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ON THE CONSTRUCTION AND EXISTENCE
OF ORTHOGONAL ARRAYS WITH THREE

LEVELS AND INDEXES 1 AND 2

BY S. HEDAYAT,1 JOHN STUFKEN 2 AND GUOQIN SU1

University of Illinois, Chicago, Iowa State University and
University of Illinois, Chicago

We study the construction of orthogonal arrays with three levels and
index 1 and the existence of orthogonal arrays with three levels and index
2. For strength greater than or equal to 2, we show that orthogonal arrays
with three levels and index 1 are unique, and we establish the maximum
number of factors for orthogonal arrays with three levels and index 2.

1. Introduction. An N = k matrix A with entries from a set S of
cardinality s is called an orthogonal array of strength t, 1 F t F k, denoted

Ž .by OA N, k, s, t , if every N = t submatrix of A contains each t-tuple based
on S equally often as a row. The common frequency with which each of the
t-tuples appears as a row in a submatrix must be equal to Nrs t, which is
referred to as the index of the array and is denoted by l. The number of rows
N and columns k are also called the number of runs and factors of the array,
respectively, while s is called the number of levels of the array. We will

� 4always take S s 0, 1, . . . , s y 1 .
Ž .Orthogonal arrays were introduced by Rao 1946, 1947 under the name of

‘‘hypercubes.’’ Besides being used for the construction of various other combi-
natorial configurations, they are popular among statisticians for their proper-
ties in fractional factorial experiments. It is well known that an orthogonal

Žarray of strength t is a fractional factorial design of resolution t q 1 see, e.g.,
Ž .. Ž . Ž .Raktoe, Hedayat and Federer 1981 . Cheng 1980 and Mukerjee 1982

showed that orthogonal arrays have desirable optimality properties as frac-
tional factorials. The often-used regular fractional factorial designs, that is,
the fractions that are obtained from a defining relation, are examples of
orthogonal arrays. The class of orthogonal arrays, however, contains also
nonregular fractions. For example, for a regular fractional factorial design,
the number of runs must be a power of s, or equivalently, the index must be a
power of s; for an orthogonal array this restriction does not apply.

Orthogonal arrays with two or three levels are especially of interest for
statistical applications. Orthogonal arrays with two levels are often used at
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the exploratory stage of an investigation when not much is known about how
the factors affect a response of interest. Orthogonal arrays with three levels
can be useful for detecting and testing of linear and quadratic effects of a
factor.

Important research problems in the area of orthogonal arrays include the
construction of orthogonal arrays of various strengths and indexes, and the
identification of the maximum possible number of factors in an orthogonal
array for given strength, index and number of levels. See Hedayat, Sloane

Ž .and Stufken 1997 for further details.
We will study the construction of orthogonal arrays with three levels and

index 1 and the existence of orthogonal arrays with three levels and index 2.
In Section 2, we will show that, for any strength t G 2, there is, up to
isomorphism, only one orthogonal array with three levels, index 1 and the
maximum possible number of factors. In Section 3, we will, again for any
strength t G 2, establish the maximum number of factors for orthogonal
arrays with three levels and index 2. These arrays can be constructed easily,
as we will see.

Some of the techniques used in this paper are also potentially useful for
studying the existence and construction of other orthogonal arrays.

2. On the construction and uniqueness of orthogonal arrays with
three levels and index 1. We will consider a general method of construc-
tion for orthogonal arrays with three levels and index 1. The method provides

Ž t .an orthogonal array OA 3 , t q 1, 3, t and we will show that, up to isomor-
phism, there is a unique orthogonal array with these parameters. It should be
noted that for t G 3 such an orthogonal array possesses the maximum

w Ž .xpossible number of factors Bush 1952 .
� 4 � 4For the method of construction, let c , . . . , c g 1, 2 , and c g 0, 1, 2 .1 t

t Ž .Construct a 3 = t q 1 array as follows:

1. Use each of the 3t-tuples based on 0, 1 and 2 exactly once as a row to form
the first t columns of the array.

Ž . t2. With x , . . . , x as a row restricted to the first t columns, take Ý c x q c1 t is1 i i
Ž . Ž .mod 3 as the entry for that row in the t q 1 th column.

Ž t .The array constructed in this way is an orthogonal array OA 3 , t q 1, 3, t
Ž .and will be denoted by A c , . . . , c , c . As fractional factorial designs, the1 t

Ž .arrays A c , . . . , c , c are precisely the regular fractional factorial designs.1 t
Ž t .We will show that any orthogonal array OA 3 , t q 1, 3, t can be obtained via

this method of construction, and thus also that any such array is a regular
fractional factorial design. This result will also imply that any two arrays

Ž t .OA 3 , t q 1, 3, t are isomorphic, meaning that one can be obtained from the
other by a sequence of permutations of rows, columns, and levels of one or
more of the factors.

Ž t .LEMMA. For t G 2, if A is an orthogonal array OA 3 , t q 1, 3, t , then A is
a regular fractional factorial design.
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� 4 � 4PROOF. We need to show that there are c , . . . , c g 1, 2 and c g 0, 1, 21 t
such that the runs of A are, up to a permutation, precisely those of
Ž .A c , . . . , c , c . In the first t columns of A, every t-tuple based on 0, 1 and1 t

2 appears exactly once. Hence, the runs of A are of the form
Ž Ž .. Ž . � 4x , . . . , x , g x , . . . , x , where g x , . . . , x g 0, 1, 2 and x s 0, 1 or 2 for1 t 1 t 1 t i

� 4i s 1, . . . , t. The goal is to show that there are c g 1, 2 , i s 1, . . . , t andi
� 4 Ž . t Ž .c g 0, 1, 2 such that g x , . . . , x ' Ý c x q c mod 3 for all x ’s. This1 t is1 i i i

