the performance of the procedure duration
T�H�:

Theorem 3.1. Under the conditions of Theorem 2.1 and (3.1), the stopping
moment (2.36) satisfies the limiting relationship

�3:3� lim
H→∞

sup
θ∈K

Eθ

∣∣∣∣
T�H�
H
− d1

trF

∣∣∣∣ = 0;
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for any −∞ < µ0 <∞; and q > 0; where K is an arbitrary compact set in the
region

�3:4�
2 = �θ = �µ;λ′; d�x �µ− µ0� ≤ q; λ ∈ 3; d 6= 0�y
d1 = 1+ �F�22:

F is a positive definite matrix defined by (2.27); �F�ij is the �i; j�th element of
the matrix F:

Remark. By Theorem 3.1 for any fixed K ⊂ 2 and sufficiently large H,

EθT�H� ≈
d1H

trF
:

To prove Theorem 3.1 we need several auxiliary propositions. First we will
establish some properties of stopping moments σ�H� and ν�H�: The moment
σ�H�; defined in (2.21), depends on the function b�z�; satisfying (2.28). The
following lemma gives the rate of convergence of b�z� to its limit.

Lemma 3.1. Under the conditions of Theorem 3.1,

�3:5� lim sup
z→∞

sup
θ∈K

z2Eθ�b�z� − b0�θ��4 <∞:

Proof of Lemma 3.1 is given in the Appendix.

Proposition 3.1. Let the conditions of Theorem 3.1 hold. Then for suffi-
ciently large H and for all m ≥ n0�H�,

�3:6� sup
θ∈K

Pθ�σ�H� > m� ≤ Ll�H��n3
0�H�/Hm4 +m−2−δ�;

where 0 < L <∞; l�H� is defined in (2.14), δ is the same as in (3.2).

Proof. By definition of σ�H� and (2.28) we have

�3:7�
Pθ�σ�H� > m� ≤ Pθ

( m∑
k=1

b�ck� < H
)

≤ Pθ
( m∑
k=1

�b�ck� − b0�θ�� > mb∗ −H
)
;

where

b∗ = inf
θ∈K

b0�θ�:

Further note that for sufficiently large H and all m ≥ n0�H�,

mb∗/2−H ≥ 0:
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This inequality follows from (3.2) and (2.14). From here and (3.7), with the
help of the Chebyshev and Hölder inequalities, we obtain

Pθ�σ�H� > m� ≤ Pθ
( m∑
k=1

�b�ck� − b0�θ�� >
mb∗

2

)

≤ 16Eθ�
∑m
k=1 �b�ck� − b0�θ���4
�b∗m�4

≤ 16
�b∗m�4

( m∑
k=1

(
1
ck

)1/3)3 m∑
k=1

Eθ�
√
ck�b�ck� − b0�θ���4

ck
:

By applying Lemma 3.1 and taking into account the choice of the sequence ck
in (3.2) we come to (3.6). Hence Proposition 3.1. 2

In order to prove a similar property for the moment ν�H�, we need the
following result.

Lemma 3.2. Under the conditions of Theorem 3.1 the fourth moment of the
deviation of the estimate (2.20) satisfies the inequality

�3:8� sup
θ∈K

Eθ�a∗�h� − a�4 ≤ Ll2�H�/h2

for all h > 0 and sufficiently large H:

The proof of Lemma 3.2 is given in the Appendix.

Proposition 3.2. Under the conditions of Theorem 3.1 for sufficiently large
H and all m ≥ n0�H�,
�3:9� sup

θ∈K
Pθ�ν�H� > m� ≤ Ll3�H�

(
n3

0�H�/m4H+m−2−δ):

Proof. From the definition of the stopping moment ν�H� in (2.9),

Pθ�ν�H� > m� = Pθ
{ m∑
k=1

β̃2
k < H

}
= Pθ

{
mβ2 +

m∑
k=1

(
β̃2
k − β2) < H

}

= Pθ
{
mβ2 +

m∑
k=1

(
β̃k − β

)2 + 2β
m∑
k=1

(
β̃k − β

)
+ < H

}

≤ Pθ
{
mβ2 + 2β

m∑
k=1

(
β̃k − β

)
< H

}

≤ Pθ
{

2β
m∑
k=1

∣∣1′p
(
λ̃k − λ

)∣∣ > mβ∗ −H
}
;

where

β∗ = inf
λ∈K1

β2�λ�; K1 =
{
λ ∈ 3x θ = �θ; λ′; d� ∈K

}
y
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β�λ� and λ̃k are defined by (2.12) and (2.33). Note that in view of (2.8) and
(2.14) for sufficiently large H and all m ≥ n0�H�,

mβ∗ −H ≥mβ∗/2:
Therefore we have

Pθ�ν�H� > m� ≤ Pθ
{

2
√
p

m∑
k=1

�λ̃k − λ� > mβ∗/2
}

≤ Pθ
{

4
√
p

m∑
k=1

�a∗�hk� − a� > mβ∗
}
:

By applying the Chebyshev inequality, Lemma 3.1 and substituting (3.2) we
obtain (3.9). Hence Proposition 3.2. 2

Further, we need the following technical result.

Lemma 3.3. Let yn be defined by (2.3). Then for any n ≥ 1 and all θ ∈K ,

�3:10�
n∑
k=1

y2
k ≤ L

( n∑
k=1

ε2
k + n+ �ζ�2

)
;

where L is some constant which does not depend on θ:

Proof of Lemma 3.3 is given in the Appendix.

Proposition 3.3. Under the conditions of Theorem 3.1 for some γ > 0,

�3:11� lim sup
H→∞

sup
θ∈K

Eθ�T�H�/H��1+γ� <∞:

Proof. For notational simplicity we shall write v = v�H� instead of
cσ�hν�H���H�: By (2.13),

�3:12� τ�H� ≤HR�H� + r�H� + 1

and, hence, by (2.36),

T�H� ≤ vR�v� + r�v�:
Therefore it suffices to show that

�3:13� lim sup
H→∞

sup
θ∈K

Eθ�r�v�/H��1+γ� <∞;

�3:14� lim sup
H→∞

sup
θ∈K

Eθ�vR�v�/H��1+γ� <∞

for some γ > 0:
Since r�z� ≤ z+ 6, then the inequality (3.13) holds if

�3:15� lim sup
H→∞

sup
θ∈K

Eθ�v�H�/H��1+γ� <∞:
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The proof of this inequality is given in the Appendix. Consider (3.14). By
definition of R�v� in (2.13) and Lemma 3.2,

vR�v� ≤ L
(
v
r�v�∑
j=1

ε2
j/r�v� + v+ �ζ�2v/r�v�

)
≤ L

(
l�v�

r�v�∑
j=1

ε2
j + v+ �ζ�2v/r�v�

)
:

Therefore it suffices to verify that

�3:16� lim sup
H→∞

sup
θ∈K

Eθ

(
l�v�

r�v�∑
j=1

ε2
j/H

)�1+γ�
<∞;

�3:17� lim sup
H→∞

sup
θ∈K

Eθ

(
l�v��ζ�2/H

)�1+γ�
<∞:

We have

�3:18�

Eθ

(
l�v�

r�v�∑
j=1

ε2
j

)�1+γ�
= �1+ γ�

∫ ∞
0
tγPθ

{
l�v�

r�v�∑
j=1

ε2
j > t

}
dt = I1 + I2y

I1 = �1+ γ�
∫ ∞

0
tγPθ

{
l�v�

r�v�∑
j=1

ε2
j > t; v ≤ t/2

}
dty

I2 = �1+ γ�
∫ ∞

0
tγPθ�v > t/2�dt:

