
The Annals of Statistics
1997, Vol. 25, No. 5, 2054]2083

LARGE-SAMPLE INFERENCE FOR NONPARAMETRIC
REGRESSION WITH DEPENDENT ERRORS1

BY P. M. ROBINSON

London School of Economics

A central limit theorem is given for certain weighted partial sums of a
covariance stationary process, assuming it is linear in martingale differ-
ences, but without any restriction on its spectrum. We apply the result to
kernel nonparametric fixed-design regression, giving a single central limit
theorem which indicates how error spectral behavior at only zero fre-
quency influences the asymptotic distribution and covers long-range,
short-range and negative dependence. We show how the regression esti-
mates can be Studentized in the absence of previous knowledge of which
form of dependence pertains, and show also that a simpler Studentization
is possible when long-range dependence can be taken for granted.

1. Introduction. This paper justifies approximate normal inference on
fixed design nonparametric regression in the presence of dependent observa-
tions. The dependence structures covered are unusually diverse, because the
stationary errors can exhibit dependence of short-range, long-range, or nega-
tive type. Also, unusually for the time series regression literature, we give a
single central limit theorem which simultaneously covers all three cases. The
limiting covariance structure of the estimates depends on the nature of the
dependence through only a self-similarity parameter, as well as a scale factor,
and we indicate how to validly Studentize the regression estimates by
estimating these parameters, without prejudging whether there is short-
range, long-range, or negative dependence. The Studentization is based on
residuals from the regression model, but we also show that when long-range
dependence can be taken for granted, the raw data can be used for this
purpose. The paper clarifies the feature of serial correlation which is really
relevant, namely the behavior of the spectral density at only zero frequency.
In fact, the same point applies in other problems, to Gasser]Muller regres-¨
sion estimates as well as the kernel ones we study, to certain wavelet
regression problems, and to versions of parametric regression; Lemmas 1 and
2 below can be checked to provide analogous central limit theorems in these
problems.
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We consider the model

t
1.1 y s r q u , t s 1, 2, . . . ,Ž . t tž /n

where y is observed for t s 1, . . . , n, and u is an unobservable error. Ast t
Žalways in this model, y must be viewed as a triangular array as can be u , ift t

.so desired as n increases, but we suppress reference to n here. To estimate
Ž . Ž .r x , x g 0, 1 , we consider

1 nx y t
1.2 r x s k y ,Ž . Ž .ˆ Ý tž /nb nbt

where b is a positive bandwidth number, k is a kernel function such that
`

1.3 k v dv s 1Ž . Ž .H
y`

and Ý will always denote a sum over t from 1 through n. Taking for grantedt
covariance stationarity of u , implying the mean and autocovariances aret
time invariant, then Eu s 0 with no loss of generality, and we denote by1
g s Eu u the lag-j autocovariance of u . We introduce the followingj 1 1qj t
assumption.

ASSUMPTION 1. The process u is covariance stationary with absolutelyt
Ž .continuous spectral distribution function, its spectral density, f l , defined

p Ž . Ž .by g s H f l cos jl dl, being of formj yp

1.4 f l s g l h l , yp - l F p ,Ž . Ž . Ž . Ž .
where

Ž .i g is an even nonnegative function that is continuous and positive at
Ž .l s 0, and we denote G s g 0 ;

Ž .ii h is an integrable function such that
p

d s h l cos jl dlŽ . Ž .Hj
yp

12 Hy2; u H j as j ª `, H g 0, 1 _ ,Ž . Ž . � 42
1.5Ž .

1s 2pD , H s ,j0 2

Ž . Ž . � Ž .4where D is the Kronecker delta, u H s 2G 2 y 2 H cos p 1 y H andab
also

11.6 h 0 s 0, 0 - H - .Ž . Ž . 2

1 1The cases H s and 0 - H - referred to here are termed, respectively,2 2

‘‘short-range dependence’’ and ‘‘negative dependence,’’ the complementary
1 Ž . Ž .case, - H - 1, on 0, 1 being ‘‘long-range dependence.’’ Then u H is2

negative for 0 - H - 1r2 and positive for 1r2 - H - 1, so that d is, respec-j
tively, eventually negative and positive. For H s 1r2 we have prescribed dj
to thus interpolate between these other two cases, but there is no loss of
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Ž .generality relative to assuming only that h l is continuous and positive at
Ž .l s 0. We formally identify the case H s 1r2 with a constant h l instead of

Ž . y1taking d ; u 1r2 j so as to avoid the discontinuity in convergence ratesj
w Ž .xresulting from the latter specification see Hall and Hart 1990 , thereby to

Ž .simplify Studentization see Section 4 and also to explicitly include short-
range dependence. In practice, the scale factor G is unknown, and the reason

Ž . Ž .for incorporating the factor u H in 1.5 is so that Assumption 1 corresponds
approximately to a simple local parameterization in the frequency domain,

1.7 f l ; Gl1y2 H as l ª 0q,Ž . Ž .

Ž . Ž .for all H g 0, 1 . Assumption 1 i and

1.8 h l ; l1y2 H as l ª 0q,Ž . Ž .
1Ž . Ž . Ž .together imply 1.7 . For H g 0, , the Fourier series of h l converges2

Ž .absolutely and 1.6 implies

`

1.9 d s 0,Ž . Ý j
jsy`

1Ž . Ž . Ž .and thence 1.8 from Theorem III-31 of Yong 1974 . For H s , 1.82
1Ž . Ž . Ž .obviously holds. For H g , 1 , 1.8 is equivalent to 1.5 if the d arej2

quasimonotonically convergent to zero, that is, there exists C - ` such that
Ž . w Ž . xd F d 1 q Crj for all sufficiently large j Yong 1974 , Theorem III-14 .jq1 j

Ž .Whatever the value of H g 0, 1 , Assumption 1 effectively imposes no
restrictions on f away from zero frequency, apart from integrability implied
by covariance stationarity: it can be infinite or zero at any other frequencies,
for example. This contrasts with assumptions made in previous work on
central limit theory for nonparametric regression. The case H s 1r2 was in

Ž .effect addressed by Roussas, Tran and Ioannides 1992 , Csorgo and Miel-¨ ˝
Ž . Ž .niczuk 1995a , and Tran, Roussas, Yakowitz and Truong Van 1996 . They

modelled u as a strongly mixing process with at least summable mixingt
numbers, a nonlinear function, with Hermite number m, of a Gaussian
process with autocovariances whose mth absolute powers are summable, and

Ž .a linear process with absolutely summable weights cf. Assumption 2 , respec-
Žtively. All these assumptions imply that f is bounded and indeed satisfies a
. Ž xLipschitz continuity condition of degree greater than 1r2 on yp , p . Csorgo¨ ˝

Ž . Ž .and Mielniczuk 1995b, c addressed the case H g 1r2, 1 . Their assumption
on g is more general in that they allow for a slowly varying factor in thej

Ž .right-hand side of 1.5 : we could incorporate this, but as Csorgo and Miel-¨ ˝
Ž .niczuk’s 1995b, c work indicates, it will then arise in the norming for

asymptotic normality unless it satisfies very restrictive conditions. We stress
Studentization later in the paper, in which practical circumstances it seems
unlikely that the applied worker would incorporate any such factor. Ignoring
this aspect, Assumption 1 is more general than Csorgo and Mielniczuk’s¨ ˝
Ž . Ž .1995b, c , because they effectively take g l ' G; the consequent require-
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ment that

1.10 g ; Gu H j2 Hy2 as j ª `,Ž . Ž .j

rules out such models covered by Assumption 1 as

< il <1y2 H < il 2 il <1r2yJ1.11 f l A 1 y e 1 y 2 cos v e q eŽ . Ž .
for 0 - v F p and 0 - H F J if J ) 1r2, so there is a singularity around

Ž .frequency l s v, of magnitude that at least matches that if H ) 1r2 at
Ž Ž .l s 0. The second factor in 1.11 has been discussed in detail by Gray,

.Zhang and Woodward, 1989. At about the same time and independently of
Ž . Ž .our work, Deo 1997 has also considered the case H g 1r2, 1 , but requires

Ž . Ž . � 4that f l is positive and continuous at all l g yp , p _ 0 .
The fact that spectral behavior matters only at frequency 0 is familiar from

theory for partial sums of weakly autocorrelated series, corresponding to the
Ž y1r2 . Ž .case H s 1r2. In particular, V n Ý u ª 2p f 0 if f is continuous att t

Ž .l s 0, where V denotes the variance operator. For H g 1r2, 1 , however,
Ž . Ž .1.10 has been stressed again with a slowly varying factor in theory for

Ž .partial sums and other statistics, following Taqqu 1975 . By arguing as in
the proof of Lemma 3 below, we can partially extend Lemma 3.1 of Taqqu

1Ž . Ž . w1975 and Theorem 2.1 of Robinson 1993 who took, respectively, - H - 12
1 Ž . xand 0 - H - in 1.10 and allowed for a slowly varying factor to obtain2

under Assumption 1,

1.12 V nyH u ª Gu H rH 2 H y 1 , H g 0, 1 ,Ž . Ž . Ž . Ž .Ý tž /
t

taking sin 0r0 s 1. Likewise, under Assumption 1 we can justify the formula
Ž .in Yajima 1988 for the asymptotic covariance matrix of the least squares

estimate in polynomial time series regression with errors u , which het
obtained under the assumption that g is everywhere continuous.