Taking into account (2.14), we obtain

Pθ

{
l�v�

r�v�∑
j=1

ε2
j > t; v ≤ t/2

}
≤ Pθ

{
l�t/2�

r�t/2�∑
j=1

ε2
j > t

}

= Pθ
{
r�t/2�l�t/2� + l�t/2�

r�t/2�∑
j=1

�ε2
j − 1� > t

}

≤ Pθ
{
t/2+ 6l�t/2� + l�t/2�

r�t/2�∑
j=1

�ε2
j − 1� > t

}

≤
24l4�t/2�Eθ�

∑r�t/2�
j=1 �ε2

j − 1��4
�t− 12l�t/2��4

≤ 24l4�t/2�r2�t/2�Eθ�ε2
1 − 1�4

�t− 12l�t/2��4

≤ 24l2�t/2��t+ 6l�t/2��2Eθ�ε2
1 − 1�4

�t− 12l�t/2��4 :

Let t0 > 0 be such that

t− 12l�t/2� ≥ t/2
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for all t ≥ t0: Then I1 can be estimated as

�3:19� I1 ≤ �1+ γ�
∫ t0

0
tγ dt+L

∫ ∞
t0

l2�t��t2+γ + tγl2�t��
t4

dt <∞

for 0 < γ < 1: Further we note that

�3:20� I2 = 21+γEθv
1+γ:

By making use of estimates (3.19), (3.20) in (3.18) and applying (3.15) we
obtain inequality (3.16). The next inequality (3.17) follows from conditions
(2.14) and (3.1). Therefore (3.14) holds. Hence Proposition 3.3. 2

This completes the proof of the auxiliary propositions.

Proof of Theorem 3.1. By Proposition 3.3, the family �T�H�/H; H > 0�
is uniformly integrable. Therefore it suffices to show that for any δ > 0,

lim
H→∞

sup
θ∈K

Pθ
{
�T�H�/H− d1/ trF� > δ

}
:

From the definition of T�H� in (2.36) and from (3.1) it follows that

Pθ
{
�T�H�/H− d1/ trF� > δ

}
≤ Pθ

{
�τ�H�/H− d1/ trF� > δ

}

+Pθ�σ�H� > n0�H�� +Pθ�ν�H� > n0�H��:
In view of Propositions 3.1 and 3.2, it remains to verify that

�3:21� lim
H→∞

sup
θ∈K

Pθ��τ�H�/H− d1/ trF� > δ� = 0:

This relationship is proved in the Appendix. Hence Theorem 3.1. 2

4. Uniform asymptotic normality of estimates (2.10), (2.33). The fol-
lowing is a key result for studying the asymptotic distribution of the sequential
estimates µ̃�H�:

Proposition 4.1 [Lai and Siegmund (1983)]. Let xn; εn; n = 0;1; : : : be
random variables adapted to the increasing sequence of σ-algebras Fn; n =
0;1; : : : : Let �Pθ; θ ∈ 2� be a family of probability measures such that under
every Pθ the following hold:

(i) ε1; ε2; : : : are i.i.d. with Eθε1 = 0; Eθε
2
1 = 1y

(ii) supθ∈2Eθ�ε2
1; �ε1� > a� → 0; as a→∞y

(iii) εn is independent of Fn−1 for each n ≥ 1y
(iv) Pθ�

∑
i≥1 x

2
i = ∞� = 1y

(v) supθ∈2Pθ�x2
n > a� → 0 as a→∞ for each n ≥ 0y

(vi) for each δ > 0

lim
m→∞

sup
θ∈2

Pθ

{
x2
n ≥ δ

n−1∑
i=1

x2
i for some n ≥m

}
= 0:
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For c > 0 let

Nc = inf
{
n ≥ 1x

n∑
i=1

x2
i−1 ≥ c

}
; inf�\� = ∞:

Then uniformly in θ ∈ 2 and −∞ < t <∞,

Pθ

{
c−1/2

Nc∑
i=1

xi−1εi ≤ t
}
→ 8�t� as c→∞;

where 8�t� is the standard normal distribution function.

First we shall prove asymptotic normality of the sequential least-squares
estimate (2.15) of the vector of unknown parameters a = �m;λ′�′.

Proposition 4.2. Let process (1.1) be stable, �εn� be i.i.d. with Eε1 = 0;
Eε2

1 = 1; Eε8
1 <∞ and (2.2) be satisfied. Then

�4:1� lim
H→∞

sup
θ∈K
�Pθ

{√
HV′�a�H� − a� ≤ t

}
−8�t/d2�V��� = 0;

where K is an arbitrary compact set in the region 2; V ∈ Rp+1y d2
2�V� =

d2V′F−1V trF/d1:

The proof of Proposition 4.2 is given in the Appendix.
Now we can show uniform asymptotic normality of the estimate (2.10),

(2.33).

Theorem 4.1. Let the conditions of Theorem 2.1 and (3.3) hold and the
sequences ck and hk be defined by (3.1). Then

�4:2� lim
H→∞

sup
θ∈2

sup
−∞<t<∞

∣∣∣Pθ
{√
EθT�H��µ̃�H�−µ�≤ t

}
−8��1−λ′1p�t/d�

∣∣∣=0y

K is an arbitrary compact set in 2:

Proof. By (3.1) the estimate µ̃; defined by (2.10) and (2.33), can be written
on the intersection of sets

�4:3� 0�H� = �σ�H� ≤ n0�H�� ∩ �ν�H� ≤ n0�H��
as follows:

µ̃�H� = m�H�
1− 1′pλ�H�

:

From here and (2.15) we have on 0 x

�4:4�
√
EθT�H��µ̃�H� − µ� =

√
EθT�H�

V′0�a�H� − a�
1− 1′pλ�H�

;

where V0 =
(
1; �µ− µ0�1′p

)′
:
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Propositions 3.1 and 3.2 [under m = n0�H�] imply

�4:5� lim
H→∞

sup
θ∈2

Pθ�0c�H�� = 0

for any compact set K ∈ 2: By applying Proposition 4.2 and Theorem 3.1
to (4.4) with V = V0 and noting that d2

2�V0� = d2, we obtain (4.2). Hence
Theorem 4.1. 2

5. Asymptotic minimaxity of the sequential procedure. In this sec-
tion we shall show that the estimate of the mean µ of the process (1.1) defined
by (2.10), (2.33) is optimal in a minimax sense in some class of sequential and
nonsequential estimation procedures. In addition to the conditions imposed
on the distribution of the noise in (1.1), (2.2) and (3.1), we assume that it has
a piecewise continuously differentiable density f�x� such that

�5:1� J�f� =
∫ ∞
∞

�f′�2
f�x� dx <∞:

Let P denote the class of all noise distributions satisfying these conditions.
First by making use of the sequential estimate �T�H�; µ̃�H�� defined by (2.9),
(2.10) and (2.33), we construct a sequential procedure µ̃: Let �Hn� be some
nondecreasing sequences of positive numbers Hn with limHn = +∞: Define
the sequential procedure as

�5:2� µ̃ = ��T�Hn�; µ̃�Hn��; n ≥ 1�:
The performance of this procedures depends both on the unknown parameter
µ and the nuisance parameters λ;d: For each number µ1 ∈ �µ0−q;µ0+q� we
introduce a special class of estimation procedures M : Let µ̂=��tn; µ̂n�; n≥1�
be an arbitrary estimation procedure, where tn is a Markovian moment with
respect to the process �xk�; and µ̃n is a Borelian function of the observations
x0; : : : ; xtn; n ≥ 1: Denote by M the class of all procedures µ̂ satisfying the
following condition: there exists an interval U�µ1� ⊂ �µ0 − q; µ0 + q� such
that

�5:3� Eθtn ≤ EθT�n�
for all θ ∈ �θ = �µ;λ′; d�x µ ∈ U�µ1�; 3; d 6= 0� under any noise distribution
from the class P : For each procedure µ̂ ∈M we define the risk as

�5:4� Rµ1
�µ̂� = sup

d6=0
sup
λ∈3

sup
f∈P

lim sup
δ→0

lim sup
n→∞

sup
�µ−µ1�<δ

Eθ�φ�n��µ̃n − µ��γ;

where 0 < γ ≤ 2y φ�n� = w�Eθ1
T�n��;

�5:5� w�x� = √x�1− 1′pλ�/d; θ1 = �µ1; λ
′; d�:

Further we shall need some definitions and results from the theory of local
asymptotic normality (LAN).

Let the parametric family of finite-dimensional distributions �Qµ;nx µ ∈
S; n ≥ 1� be given, where S is an open parametric set on the line �−∞;+∞�:
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We denote dQµ2; n
/dQµ1; n

the Radon–Nikodim derivative of the absolutely
continuous component of the measureQµ2;n

with respect to the measureQµ1; n
:

Definition. The family �Qµ;nx µ ∈ S; n ≥ 1� is said to have the property
LAN at the point µ1 ∈ S if for some deterministic function v�k� with lim v�k� =
+∞ and for each −∞ < u <∞,

ln
dQµ1+uv−1

n

dQµ1; n

= u1n −
u2

2
+ ψn�µ1; u�;

where 1n is asymptotically (as n → ∞) normal with parameters (0,1) with
respect to the distribution Qµ1; n

, that is,

lim
n→∞

Qµ1; n
�1n ≤ z� = 8�z�; −∞ < z <∞;

and ψn�µ1; n� converges to zero by distribution Qµ1; n
; that is, for δ > 0,

lim
n→∞

Qµ1; n
��ψ�µ1; u�� > δ� = 0:

Proposition 5.1. Let a family of distributions �Qµ1; n
� have the property

LAN at point µ1 ∈ S and ��tn; µ̂n�; n ≥ 1� be a sequential estimation procedure
for µ: Then

κ = lim inf
δ→0

lim inf
n→∞

sup
�µ−µ1�<δ

Eµ�v�n��µ̂n − µ��γ ≥ I�µ1�;(5.6)

I�µ1� = lim inf
δ→0

lim inf
n→∞

∣∣∣∣
v�n�

sup�µ−µ1�<δEµv�tn�

∣∣∣∣
γ

E�ξ�γy(5.7)

ξ is a Gaussian random variable with parameters (0,1).

This result follows directly from Theorem 1 of Efroimovich (1980).
Let p�x0; : : : ; xnyµ;λ;d� be the probability density of a vector �x0; : : : ; xn�

consisting of the values of the autoregressive process (1.1).

Proposition 5.2. The family of probability densities

�5:8�
{
p�x0; : : : ; xnyµ;λ;d� x µ ∈ �µ0 − q;µ0 + q�; n ≥ 1

}

has the LAN property for λ ∈ 3; d 6= 0 with v�n� =
√
J�f�w�n�:

[For proof we refer the reader to Beran (1976) and Akritas and Johnson
(1982).] Now we can state the basic result of this section.

Theorem 5.1. For each µ1 ∈ �µ0−q;µ0+q� the sequential procedure (5.2)
is optimal in the minimax sense in the class M ; that is, the risk (5.4) satisfies
the equality

�5:9� Rµ1
�µ̃� = inf

µ̂∈M
Rµ1
�µ̂�:
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Proof. First we derive the lower bound for the risk (5.4) of Proposition
5.1. for the family (5.8). By Theorem 3.1 we have

�5:10�
lim
n→∞

Eθ1
T�n�
n

= d1

trF
;

lim
δ→0

lim sup
n→∞

sup
�µ−µ1�<δ

∣∣∣∣
EθT�n�
Eθ1

T�n� − 1
∣∣∣∣ = 0:

By (5.4), (5.10) the risk Rµ1
�µ̂� and the left-hand side of (5.6) satisfy inequality

f ∈ P by the formula

�5:11� Rµ1
�µ̂� ≥ κ

(
d1

J�f� trF�θ1�

)γ/2
:

Further, in view of (5.2), (5.10) we obtain

�5:12�

I�µ1� ≥ lim inf
δ→0

lim inf
n→∞

( √
n

sup�µ−µ1�<δEθ

√
tn

)γ
E�ξ�γ

≥ E�ξ�γ lim inf
δ→0

lim inf
n→∞

inf
�µ−µ1�<δ

(
n

EθT�n�

)γ/2

= E�ξ�γ lim inf
δ→0

lim inf
n→∞

inf
�µ−µ1�<δ

(
Eθ1

T�n�
EθT�n�

n

Eθ1
T�n�

)γ/2

= E�ξ�γ
(

d1

trF�θ1�

)−γ/2
:

From here and (5.6), (5.11) it follows that

�5:13� Rµ1
�µ̂� ≥ sup

f∈P

E�ξ�γ
�J�f��γ/2 = E�ξ�

γ

for each µ̂ ∈ M : The last equality holds because J�f� ≥ 1 for all f ∈ P and
J�f� = 1 for the Gaussian density f ∈ P : It remains to verify that

�5:14� Rµ1
�µ̂� = E�ξ�γ; µ1 ∈ �µ0 − q;µ0 + q�:

For this we need the following assertion.

Lemma 5.1. Under the conditions of Theorem 5.1, for some r > 2,

lim sup
H→∞

sup
�µ−µ1�<δ

Eθ

∣∣√H�µ̃�H� − µ�
∣∣r <∞;

where µ1 ∈ �µ0 − q;µ0 + q�; 0 < δ < 1; λ ∈ 3:

The proof of Lemma 5.1 is given in the Appendix. By applying Lemma 5.1
and Theorem 4.1 to the risk (5.3) we obtain (5.14). Hence Theorem 5.1.
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APPENDIX

In the sequel we shall need the Burkholder inequality in the following form.