The following section gives some central limit results for weighted partial
sums of a covariance stationary process that is linear in martingale differ-
ences with weights that are only square summable and is relevant to As-

Ž .sumption 1 for all H g 0, 1 . The results can apply to various problems, but
Ž . Ž .in Section 3 we check them in the case of estimate 1.2 of 1.1 . Section 4

justifies the same normal approximation for suitably Studentized estimates.
Section 5 contains an empirical application to the series of annual minimum
levels of the Nile River.

2. Central limit theorem for weighted sums of linearly dependent
variates. This section considers central limit theory for weighted partial
sums of a sequence u satisfying the following.t

ASSUMPTION 2.
` `

22.1 u s a « , a - `,Ž . Ý Ýt j tyj j
jsy` jsy`
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where the « 2 are uniformly integrable andt

< 2 <E « F s 0, E « F s 1 a.s. t s 0, "1, . . . ,Ž . Ž .t ty1 t ty1

� 4where F is the s-field of events generated by « , s F t .t s
� 4For a triangular array w , t s 1, . . . , n; n s 1, 2, . . . , write S s Ý w u .tn t tn t

Ž .The following result is related to ones of Eicker 1967 , Ibragimov and Linnik
Ž . Ž .1971 and Hannan 1979 .

LEMMA 1. Let Assumption 2 hold and

`
22.2 v s 1 for all n ,Ž . Ý jn

jsy`

< <2.3 lim max v s 0,Ž . jn
nª` y`-j-`

where v s Ý w a . Thenjn t tn tyj

2.4 S ª N 0, 1 as n ª `.Ž . Ž .d

PROOF. For any N G 1, S s SyNy1 q S N q S` , where Sq s Ýq v « .y` yN Nq1 p jsp jn j
Thus

2
yNy1 ` 2 2 2< <2.5 V S q V S s v F w a q a .Ž . Ž .Ž . Ý Ý Ý Ýy` Nq1 jn tn j jž / ž /

< < t j)N j-nyNj )N

Ž .The squared factor depends on n only and in view of 2.1 we can choose
Ž .N s N as a function of n such that 2.5 ª 0 as n ª `. For such N writen

N 2 Nq1 Ž < .S s Ý x where x s v « . Thus E x F s 0,yN ts1 tn tn tyNy1, n tyNy1 tn tyNy2
Ž 2 < . 2 Ž .E x F s v a.s., by Assumption 2. It follows from 2.2 andtn tyNy2 tyNy1, n

Ž . Ž . N Ž .from Corollary 3.8 of McLeish 1974 that S ª N 0, 1 as n ª ` if, foryN d
all h ) 0,

2 Nq1
2 2lim E x I x ) h s 0.Ž .Ž .Ý tn tn

nª` ts1

Ž . Ž 2 Ž 2By 2.2 the sum on the left-hand side is bounded by max E « I « )t t t
2 .. Ž .hrmax v ª 0 as n ª ` by uniform integrability and 2.3 . Ij jn

Ž . Ž .Condition 2.2 is merely a normalization. Sufficient conditions for 2.3 are
given in the following lemma. Write

`
22s s V u s a q ??? qa ,Ž .Ý Ýn t ty1 tynž /

t tsy`

and introduce the difference operator ^, such that ^w s w y w .tn tn tq1, n
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Ž .LEMMA 2. Let Assumption 2 hold. If either i there exists a positive-val-
ued sequence a s a such that, as n ª `,n

1r2
2 2 < < < <2.6 w a q max w a ª 0,Ž . Ý Ý Ýtn j tn jž / 1FtFnt < < < <j )a j Fa

Ž . Ior if ii for I - `, w s Ý w and for all i s 1, . . . , I there exist se-tn is1 i tn
quences p s p and q s q such that 1 F p - q F n for all n, and, asi in i in i i
n ª `,

p y1 qni i
2 2 1r2< <w q w q ^w s q 1Ý Ý Ý Ž .i tn itn itn typ q1i

ts1 tsq q1 tsp2.7Ž . i i

< < 1r2 y1q w s q 1 q s ª0,Ž .iq n q yp q1 ni i i

Ž .then 2.3 holds.

Ž . < <PROOF. i It is easily seen that max v is bounded by the left-hand sidej jn
Ž .of 2.6 .
Ž . Ž .ii We check 2.7 for an arbitrary i, dropping the i subscript in w , p ,i tn i

q . We can easily account for the contribution from the summands for t - pi
and t ) q in v , and then by summation by parts,jn

q qy1
ty j qyj< < < < < < < <2.8 max w a F ^w max A q w max A ,Ž . Ý Ýtn tyj tn pyj qn pyj

j j jtsp tsp

t t Ž .where A s Ý a . As in Ibragimov and Linnik 1971 , we have the identitys jss j

2 2 2tyi tq1yi tq1yiA Ay s 2 A a y a q a y a .Ž . Ž .py i pq1yi pq1yi pyi tq1yi pyi tq1yiž / ž /
Summing over i s h q 1, . . . , j, we obtain

1r2` `2 2
tyj tyh 2 2A A2.9 y F 4s a q 4 a ,Ž . Ý Ýpy j pyh typq1 i iž / ž / ž /

isy` isy`

2 ` Ž tyi .2because s s Ý A . The last relation indicates that we can choosetypq1 y` pyi
< tyh < Ž 1r2h sufficiently negative, as a function of t y p, such that A - K s qpyh typq1

.1 , say, for all t y p G 0, where K is a generic positive constant. It follows
Ž . < ty j < Ž 1r2 . Ž .from 2.9 that max A F K s q 1 , and then ii is established byj pyj typq1

Ž .reference to 2.8 . I

Ž . Ž .To illustrate the usefulness of both conditions i and ii in case Assump-
tion 1 is also imposed, take the simple case of least squares polynomial time

Ž . sqHseries regression, mentioned in Section 1. We have w s f t rn , wheretn s
Ž .f is an sth degree polynomial. For H G 1r2 we easily check i . Fors

Ž . Ž Hy 1.0 - H - 1r2, we can check i if we also assume a s o j , as is readilyj
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seen. Although this does not entail absolute summability of the a , it does, forj
Ž 2 Hy1.example, imply g s o j , and thus typically rule out the possibility thatj

Ž . < <1y2 H 9 Ž .f l ; l y v as l ª v, for some v / 0 mod 2p , unless H9 - H q
1r2; a spectrum can be zero at l s 0 but elsewhere unbounded. However, the

Ž . Ž .polynomial structure of f and 1.12 enables us to check ii when 0 - H -s
1r2 without any assumption on the a besides the square summability inj
Ž .2.1 , which is merely equivalent to finite variance of u .t

3. Central limit theorem for nonparametric regression estimates.
Ž . Ž . Ž .Now consider the estimate 1.2 for r x based on the model 1.1 . We impose

first a condition on the kernel k.

Ž .ASSUMPTION 3. Let k v be even, eventually monotone nonincreasing in
< < Ž . Ž .v , differentiable with derivative k9 v , satisfying 1.3 and

y1y1 1qh2 < <k v s O 1 q v , k9 v s O 1 q vŽ . Ž . Ž . Ž .ž / ž /3.1Ž .
for some h ) 0.

It would be possible to establish Theorem 1 under somewhat milder
conditions on k, whose strength decreases as H increases. However, we
prefer the simpler condition above, which we motivate by a worker willing to

Ž .contemplate an unknown H that is anywhere in 0, 1 , and thus wishing to
Žchoose k accordingly. Kernels used in practice including typical higher-order

.kernels are eventually monotonically decreasing. We have avoided compact
support assumptions on k, imposing instead tail conditions. The differentia-
bility condition does strictly exclude kernels such as the uniform, but such
kernels, which are smooth almost everywhere, could be covered by a slight
modification of our proofs. The following lemma estimates the covariance
structure of r .̂

Ž .LEMMA 3. Let 1.1 and Assumptions 1 and 3 hold, and let

y1 1y2 H 3y2 H3.2 nb q n b ª 0 as n ª `.Ž . Ž .

Ž .Then for all x, y g 0, 1

2y2 H3.3 nb cov r x , r y ª Gr H D as n ª `,� 4Ž . Ž . Ž . Ž . Ž .ˆ ˆ x y

where

2 Hy2 1`¡ < <u H HH k v k w y k v v y w dv dw, 0 - H - ,� 4Ž . Ž . Ž . Ž .y` 2

2 1`~r H sŽ . 2p H k v dv, H s ,Ž .y` 2

2 Hy2 1`¢ < <u H HH k v k w v y w dv dw, - H - 1.Ž . Ž . Ž .y` 2
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PROOF. For future use we observe that Assumption 3 implies

< < a3.4 k s O nb , a G 1,Ž . Ž .Ý x t
t

ŽŽ . .where k s k nx y t rnb , so that k effectively behaves like a compactlyx t
Ž .supported kernel. The left-hand side of 3.3 is

py2 H ˆ ˆ3.5 nb f l k l k yl dl,Ž . Ž . Ž . Ž . Ž .H x y
yp

ˆ i tlŽ . Ž .where k l s Ý k e . The difference between 3.5 and G timesx t x t

py2 H ˆ ˆ3.6 nb h l k l k yl dlŽ . Ž . Ž . Ž . Ž .H x y
yp

is bounded in absolute value, due to the triangle and Schwarz inequalities, by

y2 Hnb max g l y GŽ . Ž .
< <l -«

1r2
p p2 2ˆ ˆ= h l k l dl h l k l dlŽ . Ž . Ž . Ž .H Hx y½ 5

yp yp
1r2

p p2 2y2 H ˆ ˆq2 nb G h l k l dl h l k l dlŽ . Ž . Ž . Ž . Ž .H H3.7Ž . x y½ 5
« «

1r2
p p2 2y2 H ˆ ˆq2 nb f l k l dl f l k l dlŽ . Ž . Ž . Ž . Ž .H H3.8Ž . x y½ 5

« «

Ž .for « g 0, p , where h is nonnegative because

2`
i jl3.9 f l s a e 2pŽ . Ž . Ý j

jsy`

Ž .is, and because of Assumption 1. Consider 3.8 . By summation by parts

2ny1p p2ˆ3.10 f l k l dl s f l ^ k D l q k D l dl,Ž . Ž . Ž . Ž . Ž . Ž .ÝH Hx x t t x n n
« « ts1

Ž . t i sl w Ž . xwhere D l s Ý e . Because see Zygmund 1977 , page 51t ss1

2
3.11 D l F , 0 - l F p for all t G 1,Ž . Ž .t l

Ž . �Ž ny1 < <.2 2 4 2it follows that 3.10 is bounded by 4g Ý ^ k q k r« . Choose0 ts1 x t x n
Ž . < < < <M ) 0 such that k v is monotone nonincreasing in v for v G M. For n

Ž .sufficiently large nx y nbM G 2 and n 1 y x y nbM G 2, and then

w xnxynbM y1 ny1

< < < <^ k q ^ k F 4 k M .Ž .Ý Ýx t x t
ts1 w xts nxqnbM q1
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On the other hand, bounded differentiability of k implies

w xnxqnbM

< <^ k F KM .Ý x t
w xts nxynbM

Ž . Ž y2 . Ž .It follows that 3.10 s O « so the contribution of 3.8 is negligible
Ž .because nb ª ` and H ) 0. The term 3.7 can be handled in the same way.

Because « is arbitrary and g is continuous at l s 0, it clearly remains to be
shown that

3.12 3.6 ª r H D as n ª `,Ž . Ž . Ž . x y

Ž . Ž .because sup r H - `. Now 3.6 isH

y2 H3.13 nb d k k .Ž . Ž . ÝÝ tys x t y s
s t

Ž . Ž . �First assume x ) y, and put z s x y y r4. Write A x s t: 1 F t F n,
< < 4 Ž . � < < 4 < <t y nx F nz and B x s t: 1 F t F n, t y nx ) nz , and note that t y nx

< < < < Ž 2 Hy2 .F nz and s y ny F nz implies s y t G 2nz. Thus because of d s O jj
Ž .and 3.4 ,

2 Hy21 Kn
2y2 H< < < <d k k F k k s O b ª 0.Ž .Ý Ý Ý Ýsy t x t y s x t y s2 H 2 Hnb nbŽ . Ž . sŽ . Ž . ttgA x sgA y

Ž .On the other hand, for 0 - H - 1r2, we use 1.9 to write

1
d k kÝ Ý syt x t y s2 HnbŽ . Ž . Ž .tgA x sgB y

1
s k d k y kŽ .Ý Ýy s syt x t x s2 HnbŽ . Ž . Ž .sgB y tgA x

3.14Ž .

1
y k k d .Ý Ýy s x s syt2 HnbŽ . Ž . Ž .sgB y tgB x

The first term on the right-hand side is bounded in absolute value by

22 2 HK nb nb nŽ .2 Hy1< <s y t s OÝ Ý2 Hq1 2 Hq1ž / ž /ny y s nnb nbŽ . Ž .Ž . < <sgB y syt Fn

s O b1y2 H .Ž .
The second term is bounded by

2 `K nb
1y2 H 3y2 H< < < <k d s O n b ,Ž .Ý Ýx s syt2 H ž /ny y snbŽ . Ž . tsy`sgB y
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Ž . Ž . Ž .using 3.4 . Thus in view of 3.2 it follows that 3.14 tends to 0. For
1r2 F H - 1,

21 K nb
< <d k k F dÝ Ý Ý Ýsyt x t y s syt2 H 2 H ž /ny y snb nbŽ . Ž .Ž . Ž . Ž . ttgA x sgB y sgB y

s O b2y2 H ,Ž .

Ž .which also tends to 0. Replacing the double summation on the left of 3.14 by
Ý Ý gives the same result. Finallyt g BŽ x . sg AŽ y .

1
d k kÝ Ý sy t x t y s2 HnbŽ . Ž . Ž .tgB x sgB y

2 2K nb nb
< <F d .Ý Ý syt2 H ž / ž /ny y t ny y snbŽ . Ž . Ž .tgB x sgB y

1 11y2 H 4y2 H 4y2 HŽ . Ž .For 0 - H - , this is O n b ª 0, and for F H - 1 it is O b2 2
Ž .ª 0. Thus the proof of 3.12 for x ) y, and thus x - y, is completed. Now

1 Ž . Ž .assume x s y. First let 0 - H - . In view of 1.9 , 3.13 can then be written2

1
d k k y kŽ .ÝÝ syt x t x s x t2 HnbŽ . st

1
2y k d q d .Ý Ý Ýx t syt syt2 H ž /nbŽ . s)nt sF0

3.15Ž .

The second term is

y2 H 2 Hy12 Hy1 23.16 O nb t q n y t q 1 k .Ž . Ž . Ž .� 4Ý x tž /
t

Ž .For M g 0, xr2b

1
2 Hy1 2t kÝ x t2 HnbŽ . t

2 Hy1w xnbM n1 nbMŽ .
2 2 Hy1 2F max k t q k .Ý Ýx t x t2 H 2 H1FtFnbMnb nbŽ . Ž .ts1 w xts nbM q1

Ž . Ž 2 Hy1.By 3.4 the second term on the right is O M as n ª `, and can be
made arbitrarily small on making M large. For any M the first term

Ž . Ž .approaches 0 as n ª ` because nx y nbM rnb ª ` and k v ª 0 as v ª `.
Ž . Ž . Ž .The other part of 3.16 can be treated in the same way, so that 3.16 is o 1 .
X Ž . < < 2 Hy2 < < XFor « ) 0 put d s u H j if 0 - j - nbr« , and d s d otherwise.j j j
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Ž .Then the first part of 3.15 differs from

1
X3.17 d k k y kŽ . Ž .ÝÝ tys x t x s x t2 HnbŽ . st

by

1 2 Hy1< < < <O k z s y tÝ Ýx t syt2 Hq1ž /nbŽ . t < <0- tys Fnbr«

w xnbr«1
2 Hy1s O z j ª 0,Ý j2 Hž /nbŽ . js1

Ž .where z ª 0 as j ª ` and we use the Toeplitz lemma. Then 3.17 differsj
Ž . ` Ž .from r H by H H f v, w dv dw, wherey` n

d X
tys 2 Hy2< <f v , w s k k y k y u H v y w k v k w y k v� 4Ž . Ž . Ž . Ž . Ž . Ž .n x t x s x t2 Hy2nbŽ .