Lemma A.1 [Shiryaev (1984), Liptser and Shiryaev (1986)]. IfX=�Xn;Fn�
is a martingale and T is a Markovian moment, then for each p > 1 there
exists the universal constant Cp (independent of X and T) such that

E�XT�p ≤ CpE
( T∑
k=1

�Xk −Xk−1�2
)p/2

; X0 = 0:

A.1. Proof of Lemma 3.1. By (2.17)

�A:1�
Eθz

2�b�z� − b0�4 = z2Eθ�b�z� − b0�4χ�detG�z�>0�

+ z2b4
0Pθ�detG�z� = 0�;

where χA denotes the indicator of a set A: Since b�z� ≤ 1 and b0 ≤ 1; then on
the set �detG�z� > 0�,

�A:2� �b�z� − b0� ≤ 2
∣∣∣∣

1
zR�z��G−1�z�� −

1
trF�F−1�

∣∣∣∣ ≤ 2
∥∥∥∥
G�z�
zR�z� −

F

trF

∥∥∥∥:

Now we show that

�A:3� lim
z→∞

sup
θ∈2

z2Eθ

∥∥∥∥
G�z�
zR�z� −

F

trF

∥∥∥∥
4

<∞:

From the definition of G�z� in (2.15), it follows that

�A:4�

∥∥∥∥
G�z�
zR�z� −

1
trF

∥∥∥∥

=
∥∥∥∥
D�z�
zR�z� −

�1− α�z��Yτ�z�Y
′
τ�z�

zR�z� +F
(
τ�z� − r�z�
zR�z� − F

trF

)∥∥∥∥;

where

�A:5� D�z� =
τ�z�∑

k=r�z�+1

�YkY
′
k −F�:

By (2.13), (2.16) we have

�A:6�
∣∣∣∣
τ�z� − r�z�
zR�z� − F

trF

∣∣∣∣ ≤
√
p+ 1�D�z�� + �Yτ�z��2

zR�z� trF :

By (A.4) and (A.6),
∥∥∥∥
G�z�
zR�z� −

F

trF

∥∥∥∥ ≤
�
√
p+ 1+ 1��D�z�� + 2�Yτ�z��2

zR�z�
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and, hence, taking into account that R�z� ≥ 1,

�A:7�

∥∥∥∥
G�z�
zR�z� −

F

trF

∥∥∥∥
4

≤ 8
�
√
p+ 1+ 1�4�D�z��4 + 16�Yτ�z��8

�zR�z��4

≤ 8
�
√
p+ 1+ 1�4�D�z��4 + 16�Yτ�z��8

z4
:

Now we show that

�A:8� sup
θ∈K

Eθ�Yτ�z��8 ≤ L�1+ z�;

�A:9� sup
θ∈K

Eθ�D�z��4 ≤ L�1+ z�2:

Write (2.3) in vector form:

�A:10� Xn=�µ−µ0�1p+ ξn; ξn=Aξn−1+dηn; ξ0= ζ−�µ−µ0�1p;
whereXn = �yn; : : : ; yn−p+1�′; ηn = �εn;0; : : : ;0�′ and the matrixA is defined
in (2.27).

Since

�A:11� ξk = Akξ0 + d
k∑
j=1

Ak−jηj;

then there exists some constant L for the compact set K that for all θ ∈K ,

�A:12� �Yk� ≤ L�1+ �ξk−1��:
Therefore

�A:13� sup
k≥1

sup
θ∈K

Eθ�Yk�8 <∞:

Further, by the definition of τ�z� we have

Eθτ�z� ≤ zEθR�z� + r�z� + 1 ≤ z
∑r�z�+1
k=1 Eθ�Yk�2

r�z� + r�z� + 1:

From here it follows that

�A:14� Eθτ�z� ≤ L�1+ z�; z > 0:

By (A.11) and Hölder’s inequality,

�ξk�8 ≤ 27
(
�Ak�8�ξ0�8 +

( ∑
j≥1

�Aj�8/7
)7 k∑

j=1

�εj�8
)
:

Taking into account (A.14) and applying the Wald identity, we obtain

�A:15� sup
θ∈K

Eθ�ξτ�z��8 ≤ L�1+ z�:
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This inequality and (A.12) imply (A.8). Now we verify (A.9). By (A.5) and (A.10)

�D�z��2 = 2
∥∥∥∥
τ�z�∑
k=r+1

ξk−1

∥∥∥∥
2

+
∥∥∥∥
τ�z�∑
k=r+1

�Xk−1X
′
k−1 − �µ− µ0�21p1′p −F0�

∥∥∥∥
2

≤ 2�1+ 4�µ− µ0�2p�
∥∥∥∥
τ�z�∑
k=r+1

ξk−1

∥∥∥∥
2

+ 2�S�z��2;

where

�A:16� S�z� =
τ�z�∑
k=r+1

�ξk−1ξ
′
k−1 −F0�:

Hence,

�A:17� �D�z��4 ≤ 8�1+ 4q2p�2
∥∥∥∥
τ�z�∑
k=r+1

ξk−1

∥∥∥∥
4

+ 2�S�z��4:

Since by (A.10),

τ�z�∑
k=r+1

ξk−1 = �I−A�−1�ξr − ξτ�z�� + d�I−A�−1
τ�z�∑
k=r+1

ηk;

then for all θ ∈K ,

Eθ

∥∥∥∥
τ�z�∑
k=r+1

ξk−1

∥∥∥∥
4

≤ L
(
Eθ�ξr�4 +Eθ�ξτ�z��4 +Eθ

( τ�z�∑
k=r+1

ε2
k

)2)

≤ L
(
Eθ�ξr�4 +Eθ�ξτ�z��4 +Eθ

( τ�z�∑
k=r+1

�ε2
k − 1�

)2

+Eθ�τ�z� − r�z��2
)

≤ L
(
Eθ�ξr�4+Eθ�ξτ�z��4+Eθ�τ�z�− r�z��+ z2EθR

2�z�+1
)

≤ L
(
Eθ�ξr�4+Eθ�ξτ�z��4+ z+ z2�r+1�

r+1∑
j=1

Eθ�Yj�4/r2+1
)
:

From here, (A.13) and (A.15) it follows that

�A:18� sup
θ∈K

Eθ

∥∥∥∥
τ�z�∑
k=r+1

ξk−1

∥∥∥∥
4

≤ L�1+ z2�:

Further we note that the matrix (A.16) satisfies the equations

S�z� −AS�z�A′ = ξrξ′r − ξτ�z�ξ′τ�z� + dAM1�z� + dM′1�z�A′ +M2�z�;



2148 V. KONEV AND S. PERGAMENSHCHIKOV

where

M1�z� =
τ�z�∑
k=r+1

ξk−1η
′
k; M2�z� =

τ�z�∑
k=r+1

�d2ηkη
′
k −B�:

Therefore for θ ∈K ,

�A:19� Eθ�S�z��4 ≤ L
(
Eθ�ξr�8 +Eθ�ξτ�z��8 +Eθ�M1�z��4 +Eθ�M2�z��4

)
:

From here, (A.15), (A.17) and (A.18) we have

�A:20� Eθ�D�z��4 ≤ L
(
1+ z2 +Eθ�M1�z��4 +Eθ�M2�z��4

)
:

Show that

�A:21� sup
θ∈K

Eθ�M1�z��4 ≤ �1+ z�2; z > 0;

�A:22� sup
θ∈K

Eθ�M2�z��4 ≤ �1+ z�2; z > 0:

By applying Lemma A.1 we obtain

Eθ�M1�z��4 ≤ LEθ

( τ�z�∑
k=r+1

�ξk−1�2ε2
k

)2

:

By (A.10),

�A:23�
�ξk−1�2 ≤ ��µ− µ0�

√
p+ �Xk−1��2

≤ 2q2p�1+ �Xk−1�2� = 2q2p�Yk�2:
Therefore, taking into account (2.13), we have inequality

Eθ�M1�z��4 ≤ LEθ

( τ�z�∑
k=r+1

�Yk�2ε2
k

)2

≤ L
(
Eθ

( τ�z�−1∑
k=r+1

�Yk�2ε2
k

)2

+Eθ�Yτ�z��4ε4
τ�z�

)

≤ L
(
Eθ

τ�z�−1∑
k=r+1

�Yk�2
τ�z�−1∑
k=r+1

�Yk�2ε4
k +Eθ�Yτ�z��4ε4

τ�z�

)