for
nx y t y 1 nx y t nx y s y 1 nx y s

- v F and - w F ,
nb nb nb nb

s, t s 1, . . . , n ,
and

< < 2 Hy2f v , w s yu H v y w k v k w y k v� 4Ž . Ž . Ž . Ž . Ž .n

for
x y 1 1 x 1

v F y or v ) y or
n nb n nb
x y 1 1 x 1

w F y or w ) y .
b nb b nb

For almost all v,

lim max k y k v s 0Ž .x t
nª` ŽŽ . . Ž .t : 0F nxyt rnb yv- 1rnb

Ž .from Assumption 3 and 3.2 , while from Assumption 1, for all v / w,
2y2 H 2 Hy2X < <lim max nb d y u H v y w s 0,Ž . Ž .tys

nª` <ŽŽ . . < Ž .s , t : syt rnb qwyv F1r nb

Ž .so that, for all fixed M, f v, w ª 0 as n ª ` for almost all v, w such thatn
< < < Ž . < < < 2 Hy1v y w F M. For all sufficiently large n, f v, w F K v y w from As-n
sumption 3, and so

K
X< < < <f v , w dv dw F k dŽ . Ý ÝHH n x t syt2 H

< <vyw GM nbŽ . t < <syt )nbMr2

2 Hy2< <q K k v v y w dv dw,Ž .HH
< <vyw )M
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12 Hy1Ž .and this is O M ª 0 as M ª `. The proof is completed for 0 - H - .2
1 Ž .When H s , 3.13 with x s y is 2p times2

`1 Ž .nxyt rnb2 22 2k s k v dv q k y k v dvŽ . Ž .� 4Ý ÝH Hx t x tnb Ž .y` nxyty1 rnbt t

` Ž .xy1 rb2 2y k v dv y k v dvŽ . Ž .H H
xrb y`

` 12 3s k v dv q O q bŽ .H ž /nby`

1 Ž .by straightforward use of Assumption 3. For - H - 1, the proof of 3.12 is2

omitted because it is similar to, and simpler than, that already given for
10 - H - , and the same type of result has been obtained previously, albeit2

w Ž .under somewhat different conditions see Hall and Hart 1990 ; Csorgo and¨ ˝
Ž .xMielniczuk 1995b, c . I

1 Ž .In case H G , 3.2 entails only nb ª ` and b ª 0. To estimate the bias2

of r we impose the following.ˆ

Ž .ASSUMPTION 4. Either r x satisfies a Lipschitz condition of degree t ,
Ž .0 - t F 1, or r x is differentiable with derivative satisfying a Lipschitz

condition of degree t y 1, 1 - t F 2.

The following lemma is standard and the proof is omitted.

Ž .LEMMA 4. Under 1.1 with Eu s 0, t s 1, 2, . . . , and Assumptions 3 andt
Ž .4, for all x g 0, 1

� Ž . Ž .4 Ž t .E r x y r x s O b , 0 - t F 1ˆ
t y1Ž .s O b q n , 1 - t F 2.

Ž .In order that the bias be small enough to permit centering at r x in the
central limit theorem, we impose the following.

ASSUMPTION 5. For the same t as in Assumption 4,
y1 1yH 1yHqt3.18 nb q n b ª 0 as n ª `.Ž . Ž .

For given t , the strength of Assumption 5 decreases in H, so that a given
1b requires less smoothness in r when H ) compared to the usual case2

1 1H s , but more when H - .2 2

Ž .THEOREM 1. Let 1.1 and Assumptions 1]5 hold. Then for any distinct x ,i
Ž . Ž .1yH� Ž . Ž .4i s 1, . . . , I, in 0, 1 , the nb r x y r x , i s 1, . . . , I, converge toˆ i i

Ž Ž ..independent N 0, Gr H variates as n ª `.
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PROOF. From Lemmas 3 and 4 and Assumption 5 we have that
Ž .1yH � Ž . Ž .4 Ž . Ž .nb E r x y r x ª 0 and 3.3 holds for all x, y g 0, 1 , noting that forˆ

Ž x Ž . Ž .all t g 0, 2 , 3.18 implies 3.2 . By the Cramer]Wold device, it then remains´
to show that for all constants h , . . . , h that are not all zero,1 I

y1r2I I
yH 2nb Gr H h h k u ª N 0, 1 .Ž . Ž . Ž .Ý Ý Ýi i x t t di½ 5 ž /

is1 t is1

Ž .By Lemma 3, the left-hand side differs by o 1 from Ý w u , wherep t tn t

I
yH y1w s nb n h k ,Ž . Ýtn n i x ti

is1
2 Ž .y2 H Ž � I 4 . Ž .where n s nb V Ý Ý h k u . Then 2.2 holds and we need ton t is1 i x t ti 1Ž . Ž .check 2.3 . From Assumption 3, the left-hand side of 2.6 is, for - H - 1,2

1r2 1r2yHI1 1 nbŽ .
2O k q s OÝ Ý x t2 H Hi2½ 5 ž /nž /nb n nb nŽ . Ž . nis1 tn n

1from the proof of Lemma 3 and choosing a ' 1, say, whereas for H s we2

can choose a such that ay1 q arnb ª 0 as n ª ` so that the left-hand side
Ž .of 2.6 is

1r2I1 a
2 y1o k q O s o n .Ž .Ý Ý x t n2 i½ 5 ž /ž / nbnnbn nn is1 t

1 2Ž .For 0 - H - we consider ii of Lemma 2. Note first that s ;n2
2 H Ž . Ž . w Ž .xn Gu H rH 2 H y 1 ª ` see 1.12 . For each i, introduce an increas-

Žw x w x.ing integer-valued sequence z s z - min nx , n y nx , and put p si in i i i
w x w xnx y z , q s nx q z . Theni i i i i

4p y1 p y1i iK nb
2 2w F hÝ Ýi tn i2 H 2 ž /nx y tnb nŽ . its1 ts1n

4y2 H `K nbŽ . y4F jÝ2nn w xjs nx ypi i

4y2 HnbŽ .
s O ,2 3ž /n zn i

with the same bound for Ýn w2 . It follows from Assumption 3 thattsq q1 i tni

yHqi nbŽ .
< <^w s O .Ý i tn ž /nntspi

Ž . Ž H .For t F q , s s O s s O z as n ª `, soi typ q1 q yp q1 ii i i

H1r2q z rnbŽ .i1r2< <^w s q 1 s O .Ý Ž .i tn typ q1i ž /nntsp
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< <Ž 1r2 . ŽŽ 1r2 .H . Ž .Ž4yH .r3Clearly w s q1 sO z rnb rn also. Taking z ; nb ,iq n q yp q1 i n ii i i
Ž Ž . .say which is o n under Assumption 5 , it follows that the left-hand side of

Ž . Ž y1 . Ž .2.7 is o n . Now Lemma 3 implies that n ª Gr H and so application ofn n
Ž .Lemma 2, for any H, requires r H ) 0, because G ) 0 is assumed. Clearly

1 1Ž . Ž . Ž .r ) 0 from 1.3 . It is not immediately obvious that r H ) 0 for - H - 12 2

because we have not assumed that k is nonnegative. However, noting that for
v ) 0,

`2 bp
by1 ybv s G b cos l cos lv dl, 0 - b - 1,Ž . Ž .Hž /p 2 0

< <and replacing v by v y w and b by 2 H y 1, we have after rearrangement
and use of the reflection formula for the gamma function

2
` `

1y2 H 1i vl< <r H s l k v e dv dl, - H - 1;Ž . Ž .H H 2
y` y`

Ž .this is positive because 1.3 and Assumption 3 implies that the Fourier
Ž .transform of k is not almost everywhere zero. To prove that r H ) 0 for

10 - H - , note that2

`u H 1Ž . 2 2 Hy2< <r H s y k v y k w v y w dv dw, 0 - H - ;� 4Ž . Ž . Ž .HH2 2y`

1Ž . Ž .this is positive because u H - 0 for 0 - H - , and 1.3 and Assumption 32

imply that k is not almost everywhere constant. I

Ž .A similar end result was achieved by Roussas, Tran and Ioannides 1992 ,
Ž .Csorgo and Mielniczuk 1995a , and Tran, Roussas, Yakowitz and Truong¨ ˝

1Ž . Ž .Van 1996 , in case H s , and by Csorgo and Mielniczuk 1995b, c , Deo¨ ˝2
1Ž .1997 in case - H - 1. We previously indicated how their assumptions2

differ from ours in respect of their global implications for f. In other respects,
their conditions are sometimes weaker, sometimes stronger than ours; there
is substantial scope for trade-offs between the assumptions on u , r, k and b.t

Ž .We can partially extend Theorem 2.2 of Hall and Hart 1990 by assuming
that r is twice continuously differentiable with second derivative r 0 and

Ž . Ž .impose 3.2 rather than 3.18 : an easy extension of Lemma 4 gives
2 2 Hy2 24E r x y r x ; nb Gr H q b k r 0 x r4,� 4Ž . Ž . Ž . Ž . Ž .ˆ 2

2 Ž .where k s H v k v dv, and thence the ‘‘optimal bandwidth’’2

Ž .1r 6y2 H2 ŽHy1.rŽ3yH .b̂ s 2 y 2 H Gr H rk r 0 x n .Ž . Ž . Ž .� 42

The optimal rate has exponent which tends to y1r3 as H x0, and increases
Ž .in H to 0 as H ­1. Ray and Tsay 1996 discuss a practical procedure for the

choice of b.

4. Studentization. In practice G and H will be unknown and estimates
will have to be inserted in the approximate variance formula implied by
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Theorem 1. In order to ensure that such studentization does not affect the
limiting distribution we first present a lemma.

Ž . Ž .LEMMA 5. Under Assumption 3, r H is continuous on 0, 1 .

Ž .PROOF. Write r H , for H / 1r2, as
`

2 Hy2< <r H s u H k v v dv,Ž . Ž . Ž .H
y`

where
`

1k v s k v q w y k w k w dw, 0 - H - ,� 4Ž . Ž . Ž . Ž .H 2
y`

`
1s k v q w k w dw, - H - 1.Ž . Ž .H 2

y`

Ž . Ž .Clearly u H is continuous on 0, 1 . Evenness of k implies evenness of k .
Boundedness and integrability of k imply boundedness of k . For v ) 0,

12 Hy2 2 Hy2Ž . � Ž . Ž .44.1 k v v F Kv vI 0 F v F 1 q I v ) 1 , 0 - H - ,Ž . 2

2 Hy2 2 Hy2 Ž .k v v F Kv I 0 F v F 1Ž .
Ž .4.2

1Ž .q k v q w k w dwI v ) 1 , - H - 1,Ž . Ž .H 2

Ž .where bounded differentiability of k is used in 4.1 and the right-hand sides
Ž . Ž .of 4.1 and 4.2 are both integrable in view of the respective values of H

concerned and the integrability of k. Because v2 Hy1 is continuous in H for
v ) 0, the lemma is proved for H / 1r2 by dominated convergence. To prove
continuity at H s 1r2, note first that for H / 1r2,

`
2 Hy2u H k v v dvŽ . Ž .H

0
`2 Hy1

`k v v u HŽ . Ž .
2 Hy1s u H y k 9 v v dv,Ž . Ž .H2 H y 1 2 H y 1 00

4.3Ž .

Ž . ` Ž . Ž .where k 9 v s H k9 v q w k w dw satisfiesy`

`yvr2
k 9 v F k9 v q w k w dw q k9 v q w k w dwŽ . Ž . Ž . Ž . Ž .H H

y` yvr2

y1y1 1qh2 < <s O 1 q v q 1 q v .Ž . Ž .ž /
< Ž . j < j Ž 1qh .Thus k 9 v v is bounded by the integrable function v r 1 q v , when

1< <j F hr2, say. Thus by dominated convergence, as H ª ,2

` ` `
2 Hy1 2k 9 v v dv ª k 9 v dv s y k v dv.Ž . Ž . Ž .H H H

0 0 y`
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Because
14.4 cos p 1 y H r 2 H y 1 ª pr2 as H ª ,� 4Ž . Ž . Ž . 2

Ž . Ž .it follows that the last term of 4.3 tends to r 1r2 r2. The proof is completed
Ž . Ž .on noting that the first term on the right-hand side of 4.3 is zero, using 4.4

Ž .and also 4.1 in case of H ­1r2 and

` yvr2 y2k v F k v q w k w dw q k v q w k w dw s O vŽ . Ž . Ž . Ž . Ž . Ž .H H
yvr2 y`

as v ª ` in case H x1r2. I

ˆ ˆNow suppose we have estimates G, H satisfying the following assumption.

ASSUMPTION 6.

ˆ ˆ4.5 G ª G , log nb H y H ª 0 as n ª `.Ž . Ž . Ž .p p

The following theorem is a simple application of Theorem 1, Lemma 5 and
Ĥy H ˆ ˆ<Ž . < < < Ž � <Slutsky’s lemma, and the inequality nb y 1 F H y H log nb exp H

< 4.y H log nb for nb ) 1.

Ž .THEOREM 2. Let 1.1 and Assumptions 1]6 hold. Then for any distinct x ,iˆy1r2 1yHˆ ˆŽ . � Ž .4 Ž . � Ž . Ž .4i s 1, . . . , I, in 0, 1 the Gr H nb r x y r x , i s 1, . . . , I, con-ˆ i i
Ž .verge to independent N 0, 1 variables as n ª `.

We now discuss estimation of H and G. The mildness of Assumption 6
indicates little incentive for basing estimates on a full parametric model for
Ž . Ž xf l across yp , p , such as a fractionally integrated autoregressive moving

Ž .average FARIMA model, which would typically lead to estimates that are
'n -consistent if the autoregressive and moving average orders are correctly

w Ž .xspecified Fox and Taqqu 1986 , but inconsistent otherwise. As the discus-
sion of Section 1 suggests, it is more appropriate to base estimates on

Ž . Ž .Assumption 1 or 1.7 . Several such estimates based on observable u havet'been justified as less than n-consistent but to have convergence rates which
Ž .can satisfy Assumption 6. The estimate suggested by Kunsch 1987 seems,¨

Ž .on the basis of results of Robinson 1995b , to have desirable large sample
properties. To adapt this, we suggest as proxies for the u :t

y14.6 u s y y nc ll y i ,Ž . Ž .ˆ Ýt t s ttysž /
s

Ž w x. ŽŽ . . Ž .where i s I nc - t F n y nc , ll s ll t y s rnc , ll v is a kernel func-t tys
w Ž .xtion not necessarily identical to k v satisfying

1
< <4.7 ll v s 0 for v ) 1, ll v dv s 1,Ž . Ž . Ž .H

y1
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Ž .and c is a positive bandwidth number not necessarily equal to b . Without
taking the u to be zero close to the boundaries, and the compact supportˆt
assumption on ll , an additional term would arise in the proof of Theorem 3
below which rules out the existence of a suitable c sequence when 0 - H -
1r5, and entails a narrower band of acceptable c’s for other H. The fact that
problems can arise with standard kernel estimates near boundaries is famil-

Ž .iar since the work of Rice 1984a . For sequences p , q , definet t

1
i tl4.8 w l s p e , I l s w l w yl .Ž . Ž . Ž . Ž . Ž .Ýp t p q p q1r22p nŽ . t

w .For l s 2p jrn and integer m g 1, nr2 , letj

m1
2cy1G̃ c s l I l ,Ž . Ž .Ý j uu jˆˆm js1

4.9Ž . m
˜ ˜R c s log G c y 2c y 1 log l ,Ž . Ž . Ž . Ý j

js1

ˆ ˆand define G and H as

ˆ ˜ ˆ ˆ ˜4.10 G s G H , H s arg min R c ,Ž . Ž .Ž .
w xcg D , D1 2

for 0 - D - D - 1. In particular, one can take D s 1 y D s « for some1 2 1 2
small positive « if the admissible region includes negative-dependent and
short-range dependent H values, as well as long-range dependent ones.

We introduce the following further assumptions.

ASSUMPTION 7. For finite constants m and m ,3 4

3 < 4 <E « F s m a.s.; E « F s m , t s 0, "1, . . . .Ž . Ž .t ty1 3 t ty1 4

Ž . Ž . ` i jlASSUMPTION 8. In a neighborhood 0, d of the origin, a l s Ý a ejsy` j
Ž . Ž . Ž < Ž . < .is differentiable and drdl a l s O a l rl as l ª 0q.