≤ L
(
z2EθR�z�Eθ

( τ�z�−1∑
k=r+1

�Yk�2ε4
k

∣∣∣∣Y1; : : : ;Yr+1

)
+Eθ�Yτ�4

)

≤ L
(
z2EθR

2�z� +Eθ�Yτ�4
)
≤ L

(
z2

r+1∑
j=1

Eθ�Yj�4/r+Eθ�Yτ�4
)
:

From here and (A.8), (A.13), (A.21) follows. Inequality (A.22) can be proved
similarly to (A.18). Combining (A.20)–(A.22) yields (A.9). From (A.7)–(A.9) in-
equality (A.3) follows.
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It remains to prove that for the second addend in (A.1),

�A:24� lim sup
z→∞

sup
θ∈K

z2Pθ�detG�z� = 0� <∞:

Note that

Pθ�detG�z� = 0� = Pθ
{

inf
�v�=1

v′G�z�v/zR�z� = 0
}

= Pθ
{

inf
�v�=1

(
v′Fv/ trF+ v′�G�z�/zR�z� −F/ trF�v

)
= 0

}
:

Let

φ∗ = inf
θ∈K

inf
�v�=1

v′F�θ�v/ trF�θ�;

where the matrix F�θ� is defined by (2.27). By making use of the Chebyshev
inequality we have

Pθ�detG�z� = 0� ≤ Pθ
{
�G�z�/zR�z� −F/ trF� > φ∗

}

≤ Eθ�G�z�/zR�z� −F/ trF�4
φ4
∗

:

From here by applying (A.3), we obtain (A.24). Hence Lemma 3.1. 2

A.2. Proof of Lemma 3.2. By (2.17), (2.20) and (2.3), taking into account
that b�z� = 0 if detG�z� = 0, we have

a∗�h� − a =
∑σ�h�
k=1 b�ck��a�ck� − a�∑σ�h�

k=1 b�ck�

= d
∑σ�h�
k=1 b�ck�G−1�ck�M�ck�χ�detG�ck�>0�

∑σ�h�
k=1 b�ck�

;

where M�z� is defined in (2.30). By the Cauchy–Bunyakovskii inequality,

�A:25�

Eθ�a∗�h� − a�4 ≤ d4Eθ

(∑σ�h�
k=1

√
b�ck��M�ck��/ckR�ck�
∑σ�h�
k=1 b�ck�

)4

≤ d4Eθ

�∑σ�h�
k=1 b�ck��2�

∑σ�h�
k=1 �M�ck��2/c2

kR
2�ck��2

�∑σ�h�
k=1 b�ck��4

≤ d4

(∑
k≥1

√
Eθ�M�ck��4/c4

kR
4�ck�

)2

h2

≤ d4

(∑
k≥1

√
Eθ�M�ck��4/c4

k

)2

h2
:

(The last inequality holds because R�cj� ≥ 1:)
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Now we estimate Eθ�M�ck��4: Denoting �Y�i the ith coordinate of vector
Y; we have

Eθ�M�ck��4 = Eθ

( p+1∑
j=1

�M�ck��2j
)2

≤ �p+ 1�
p+1∑
j=1

Eθ�M�ck��4j = �p+ 1�
p+1∑
j=1

Eθ�X�j�τk �
4;

where

X
�j�
n =

n∑
l=1

vl�Yl�jεl; vl = χ�rk+1≤l<τk� + α�ck�χ�τk=l�:

Note that vl is a function depending on y1; : : : ; yl−1: By applying Lemma
A.1 to martingales �X�j�n � with Markovian moment (2.19) and the Cauchy–
Bunyakovskii inequality we obtain
�A:26�

Eθ�M�ck��4 ≤ LEθ

( τk−1∑
l=rk+1

�Yl�2ε2
l + α2�ck��Yτk

�2ε2
τk

)2

≤ LEθ

( τk−1∑
l=rk+1

�Yl�2 + α2�ck��Yτk
�2
)

×
( τk−1∑
l=rk+1

�Yl�2ε4
l + α2�ck��Yτk

�2ε4
τk

)

≤ LckEθR�ck�

×Eθ

( τk−1∑
l=rk+1

�Yl�2ε4
l + α2�ck��Yτk

�2ε4
τk

∣∣∣Y1; : : : ;Yrk+1

)

≤ Lc2
kEθR

2�ck�Eε4
1 ≤ LEε4

1c
2
k�rk + 1�

rk+1∑
j=1

Eθ�Yj�4/r2
k:

By (A.13),

Eθ�M�ck��4 ≤ Lc2
k:

From here, (A.25) and (3.2),

sup
θ∈K

Eθ�a∗�h� − a�4 ≤ L
�∑k≥1 1/ck�2

h2
= L

h2

(
n0�H�
H

+
∑

k>n0�H�

(
1
k

)1+δ)2

By virtue of (2.14) we establish (3.8) for sufficiently large H: Hence
Lemma 3.2. 2
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A.3. Proof of inequality (3.14). In view of (3.2) we have

Eθ

(
cσ�hν�H��

)1+γ = �1+ γ�
∫ ∞

0
tγPθ

{
cσ�hν�H�� > t

}
dt

≤ �1+ γ�
∫ H

0
tγdt+ �1+ γ�

×
∫ ∞

0
tγPθ

{
σ�hν�H�� > t1/�1+δ�; σ�hν�H�� > n0�H�

}
dt

=H1+γ + �1+ γ��1+ δ�

×
∫ ∞

0
sδ+γ�1+δ�Pθ

{
σ�hν�H�� > s; σ�hν�H�� > n0�H�

}
ds

=H1+γ + I1�H;θ� + �1+ γ��1+ δ��I2�H;θ� + I3�H;θ��;

(A.27)

where

�A:28�

I1�H;θ� = �n0��1+γ��1+δ�Pθ
{
σ�hν�H� > n0�H�

}
;

I2�H;θ� =
∫ ∞
n0�H�

sδ+γ�1+δ�Pθ�σ�H� > s�ds;

I3�H;θ� =
∫ ∞
n0�H�

sδ+γ�1+δ�Pθ�σ�hν�H�� > s; ν�H� > n0�H��ds:

By applying Propositions (3.1) and (3.2), we obtain the inequality

Pθ�σ�hν�H� > n0�H�� ≤ Pθ�σ�H� > n0�H�� +Pθ�ν�H� > n0�H��
≤ Ll2�H�/H2

for sufficiently large H: Therefore

�A:29� lim
H→∞

sup
θ∈K

I1�H;θ� = 0

for 0 < γ < �1− δ�/�1+ δ�:
Further, by Proposition 3.1,

I2�H;θ� ≤ L
l�H�n3�H�

H

∫ ∞
n0�H�

ds

s4−δ−γ�1+δ� +Ll�H�
∫ ∞
n0�H�

ds

s2−γ�1+δ�

= Ll�H��n0�H��δ+γ�1+δ�
�3− δ− γ�1+ δ��H +L

l�H�
�1− γ�1+ δ���n0�H��1−γ�1+δ�

:

From here and (2.14) it follows that

�A:30� lim
H→∞

sup
θ∈K

I2�H;θ� = 0

for 0 < γ < �1− δ�/�1+ δ�:
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In order to estimate I3�H;θ�, we examine the probability in the integrand.
By (2.21) for sufficiently large H and s ≥ n0�H�,

�A:31�

Pθ�σ�hν�H�� > s; ν�H� > n0�H��

= Pθ
{ �s�∑
k=1

b�ck� < hν�H�; ν�H� > n0�H�
}

≤ Pθ
{ �s�∑
k=1

b�ck� < b0�θ��s�/2
}

+Pθ�hν�H� > b0�θ��s�/2; ν�H� > n0�H��;
where b0�θ� is defined by (2.28). Note that

Pθ

{ �s�∑
k=1

b�ck� <
b0�θ��s�

2

}
≤ Pθ

{ �s�∑
k=1

�b�ck� − b0�θ�� >
b∗s

4

}

≤ 44Eθ�
∑�s�
k=1 �b�ck� − b0�θ���4
�b∗s�4

≤ 44

b4
∗

�∑�s�k=1 1/c1/3
k �3

∑�s�
k=1 ckEθ�b�ck� − b0�4
s4

y

b∗ is defined in (3.7). By applying Lemma 3.1 and taking into account (3.2),
we obtain

�A:32� Pθ

{ �s�∑
k=1

b�ck� < b0�θ��s�/2
}
≤ Ll�H�

(
n3

0�H�
Hs4

+ 1
s2+δ

)
:

Now we estimate the second addend in the right-hand side of (A.31). In view
of (3.2), we have

Pθ
{
hν�H� > b0�θ��s�/2; ν�H� > n0�H�

}

≤ Pθ
{
ν�H� > s1/�1+δ�b̃; ν�H� > n0�H�

}
;

where b̃ = �b∗/4�1/�1+δ�: By making use of this inequality and (A.31), (A.32),
we can estimate I3�H;θ�:

�A:33�

I3�H;θ� ≤ Ll�H�
n3

0�H�
H

∫ ∞
n0�H�

ds

s4−δ−γ�1+δ�

+Ll�H�
∫ ∞
n0�H�

ds

s2−γ�1+δ� + I4�H;θ�

= Ll�H� �n0�H��δ+γ�1+δ�
�3− δ− γ�1+ δ��H

+Ll�H� 1
�1− γ�1+ δ���n0�H��1−γ�1+δ�

+ I4�H;θ�;



ESTIMATION OF THE MEAN OF AN AR PROCESS 2153

where

I4�H;θ� =
∫ ∞
n0�H�

sδ+γ�1+δ�Pθ�ν�H� > b̃s1/�1+δ�; ν�H� > n0�H��ds:

This quantity can be estimated as

I4�H;θ� ≤
1+ δ
b̃1+δ1

∫ ∞
0
tδ1Pθ�ν�H� > t; ν�H� > n0�H��dt

= 1+ δ
�1+ δ1�b̃1+δ1

(
�n0�H��1+δ1Pθ�ν�H� > n0�H��

+
∫ ∞
n0�H�

tδ1Pθ�ν�H� > t�dt
)
;

δ1 = �1 + δ��δ + γ�1 + δ�� + δ: From here and Proposition 3.2 it follows that
for sufficiently large H,

I4�H;θ� ≤ L
(
l2�H��n0�H��1+δ1

H2
+ l3�H�
�n0�H��1+δ−δ1

)
:

Since 0 < δ <
√

2− 1 then for all 0 < γ < �1− 2δ− δ2�/�1+ δ�2,

lim
H→∞

sup
θ∈K

I4�H;θ� = 0

and by making use of (A.33) we obtain

lim
H→∞

sup
θ∈K

I3�H;θ� = 0:

Combining this limiting relationship and (A.27), (A.29) and (A.30) yields in-
equality (3.14). 2

A.4. Proof of Lemma 3.3. By (2.13) and (A.12),

�A:34�
n∑
k=1

y2
k ≤

n+1∑
k=1

�Yk�2 ≤ L
n∑
k=1

�1+ �ξk�2�:

In view of (A.11),

�A:35�

�ξk�2 ≤ 2
(
�Ak�2�ξ0�2 + d2

( k∑
j=1

�Ak−j��εj�
)2)

≤ 2
(
�Ak�2�ξ0�2 + d2

k∑
j=1

�Ak−j�
k∑
j=1

�Ak−j��εj�2
)

≤ 2
(
�Ak�2�ξ0�2 + d2 ∑

j≥0

�Aj�
k−1∑
j=0

�Aj��εk−j�2
)
:
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Since
∑
j≥0 �Aj� is bounded for θ ∈K ; then

n∑
k=1

�ξk�2 ≤ 2�ξ0�2
n∑
k=1

�Ak�2 + 2d2 ∑
j≥1

�Aj�
n−1∑
j=0

�Aj�
n∑

k=j+1

�εk−j�2

≤ max
θ∈K

Q�θ�
(
�ξ0�2 +

n∑
k=1

ε2
k

)
;

where

Q�θ� = 2 max
( ∑
j≥1

�Aj�2; d2
( ∑
j≥0

�Aj�
)2)

:

From here and (A.34), taking into account the definition of ξ0 in (A.10), we
obtain (3.10). Hence Lemma 3.3. 2

A.5. Proof of relationship (3.21). By making use of (A.6) we obtain

�A:36�

∣∣∣∣
τ�H�
H
− d1

trF

∣∣∣∣ ≤ R�H�
∣∣∣∣
τ�H� − r�H�
HR�H� − 1

trF

∣∣∣∣

+ �R�H� − d1�
trF

+ r�H�
H

≤ L
(�D�H��

H
+
�Yτ�H��2

H
+ �R�H� − d1� +

r�H�
H

)
:

By the definition of R�H� in (2.13),

�A:37�

�R�H� − d1� =
∣∣∣∣
∑r
k=1�Yk+1Y

′
k+1�22

r�H� − �F�22

∣∣∣∣

≤ 1
r�H�

∣∣∣∣
〈r�H�+1∑

k=2

�YkY
′
k −F�

〉

22

∣∣∣∣

≤ 1
r�H�

∥∥∥∥
r�H�+1∑
k=2

�YkY
′
k −F�

∥∥∥∥:

By an argument similar to the proof of inequality (A.9) for the matrix (A.5),
one can show that

sup
θ∈K

Eθ

∥∥∥∥
r�H�+1∑
k=1

�YkY
′
k −F�

∥∥∥∥
4

≤ L�1+ r�H��2:

From here and from (A.36), (A.37), (A.8) and (A.9), it follows that

sup
θ∈K

Eθ

∣∣∣∣
τ�H�
H
− d1

trF

∣∣∣∣
4

≤ L
(

1
H2
+ 1
H3
+ 1
H4
+ 1
�r�H��2 +

1
�r�H��4 +

r�H�
H

)
:

This inequality by virtue of (2.13), (2.14), completes the proof of (3.21). 2
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A.6. Proof of Proposition 4.2. By substituting (2.3) in (2.15) we obtain
on the set �detG�H� > 0�,
�A:38� ζ�H� =

√
HV′�a�H� − a� = d2�V�ζ0�H� + 1�H�;

where

ζ0�H� =
τ0∑
j=1

gjεj/
√
H;gj =

V′F−1Yj

√
trF

√
d1V

′F−1V
χ�j>r�;

τ0 = τ0�H� = inf
{
k ≥ 1x

k∑
j=1

g2
j ≥H

}
;

1�H� = 11�H� + 12�H� + 13�H�;

11�H� = −d�1− α�H��
V′F−1Yτετ trF

d1

√
H

;

12�H� = dV′�HG−1�H� −F−1 trF/d1�M�H�/
√
H;

13�H� = d2�V�
( τ∑
j=1

gjεj −
τ0∑
j=1

gjεj

)
/
√
Hy

M�H� and τ are defined by (2.30) and (2.13).
In view of (A.24), to prove the desired conclusion (4.1) it suffices to show

the following.