Ž xASSUMPTION 9. For some b g 0, 2 ,

4.11 f l ; Gl1y2 H 1 q O l b as l ª 0q,Ž . Ž . Ž .Ž .

w xwhere G ) 0 and H g D , D .1 2

Ž .ASSUMPTION 10. Satisfying 4.7 , ll is even and boundedly differentiable.
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ASSUMPTION 11. As n ª `,
2 4 2y2 H 2 Hy14bm log m 1 c n mŽ .4log n q q q c q q ª 0.Ž . 1y2 H 2 2 Hž /½ 5n m cm m c n

Ž .Assumptions 7]9 are taken from Robinson 1995b , where we note that
Ž 4. Ž 4 < .E « s m is insufficiently assumed, instead of E « F s m . Both As-t 4 t ty1 4

Ž .sumptions 8 and 9 hold with b s 2 in case of FARIMA processes; these
latter also satisfy Assumption 1, which the earlier discussion partially related

Ž .to 4.11 .

Ž .THEOREM 3. Let 1.1 and Assumptions 2, 4 with t s 2, and 7]11 hold,
ˆ ˆ Ž . Ž . Ž . Ž .and let H and G be given by 4.6 , 4.9 and 4.10 . Then 4.5 follows.

The proof of this theorem is extremely technical, and is relegated to the
Appendix.

To interpret the joint impact of Assumptions 5 and 11 when Theorems 2
and 3 are combined, suppose that b ; nyh , c ; nyz , m ; n r. Then Assump-
tion 5 for t s 2 and Assumption 11 hold when

1 y H
b ) 0, - h - 1, z - r - 1,

3 y H
1 1 11 y H q 2 H y 1 r - z - H y 2 H y 1 r .Ž . Ž . Ž .2 4 2

Because H is unknown, it is useful to deduce conditions that hold for all
Ž .H g 0, 1 :

1 2 1 1 1b ) 0, F h - 1, F r - 1, 1 y r F z F r ,Ž .3 3 2 2 2

implying that z s 1r3 when r s 2r3 and we cannot choose z outside
Ž . w .1r4, 1r2 for any r g 2r3, 1 .

Ž .The residual computation 4.6 is rather heavy, and also requires choice of
Ž .c and ll . In the context of independent u , Rice 1984b indicated that thet

error variance can be estimated without computation of nonparametric resid-
uals, but by a differencing of the raw data, while Muller and Stadtmuller¨ ¨
Ž .1987, 1988 considered extensions to more general models. Perhaps more
surprisingly, we now show that when long-range dependence, H ) 1r2, can

ˆ ˆŽ .be taken for granted, it is possible to satisfy 4.5 even when G and H are
computed from the raw data y ; that is, we taket

4.12 u s y , 1 F t F n.Ž . ˆt t

ASSUMPTION 12. For H G D ) 1r2 and some d ) 0, as n ª `1

4b 2y2 Hm n4log n q ª 0.Ž . 1y2 maxŽd , HyD .ž / 1n m

1Ž . Ž .THEOREM 4. For H g , 1 , let 1.1 and Assumptions 2, 4 with t s 2,2

ˆ ˆ Ž . Ž .7]9, and 12 hold, and let H and G be given by 4.9 , 4.10 with D ) 1r2,1
Ž . Ž .and 4.12 . Then 4.5 follows.
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Again the proof is left to the Appendix. Taking b ; nyh , m ; n r as before,
Ž . � Ž .4we now require 2 y 2 H r 1 y 2 max d , H y D - r - 1. While such r ex-1

ist whenever 1r2 - D F H - 1, the admissible set is very narrow when H is1
close to 1r2.

5. Empirical application to Nile data. Some of the earliest theoretical
development of long-range dependence was prompted by empirical studies of
the Nile River data, which has since routinely illustrated new methods of
estimating H. These data consist of readings of annual minimum levels at
the Roda gorge near Cairo, commencing in the year 622; often only the first
663 observations are employed because missing observations occur after the

w Ž .xyear 1284 see Toussoun 1925 . It was one of the hydrological series exam-
Ž .ined by Hurst 1951 which led to his recognition of the ‘‘Hurst effect’’ and

invention of the RrS statistic. The series provides evidence of long periods of
unusually high or low precipitation, named the ‘‘Joseph effect’’ by Mandelbrot

Ž .and Wallis 1968 , who argued that stationary long-range dependent models
Ž .like 1.7 are appropriate for such data, which are notably cyclic but not

periodic. Subsequently, estimates of H for the Nile data were obtained by
Ž . Ž .various methods by such authors as Graf 1983 , Beran 1992 and Robinson

Ž .1995b .
On the other hand, it has been suggested that the phenomena noted by

these authors could also be symptomatic of forms of nonstationarity; see, for
Ž . Ž .example, Klemes 1974 , Bhattacharya, Gupta and Waymire 1983 and

Ž .Teverovsky and Taqqu 1997 , who considered the possibility of a time-vary-
Ž .ing mean, and Beran and Terrin 1996 , who considered piecewise stationar-

ity with H varying over time.
Application of our present methods to the Nile series between 622 and

1284 provides evidence of nonstationarity in the mean and also an illustra-
tion of the consequences of Studentizing with an estimated H rather than by
the conventional method that assumes H s 1r2, and of the desirability of
allowing for the possibility of negative dependent, as well as long-range
dependent, H.

Ž . Ž .We computed r x 1.2 for x s ir30, 1 F i F 29, withˆ
1 < <k v s 1 q cos p v , v F 1,� 4Ž . Ž .2

< <s 0, v ) 1,

w Ž . < < Ž .which satisfies Assumption 3 note that k v is differentiable at v s 1, k9 v
< < < < xtending to 0 as v ­1 and being zero for v ) 1 . In the Studentization we

Ž . Ž .took ll v s k v , so Assumption 10 holds also. We took b s c, considering
weach of the values 0.05, 0.075 and 0.1 these would all result in estimates

Ž .r ir30 that would be exactly independent across i if y were independentˆ t
xacross t, and not merely asymptotically independent as Theorem 1 implies .

ˆ Ž . wIn H given by 4.10 , we took m s 82 one of the values used by Robinson
Ž . x Ž .1995b for the same data and estimates . We tried both choices 4.6 and
Ž . Ž .4.12 of u and computed for x s ir30, i s 1, . . . , 29, the 100 1 y 2a %ˆt
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pointwise confidence intervals

1r2 Ĥy 1ˆ ˆ5.1 r x " z Gr H nbŽ . Ž . Ž .Ž .� 4ˆ a

and

1r2 y1r21 1˜5.2 r x " z G r nb ,Ž . Ž . Ž .˜ � 4Ž . Ž .a 2 2

Ž .for a s 0.05 and 0.025, where P Z ) z s a for a standard normal variatea

Z.
ˆ ˆw Ž .xIn case u s y , we have H s 0.905 as in Robinson 1995b and G s 0.076.ˆt t

For brevity we display only the results for b s c s 0.05 with 90% intervals;
Ž .see Figure 1. The solid line is the interpolated r x , the broken lines indicateˆ

Ž . Ž .the interpolated 5.1 and the dotted lines the interpolated 5.2 ; we stress
that the latter are not simultaneous bands; these are far wider, replacing
z s 1.645 by z s 2.88. There is clearly evidence of changes in level,0.05 0.002

Ž .though use of the conventional H s 1r2 interval 5.2 substantially over-
Ž .states their significance relative to 5.1 . In case u are the modified residualsˆt

ˆ ˆ ˆ ˆŽ .4.6 , H and G vary with c: for c s 0.1, H s 0.6928, G s 0.094; for c s 0.075,
ˆ ˆ ˆ ˆH s 0.614, G s 0.114; for c s 0.05, H s 0.407, G s 0.169. These estimates

ˆthus vary greatly over the range of smoothing employed, H decreasing with c
ˆto the extent even that a negative dependent H occurs when c s 0.05. Fig-
Žure 2 displays the results in the latter case with b s 0.05 and a s 0.05

. Žagain . The intervals are far narrower note the difference in scale from
. Ž . Ž .Figure 1 and now the ones for 5.1 are narrower than those for 5.2 . The

conclusions suggested by the other choices of b, c and a are qualitatively
Ž .similar, though of course the larger b produce smoother r x . This studyˆ

highlights the need for developing methods for choosing b and c which
respond automatically to the strength of the dependence in u .t

APPENDIX

Proofs of Theorems 3 and 4.

PROOF OF THEOREM 3.

Ž .i Plan of proof. We show first that it suffices to prove that, as n ª `,

Ž .2 DyH q1my1 ii 1
A.1 d ª 0,Ž . Ý Ý j p2ž /m iis1 js1

1y2 dmy1 ii 12A.2 log n d ª 0,Ž . Ž . Ý Ý j p2ž /m iis1 js1
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FIG. 1. Nonparametric regression and 90% interval estimates for Nile data based on b s c s 0.05
Ž . Ž . Ž . Ž .and 4.12 : r x }; 5.1 - - - - -; 5.2 ?????.ˆ

2 mlog nŽ .
A.3 d ª 0,Ž . Ý j pm js1

m1
A.4 a y 1 d ª 0,Ž . Ž .Ý j j pm js1

1 1Ž xwhere D s D when H - q D and D g H y , H otherwise; d is an1 12 2
� Ž . Ž .4 1y2 Harbitrarily small positive number; d s I l y I l rg , g s Gl ;j uu j uu j j j jˆˆ

Ž .2ŽDy H . Ž .2ŽD 1y H .a s jrh , 1 F j F h; a s jrh , h - j F m , h sj j
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FIG. 2. Nonparametric regression and 90% interval estimates for Nile data based on b s c s 0.05
Ž . Ž . Ž . Ž .and 4.6 : r x }; 5.1 - - - - -; 5.2 ?????.ˆ

Ž y1 m .exp m Ý log j . Write u s u q v , where v s x q u q z q j and xˆjs1 t t t t t t t t t
Ž . Ž .y1 Ž .y1 Ž . �s u i y 1 , u s y nc Ý ll u i , z s nc Ý r y r ll i , j s r 1t t t s s t t s t s t t ttys tys

Ž .y1 4 Ž .y nc Ý ll i , where r s r trn . By elementary inequalitiess t ttys

1r2< < � 4A.5 I y I F 2 I I q I , I F 4 I q I q I q IŽ . Ž .uu uu uu v v v v v v x x uu zz jjˆˆ

Ž .suppressing reference to the argument l , where here and below subscripted
Ž . Ž .I and w are defined as in 4.8 . We shall then estimate I l rg , and thencev v j j

Ž . Ž .verify A.1 ] A.4 .
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Ž . Ž . Ž .ii Proof of sufficiency of A.1 ] A.4 . This makes heavy use of the proofs of
Ž .Theorems 1 and 2 of Robinson 1995b , which in turn use results of Robinson

Ž .1995a . We have

ˆ ˜ ˆ ˜ ˜ ˆ ˆ< <G y G F G H y G H q G H y G H q G H y G ,Ž . Ž . Ž . Ž .Ž .
ˆ y1 n 2 Hy1Ž . Ž . Ž .where G H s m Ý l I l . The last term on the right is o 1js1 j uu j p

Ž . Ž .from Robinson 1995b , the middle term is o 1 by the remainder of thep
current proof, and the first term is bounded by

ˆ2Ž HyH . ˜ ˆ< <max l y 1 G H s O log n H y HŽ . Ž .j p
1FjFm

w Ž .xcf. the proof of Theorem 5 of Robinson 1994a , so we shall actually show
ˆŽ .Ž .that log n H y H ª 0.p

By a standard type of argument for proving consistency of implicitly
defined extremum estimates,

ˆ ˜< <A.6 P log n H y H G « F P inf S c F 0 ,Ž . Ž .Ž . ž /
QlM

1 ˜ ˜� < < 4 Ž . Ž . Ž .where M s c : log n c y H ) « for « g 0, log n , and S c s R c y2
˜Ž . Ž . � 4R H . As in Robinson 1995b , define Q s c : D F c F D and also Q s1 2 2

1� 4c : D F c F D when H G q D , and to be empty otherwise. For1 12
1Ž . � < < 4 Ž .d g «rlog n, , define N s c : c y H - d , N s y`, ` _ N , so thatd d d2

Ž .A.6 is bounded by

˜ ˜ ˜A.7 P inf S c F 0 q P inf S c F 0 q P inf S c F 0 .Ž . Ž . Ž . Ž .ž / ž /ž /
Q lN lM QQ lN 1 d 21 d

˜ ˆ y1 m 2cy1Ž . Ž . Ž .Now S is S of Robinson 1995b with G c s m Ý l I l replacedjs1 j uu j
˜Ž . Ž .by G c . By the arguments in Theorem 1 of Robinson 1995b , the first two

Ž .probabilities in A.7 tend to 0 if

˜ ˜G c y G c G c y G cŽ . Ž . Ž . Ž .2sup q log n sup ª 0,Ž . pG c G cŽ . Ž .Q Q lN1 1 d

Ž . Ž . m 2Žcy1.where G c s Grm Ý l . By the triangle inequality this is implied ifjs1 j

ˆ ˆG c y G c G c y G cŽ . Ž . Ž . Ž .2A.8 sup q log n sup ª 0,Ž . Ž . pG c G cŽ . Ž .Q Q lN1 1 d

˜ ˆ ˜ ˆG c y G c G c y G cŽ . Ž . Ž . Ž .2A.9 sup q log n sup ª 0.Ž . Ž . pG c G cŽ . Ž .Q Q lN1 1 d

Ž . Ž .Now A.8 is proved with only minor modifications in Robinson 1995b ,
Ž .whereas A.9 is implied if

Ž .2 cyHm m1 j 12 2ŽcyH .A.10 sup d q log n sup j d ª 0.Ž . Ž .Ý Ýj j pž /m m mQ Q lNjs1 js11 1 d
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Ž . Ž .By summation by parts and the inequalities 2 c y H q 1 G 2 D y H y 1 )
<Ž .2ŽcyH . < Ž .0 and, for r ) 0, 1 q 1ri y 1 F 2ri on Q , it follows that A.10 is1

1 1Ž . Ž . Ž . Ž .implied by A.1 ] A.3 . For H F q D , A.1 ] A.3 suffice. For H ) q D ,1 12 2
Ž .the last probability in A.7 can be nonzero, but following the argument in

Ž .Robinson 1995b , it is bounded by

m1 I lŽ .uu jˆˆP a y 1 y 1 G 1Ž .Ý j ½ 5ž /m g jjs1

m1 I l 1Ž .uu jF P a y 1 y 1 GŽ .Ý j ½ 5ž /m g 2jjs1

m1 1
q P a y 1 d G .Ž .Ý j jž /m 2js1

The first of the last two probabilities tends to zero by the proof in Robinson
1Ž . Ž . Ž .1995b , so that A.1 ] A.4 suffice for H ) q D .12

Ž . Ž .iii Estimation of I l rg . Bearing in mind the second inequality inv v j j
Ž .A.5 , we first consider I . We haveuu

py1 23 2EI l s 2p n c f m J m dm ,Ž . Ž . Ž . Ž .Huu l
yp

Ž . i tlyi smwhere J m s Ý i Ý ll e . Nowl t t s tys

J m s i ll e i tlyi sm s ll e i tm i e i tŽlym .Ž . Ý Ý Ý Ýl t ttys t½ 5 ½ 5
st < < w xt Fnc nc-tFny nc

by Assumption 10 and the definition of i , so thatt

A.11 J m F Knc D l y m ,Ž . Ž . Ž .l ny2w nc x

Ž . Ž .where D l is defined below 3.10 . Alson

2p 2 i tlA.12 J m dm s 2p i ll e ,Ž . Ž . Ý ÝH l t tys
yp s t

which is bounded by

2ny1 t n
i vl i tl2p i ll y ll i e q ll i e F KŽ .Ý Ý Ý Ýt v ttys tq1ys nys 2ls ts1 vs1 t

Ž . 3 2for 0 - l - p from 3.11 , and also by Kn c because ll has compact support.
Ž . Ž .For l g 0, p , EI l is bounded byuu

1 3lr2 2
A.13 f m y f l J m dmŽ . Ž . Ž . Ž .H l3 22p n c lr2
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p1 lr2 2
A.14 q q f m J m dmŽ . Ž . Ž .H H l3 2 ½ 52p n c 3lr2 yp

pf lŽ . 2
A.15 q J m dm.Ž . Ž .H l3 2p n c yp

Ž . Ž . Ž Ž . � Ž .y2 4.It follows from both bounds for A.12 that A.15 is O f l min 1, ncl as
Ž . Ž .l ª 0q. We split A.14 into several components. For all H g 0, 1 and

Ž . Ž . 1yHsufficiently small l, there exists « g 3lr2, p such that f m rm s
Ž Ž . 1yH . Ž . Ž .O f l rl , for l - m - « . Thus, as l ª 0q, and using 3.11 and A.11 ,

« p
1yH1 f l mŽ .2

f m J m dm s O dmŽ . Ž .H Hl2 2 1yH 2ž /n c l3lr2 3lr2 m y lŽ .
A.16Ž .

f lŽ .
s O ,ž /l

p p1 2 2 y2A.17 f m J m dm s O f m dmr « y l s O « ,Ž . Ž . Ž . Ž . Ž . Ž .H Hl2 2 ž /n c « yp