1. The random variable ζ0 in (A.38) is asymptotically normal uniformly in
parameter θ ∈K ; that is,

�A:39� lim
H→∞

sup
θ∈K

sup
−∞<t<∞

∣∣Pθ�ζ0�H� ≤ t� −8�t�
∣∣ = 0y

2. The random variable 1�H� converges to zero in probability uniformly in
θ ∈K as H tends to infinity, that is, for every δ > 0,

�A:40� lim
H→∞

sup
θ∈K

Pθ��1�H�� > δ; detG�H� > 0� = 0:

To prove (A.39) we apply Proposition 4.1 to the sequences gk; εk and the
stopping moment τ0. Let us verify its conditions. Conditions (i)–(iii) are evi-
dent. Condition (iv) holds because by (2.26),

lim
N→∞

∑N
j=1 g

2
j

N
= trF

d1
Pθ-a.s.

for θ ∈K : Condition (v) holds because Eθg
2
n is bounded for θ ∈K and n ≥ 0,

due to (A.12), (A.35). In order to verify condition (vi) it suffices to show that
for any 0 < δ < 1,

�A:41�
∑
n>n1

sup
θ∈K

Pθ

{
g2
n > δ

n−1∑
j=1

g2
j−1

}
<∞;

where n1 = n1�r; δ� = �r/�1− δ�� + 1:
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We have

�A:42� Pθ

{
g2
n > δ

n−1∑
j=1

g2
j

}
≤ Pθ

{
g2
n > δ

2�n− 1�
}
+Pθ

{n−1∑
j=1

g2
j ≤ δ�n− 1�

}
:

By the Chebyshev inequality and (A.13),

�A:43� sup
θ∈K

Pθ
{
g2
n > δ

2�n− 1�
}
≤ sup

θ∈K

Eθg
2
n

δ2�n− 1�4 ≤
L

�n− 1�4 :

Further, we make use of the representation

n−1∑
j=1

g2
j =

trF�n− r− 1�
d1

+
V′F−1�∑n−1

j=r+1�YjY
′
j −F��F−1V trF

V′F−1Vd1
:

From here it follows that for sufficiently small δ > 0,

�A:44�

Pθ

{n−1∑
j=1

g2
j ≤ δ�n− 1�

}

≤ Pθ
{�V′F−1�2
V′F−1V

�
n−1∑
j=r+1

�YjY
′
j −F�� > �n− r− 1� − δ̃�n− 1�

}

≤ L
Eθ�

∑n−1
j=r+1�YjY

′
j −F��4

��1− δ̃�n− r�4
;

where δ̃ = δd1/ trF: Now we note that

�A:45� sup
θ∈K

Eθ�
n−1∑
j=r+1

�YjY
′
j −F��4 ≤ Ln2; n ≥ r+ 2:

This inequality can be shown by an argument similar to that used in the
proof of (A.9). Combining (A.42)–(A.45) yields (A.41). This completes the proof
of (A.39). It remains to verify (A.40).

We have

Eθ�11�H��4 ≤
d4�trF�4
�d1�4H2

E�ε1�4Eθ�V′F−1Yτ�4

≤ d
4�trF�4�V′F−2V�2E�ε1�4Eθ�Yτ�4

�d1�4H2
:

By (A.12) and (A.15),

�A:46� sup
θ∈K

Eθ�Yτ�4 ≤ L�1+H�:

Thus

�A:47� lim
H→∞

sup
θ∈K

Eθ�11�4 = 0:
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Next consider 12�H�: On the set �detG�H� > 0�; we have

�A:48� �12�H�� ≤
d

d1
�V�

∥∥G−1�H�H
∥∥
∥∥∥∥
G�H�
H
− d1F

trF

∥∥∥∥
�M�H��√

H
�F−1 trF�:

By the definition of τ and R�H� in (2.13) and (A.34), it follows that

�A:49� sup
θ∈K

Eθ

�M�H��2
H

≤ sup
θ∈K

EθR�H� ≤ L <∞:

Further, we show that

�A:50� lim
H→∞

sup
θ∈K

Eθ

∥∥∥∥
G�H�
H
− d1F

trF

∥∥∥∥ = 0:

We have

�A:51�
∥∥∥∥
G�H�
H
− d1F

trF

∥∥∥∥ ≤ R�H�
∥∥∥∥
G�H�
HR�H� −

F

trF

∥∥∥∥+
�F�
trF
�R�H� − d1�:

By (A.7)–(A.9),

�A:52� sup
θ∈K

Eθ�R�H��4
∥∥∥∥
G�H�
HR�H� −

F

trF

∥∥∥∥
4

≤ L�1+H�
2

H4
:

By (A.37),

�A:53� sup
θ∈K

Eθ

�F�
trF
�R�H� − d1� ≤ L

1+
√
r�H�

r�H� :

Combining this inequality and (A.51), (A.52) yields (A.50). From (A.48)–(A.50)
we obtain

�A:54� lim
H→∞

sup
θ∈K

Pθ
{
�12� > δ; detG�H� > 0

}
= 0:

To analyze 13�H� we need the following relationship:

�A:55� lim sup
H→∞

sup
θ∈K

Eθ

τ0�H�
H

<∞:

By definition of τ0 in (A.38),

�A:56�

Eθτ0�H� ≤ 1+
∑
n≥1

Pθ�τ0�H� > n�

≤ 1+
∑
n≥1

Pθ

{ n∑
j=1

g2
j < H

}

≤ 1+
∑
n≥1

χ�nδ<H� +
∑

n≥�H/δ�
Pθ

{ n∑
j=1

g2
j < nδ

}
; δ > 0:

Further we shall make use of (A.44). Let 0 < δ < inf θ∈K trF/d1: By (2.13)
there exists such a number H0 > 0 that for all n ≥ �H0/δ�,

�1− δ̃�n− r > �1− δ̃�n/2:
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Therefore, by (A.44), (A.45),

Pθ

{ n∑
j=1

g2
j < nδ

}
≤ L n2

��1− δ̃�n− r�4
≤ L/n2; n ≥

[
H

δ

]
;

for all H ≥H0: This estimate and (A.56) imply (A.55). Further, we show that

�A:57� lim sup
H→∞

sup
θ∈K

Eθ

�gτ0
�8

H2
= 0:

By the definition of gk in (A.38) and (A.12),

�gτ0
�8 ≤ L

(
1+

τ0∑
j=1

�εj�8
)
:

In view of (3.1), applying the Wald identity we obtain (A.57). Now we can
estimate the second moment of 13�H�. From the definitions of 13 and τ0; it
follows that

Eθ�13�H��2 =
�d2�V��2

H
Eθ

∣∣∣∣
τ∑
k=1

g2
k −

τ0∑
k=1

g2
k

∣∣∣∣

≤ �d2�V��2Eθ

∣∣∣∣
trF

Hd1V
′F−1V

V′F−1
τ∑

k=r+1

YkY
′
kF
−1V− 1

∣∣∣∣

+ �d2�V��2
Eθ�gτ0

�2
H

= �d2�V��2Eθ

∣∣∣∣
�τ − r� trF

Hd1
− 1

∣∣∣∣

+ �d2�V��2
trF
Hd1

�V′F−1D�H�F−1V�
V′F−1V

+ �d2�V��2
Eθ�gτ0

�2
H

;