1 lr2 l2 2A.18 f m J m dm s O f m dmrl s O f l rl ,Ž . Ž . Ž . Ž . Ž .Ž .H Hl2 2 ž /n c ylr2 yl

Ž . Ž . yl r2 y«using 3.11 , A.11 and Assumption 9, while H and H are treated likey« yp

Ž . Ž . Ž . Ž Ž . .A.16 and A.17 , so that A.14 s O f l rnl . Finally, Assumption 8 and
Ž .3.9 imply that

< <sup f l y f m r l y m s O f l rl� 4Ž . Ž . Ž .Ž .
lr2FmF3lr2

Ž . Ž . Ž .as l ª 0q, so that from 3.11 and A.11 , A.13 is bounded by

Kf l Kf lŽ . Ž .3lr2 lr2
D l y m dm F D m dmŽ . Ž .H Hny2w nc x ny2w nc xnl nllr2 0

Ž Ž . .and this is uniformly O g 1 q log j rj as n ª ` when evaluated at l s lj j
Ž .for j s 1, . . . , m, from Lemma 5 of Robinson 1994b . It follows that uniformly

in j s 1, . . . , m,

1 1 q log j
A.19 I l s O g min 1, q as n ª `.Ž . Ž .uu j p j 2 2½ 5ž /ž /jc j

Ž .Using the same decomposition of yp , p , and by similar arguments to some
of those just used, we deduce that

p1 2
EI l s f m D l y m q D l y m y D l y m dmŽ . Ž . Ž . Ž . Ž .Hxx w nc x n nyw nc x2p n yp

p2 2F f m D l y m dm.Ž . Ž .H w nc xp n yp
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Ž . Ž .Expanding the latter integral as in A.13 ] A.18 and proceeding similarly we
find that, uniformly,

1 q log j
A.20 I l s O g q c .Ž . Ž .xx j p j ½ 5ž /j

w Ž .xTo deal with I , we have see 4.8zz

2y3r2 y3r2Kn t y s Kn t y s
X< < < <w l F i r ll q llŽ . Ý Ý ÝÝz t t tys tysž / ž /c n c ns st t

Ž 1r2 2 .by a two-term Taylor expansion. The last term is trivially O n c . From
Assumption 10 the first term on the right is bounded by

y3r2Kn t y s 12ll y nc v ll v dvŽ .Ý Ý Htysž /c n y1st

Kc t y sŽ .tq1ys rncF ll y v ll v dvŽ .Ý ÝH tys1r2 ½ 5ž /ncn Ž .tys rncst

for n large enough. By the mean value theorem this is bounded by

Kc 1 1 1 y1r2< < < <ll q v dv s O n .Ž .Ý Ý Htys1r2 2½ 5ncn y1ncŽ . st

Thus

A.21 I l s O nc4 q ny1Ž . Ž .Ž .zz j

uniformly. Finally,

2K 1Ž .tq1ys rnc
A.22 I l F i ll y ll v dv s O .� 4Ž . Ž . Ž .Ý ÝHjj t tys 2½ 5 ž /n ncŽ .tys rncst

Ž . Ž .From A.19 ] A.22 it follows that for j s 1, . . . , m,

I l 1 1 q log j nc4 1Ž .Ž .v v j
A.23 s O min 1, q q c q qŽ . p 2 2 2ž /ž /g j gc j nc gj j j

uniformly, as n ª `.
Ž . Ž .iv Verification of A.1 . By changing the order of summation, the left-hand

Ž .side of A.1 is bounded by
m

2Ž HyD .y1 2ŽDyH . < <A.24 Km j d for D - H ,Ž . Ý j
js1

and by
mlog m

< <A.25 K d for D s H .Ž . Ý jm js1
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Ž . Ž .Applying A.5 , A.24 is bounded by
1r2

m mI l I lŽ . Ž .uu j v v j2ŽHyD .y1 2ŽDyH . 2ŽDyH .Km j jÝ Ý½ 5g gj jjs1 js1

m I lŽ .v v j2ŽDyH .q j .Ý g jjs1

A.26Ž .

Ž .Because 2 D y H q 1 ) 0,
m I lŽ .uu j2ŽDyH . 2ŽDyH .q1A.27 j s O mŽ . Ž .Ý pg jjs1

Ž . Ž . Ž . w xby 3.16 of Robinson 1995b . From A.23 , for s g 1, m y 1 ,
m m mI l 1 log jŽ .v v j y2s O s q j q q cmÝ Ý Ýp 2žg jcjjs1 jssq1 js1
Ž .1

m1
4 1y2 H 2 Hy1q nc q n jÝ2ž / /nc js1

A.28Ž .

1 12 4 1y2 H 2 Hs O q log m q cm q nc q n m ,Ž .p 2ž /ž /c nc
y1 Ž . Ž Ž 1r2 .. Ž .on choosing s ; c . Thus A.25 is O log m z q z s o 1 by Assump-p n n p

tion 11, where
2 1y2 H1 log m 1 nŽ .

4z s q q c q nc q .n 2 ž /ž /cm m mnc
1Ž .Proceeding similarly, for D g H y , H2

m I lŽ .v v j2ŽDyH .jÝ g jjs1Ž .A.29
1

2Ž HyD .y1 2ŽDyH .q1 4 1y2 H 2Ds O c q1qcm q nc q n mp 2ž /ž /nc

Ž . Ž 1r2 . Ž .so that A.24 is O z q z s o 1 .p n n p
Ž . Ž . Ž .v Verification of A.2 . The left-hand side of A.2 is bounded by

m
2 2 dy1 y2 d < <K log n m j dŽ . Ý j

js1

2 2 dy1F K log n mŽ .A.30Ž .

=

1r2
m m mI l I l I lŽ . Ž . Ž .uu j v v j v v jy4d y2 dj q j .Ý Ý Ý½ 5g g gj j jjs1 js1 js1
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1Ž . Ž . Ž Ž ..Applying A.27 ] A.29 with d g 0, min , H , this is4

1r22 1y2 H1 log m 1 nŽ .2 4O log n q q c q nc q s o 1Ž . Ž .p p2 ž /ž /ž /mc m mncž /
by Assumption 11.

Ž . Ž . Ž .vi Verification of A.3 . In view of the bound for A.25 , the left-hand side
Ž . ŽŽ .2Ž 1r2 ..of A.3 is clearly O log n z q z ª 0 under Assumption 11.p n n p
Ž . Ž . Ž .vii Verification of A.4 . From Robinson 1995b we have h ; mre as

Ž . Ž .n ª ` and using a s O 1 uniformly for j ) h and vi the left-hand side ofj
Ž .A.4 is, as n ª `, bounded by

m m1 1
2ŽDyH .< < < <a d q o 1 s O j d q o 1 s o 1Ž . Ž . Ž .Ý Ýj j p p j p p2ŽDyH .q1ž /m mjs1 js1

Ž .by i . I

Ž . Ž .PROOF OF THEOREM 4. It suffices to check A.1 ] A.3 only, with d definedj
Ž . Ž .as before but with I defined in terms of 4.12 . The first part of A.5 stilluuˆˆ

Ž . Ž .holds but now v s r , and so by Assumption 4, 3.11 and A.11 ,t t

ny1K K K
< < < <w l F v y v D l q v D l F ,Ž . Ž . Ž .Ýv t tq1 t n n1r2 1r2 1r2n n n lts1

0 - l - p .
Ž . Ž 2y2 H 3y2 H . Ž .It follows that I l rg s O n rj uniformly. Next, A.26 isv v j j

1r2m m
2Ž HyD .y1 2ŽDyH .q1 2y2 H 2Dy3 2y2 H 2Dy3O m m n j q n jÝ Ýp ½ 5ž /js1 js1

s O mŽHyD1.y1r2 n1yH q m2Ž HyD1.y1n2y2 H s o 1 ,Ž . Ž .p p

Ž .under Assumption 12, and because D s D . Likewise A.25 is1

log m n1yH n2y2 H
1r22y2 H 2y2 HO mn q n s O log m q s o 1 .Ž . Ž .½ 5p p p1r2½ 5ž / ž /m mm

1Ž . Ž . Ž .Thus A.1 is checked. To check A.2 , we see that A.30 is, with 0 - d - ,4

1r22 2 dy1 1y4d 2y2 H 2y2 H� 4O log n m m n q nŽ .p ž /
n1yH n2y2 H

2s O log n q s o 1Ž . Ž .p p1r2 1y2 dž /ž /m m

Ž .under Assumption 12. Finally, A.3 is

n1yH n2y2 H
2O log n q s o 1 . IŽ . Ž .p p1r2ž /ž /mm
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