(A.58)

where the matrixD�H� is defined by (A.5). Further, applying (A.6), (A.8), (A.9)
and (A.53), we have

�A:59�

Eθ

∣∣∣∣
τ�H� − r�H�

H

trF
d1
− 1

∣∣∣∣

≤ trFR�H�
d1

Eθ

∣∣∣∣
τ�H� − r�H�
HR�H� − 1

trF

∣∣∣∣+
Eθ�R�H� − d1�

d1

≤
√
p+ 1
d1H

Eθ�D�H�� +
Eθ�Yτ�H��2

d1
+ Eθ�R�H� − d1�

d1

≤ L
(

1+ 4
√
H+

√
H

H
+ 1+

√
r�H�

r�H�

)
; θ ∈K :
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The second term in the right-hand side of (A.58), in view of (A.9), can be
estimated as

sup
θ∈K

Eθ�d2�V��2
trF
Hd1

�V′F−1D�H�F−1V�
V′F−1V

≤ L1+
√
H

H
:

Combining this estimate with (A.57)–(A.59) yields

lim
h→∞

sup
θ∈K

Eθ�13�H��2 = 0:

The required conclusion (A.40) follows from here and (A.47), (A.54). Hence
Proposition 4.2. 2

A.7. Proof of Lemma 5.1. On the event 0�H� defined in (4.3), (2.10) and
(2.33) imply

µ̃�H� − µ = 1�H�
1− 1′pλ�H�

where 1�H� = V′0�a�H�−a�, V0 = �1; �µ−µ0�1′p�′; a�H� is defined by (2.15).
Observe that if �µ− µ1� < δ, then

�A:60� �1�H�� ≤ L�G−1�H���M�H��;

where M�H� is defined in (2.30). Now we estimate each of the quantities

�A:61� I1�H� = Eθ�µ̃�H� − µ�rχ0�H�;

�A:62� I2�H� = Eθ�µ̃�H� − µ�rχ0c�H�;

By (2.7), (2.9) we have on the set 0�H� the inequality

�1− 1′pλ�H�� ≥ 1/
√
l�H�

which implies for 0 < t < �1− 1′pλ�/2 and λ ∈ 3 the following estimate:

I1�H� ≤
2r

�1− 1′pλ�
Eθ�1�H��rχ0�H�

+ �l�H��r/2Eθ�1�H��rχ�0�H�∩��λ�H�−λ�>t/√p��:

From here and (A.60) it follows that

I1�H� ≤
L

�1− 1′pλ�
Eθ�HG−1�H��r�M�H�/H�rχ0�H�

+L�l�H��r/2Eθ�HG−1�H��r

× �M�H�/H�rχ�0�H�∩��λ�H�−λ�>t/√p��:

(A.63)
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Let us estimate �HG−1�H��r on the event 0�H�: By the definition of σ in
(2.21), the function b�H� in (2.17) and due to the choice of the sequence ck in
(3.2), we have the following inclusions:

�σ�H� ≤ n0�H�� = �n0�H�b�H� ≥H�

=
{ �Hl�H��

H
≥ �R�H�H�G−1�H���2

}

⊂
{√
l�H� ≥ R�H�H�G−1�H��

}
:

Thus on the event 0�H�

�A:64� �HG−1�H�� ≤
√
l�H�
R�H� ≤

√
l�H�:

By making use of this, we obtain

�A:65�

�HG−1�H��r ≤
(
�F−1� trF

)r

×
(

1+ �HG−1�H��
∥∥∥∥
G�H�
HR�H� −

F

trF

∥∥∥∥
)r

≤ L
(

1+ �l�H��r/2
∥∥∥∥
G�H�
HR�H� −

F

trF

∥∥∥∥
r)
:

The matrix F is defined in (2.27). Combining (A.63)–(A.65) yields

�A:66�

I1�H� ≤ LEθ�M�H�/H�r

+L�l�H��r/2Eθ

(�M�H��
H

∥∥∥∥
G�H�
HR�H� −

F

trF

∥∥∥∥
)r

+L�l�H��rEθ�M�H�/H�rχ��λ�H�−λ�>t/√p�:
Next we show that for 2 < γ ≤ 8,

�A:67� sup
�µ−µ1�<δ

Eθ�M�H�/H�γ ≤ L
E�ε1�γ
Hγ/2

:

Taking into account the definition of τ�H� in (2.10) and applying Lemma A.1
and the Hölder inequality, we obtain

Eθ�M�H��γ ≤ LEθ

( τ�H�−1∑

j=r�H�+1

�Yj�2�εj�2 + �α�H��2�Yτ�H��2�ετ�H��2
)γ/2

≤ LEθ

( τ�H�−1∑

j=r�H�+1

�Yj�2 + �α�H��2�Yτ�H��2
)γ/2−1

×
( τ�H�−1∑

j=r�H�+1

�Yj�2�εj�γ + �α�H��2�Yτ�H��2�ετ�H��γ
)

≤ LE�ε1�γEθ�HR�H��γ/2:

(A.68)
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By (2.13),

Eθ�R�H��γ/2 ≤ Eθ

(
1+

r�H�∑
j=1

�Yj�2/r�H�
)γ/2
≤ 2γ/2−1

(
1+max

j≥1
Eθ�Yj�γ

)
:

This and (A.68) imply (A.67). Next we estimate the second term in the right-
hand side of (A.66) with the help of (A.67) and (A.3), assuming 2 < r ≤ 8/3:
We have

Eθ

∥∥∥∥
G�H�
HR�H� −

F

trF

∥∥∥∥
r

�M�H�/H�r

≤
(
Eθ

∥∥∥∥
G�H�
HR�H� −

F

trF

∥∥∥∥
4)r/4(

Eθ�M�H�/H�4r/�4−r�
)�4−r�/4≤ L

Hr
:

(A.69)

The last term in the right-hand side of (A.66) can be estimated by applying
the Cauchy–Bunyakovsky inequality and (3.8):

Eθ�M�H�/H�rχ��λ∗�H�−λ�>t/√p�

≤
(
Eθ�M�H�/H�2r

)1/2√
Pθ��λ∗�H� − λ� > t/

√
p� ≤ Ll�H�/H1+r/2;

when H is sufficiently large. This and (A.66), (A.67) and (A.69) imply

�A:70� I1�H� ≤
L

Hr/2

(
1+ �l�H��

r/2

Hr/2
+ �l�H��

1+r

H

)

for sufficiently large H: It remains to estimate I2�H� in (A.62). We have

�A:71� I2�H� ≤
(
Eθ�µ̃�H� − µ�4

)r/4(
Pθ�0c�H��

)�4−r�/4
:

From (2.9), (2.10), (2.33), (3.2) and (3.8) it follows that

�A:72�
Eθ�µ̃�H� − µ�4 ≤

�V0�4
H2

Eθ

( ν�H�∑
j=1

�a∗�hj� − a�2
)2

≤ �V0�4
H2

( ∑
j≥1

√
Eθ�a∗�hj� − a�4

)2

≤ L�l�H��
4

H2

for �µ− µ1� < δ; λ ∈ 3:
Further, by Propositions 3.1 and 3.2,

�A:73� lim
H→∞

sup
�µ−µ1�<δ

HPθ�0c� = 0; λ ∈ 3:

Combining (A.71)–(A.73) yields

I2�H� ≤ L
�l�H��r
H1+r/2 :

This estimate and (A.70) lead to (5.14) for 2 < r ≤ 8/3: Hence Lemma 5.1. 2
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