Ž .means that g 0, . . . , 0 s c. Subtracting c from each entry in the last column
Ž t .of A leads to an orthogonal array OA 3 , t q 1, 3, t with the property that

Ž .g 0, . . . , 0 s 0. Hence, we may assume without loss of generality that
Ž .g 0, . . . , 0 s 0, that is, that the all-zero run is part of the array. With e ,i

i s 1, . . . , t, denoting the t-tuple with a 1 in position i and a 0 elsewhere, it
Ž . Ž .follows now also that c s g e , . . . , c s g e , and that all of the c ’s are1 1 t t i

Žnonzero. Since the array has strength t and index 1, the difference of any
two runs in the array, computed modulo 3, must have at least two nonzero
elements. Considering the all-zero run and the runs that start with the e ’si
gives the desired conclusion. This type of reasoning is also used repeatedly in

.what follows. We will show that
t

1 g x , . . . , x ' c x mod 3 ,Ž . Ž . Ž .Ý1 t i i
is1

for all x s 0, 1 or 2, i s 1, . . . , t, by using induction on the weight ofi
Ž . Ž .x , . . . , x , which is defined as the number of nonzero entries in x , . . . , x1 t 1 t

Ž . Ž .and which is denoted by wt x , . . . , x . If wt x , . . . , x s 1, then, using that1 t 1 t
Ž . Ž . Ž .g 0, . . . , 0 , g e and g 2 e are different for every i s 1, . . . , t since the arrayi i

Ž . Ž .has strength t and index 1, it follows that g 2 e s 2c and that 1 is true.i i
Ž . Ž . Ž .Assume now that 1 is true for all x , . . . , x with wt x , . . . , x F l,1 t 1 t

Ž . Ž .where l F t y 1. We need to show that 1 is true for all y s x , . . . , x1 t
Ž .with wt y s l q 1. Without loss of generality we can assume that y s

Ž .x , . . . , x , 0, . . . , 0 , where each of the first l q 1 entries is nonzero. We1 lq1
Ž . lq1 Ž . Ž .need to show that g y ' Ý c x mod 3 . To see this, suppose that g y kis1 i i

lq1 Ž .Ý c x mod 3 . Now define the following other t-tuples.is1 i i

For j s 1, . . . , l q 1, let y be obtained from y by changing its jth entry1 j
to 0.

Ž .Let y be obtained from y by changing its l q 1 th entry to 2 x .2 lq1
Let y be obtained from y by changing its 1st entry to 0.3 2

Then, since y and y differ for only one entry, it follows that1 j

2 g y / g y .Ž . Ž . Ž .1 j

It follows similarly that
3 g y / g y ,Ž . Ž . Ž .2

4 g y / g yŽ . Ž . Ž .2 1, lq1

and
5 g y / g y .Ž . Ž . Ž .2 3
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Ž .From the induction hypothesis and 2 we see that, for every j s 1, . . . , l q 1,
Ž . lq1 Ž . Ž .g y k Ý c x q 2c x mod 3 . With the above assumption that g y kis1 i i j j
lq1 Ž . Ž . lq1 Ž .Ý c x mod 3 , this implies that g y ' Ý c x q c x mod 3 for everyis1 i i is1 i i j j

j s 1, . . . , l q 1. In particular, this means that c x ' c x ' ??? ' c x1 1 2 2 lq1 lq1
Ž . Ž . Ž . Ž . Ž . Ž .mod 3 , and that g y ' l q 2 c x mod 3 and g y ' lc x mod 3 .1 1 1, lq1 1 1

Ž . Ž . Ž . Ž . Ž .By 3 and 4 this means that g y ' l q 1 c x mod 3 . But by the2 1 1
Ž . linduction hypothesis we have now also that g y ' Ý c x q 2c x '3 is2 i i lq1 lq1

Ž . Ž . Ž . Ž . Ž .l q 1 c x mod 3 . This equality of g y and g y contradicts 5 , and1 1 2 3
concludes the proof. I

THEOREM 1. For t G 2, up to isomorphism, there is a unique orthogonal
Ž t .array OA 3 , t q 1, 3, t .

Ž . Ž .PROOF. Clearly, the orthogonal array A c , . . . , c , c c / 0 is isomorphic1 t
Ž .to the orthogonal array A c , . . . , c , 0 . Permuting the levels 1 and 2 in those1 t

Ž .columns of the orthogonal array A c , . . . , c , 0 where c s 2, leads, up to a1 t i
Ž .permutation of the runs, to the orthogonal array A 1, . . . , 1, 0 . Therefore, all

Ž t .orthogonal arrays OA 3 , t q 1, 3, t are isomorphic to each other. I

Only for t s 2 do the arrays in the lemma not have the maximum possible
number of factors. The maximum is in that case not 3 but 4. It is easy to show

Ž .that an OA 9, 4, 3, 2 is also unique up to isomorphism.

3. On the existence of orthogonal arrays with three levels and
index 2. In this section we will determine the maximum number of factors
in an orthogonal array of strength t with three levels and index 2, a

Ž t .maximum that we will denote by f 2 ? 3 , 3, t .
Ž . ŽFor ts2, applying Theorem 1B of Bose and Bush 1952 leads to f 2 ?

2 . Ž .3 , 3, 2 F 7. An orthogonal array OA 18, 7, 3, 2 can be constructed by the
Ž . Ž 2 .method given in Addelman and Kempthorne 1961 . Hence, f 2 ? 3 , 3, 2 s 7.
Ž . Ž 3 .For t s 3, Hedayat, Seiden and Stufken 1997 proved that f 2 ? 3 , 3, 3

s 5.
Ž tFor general t, combining the runs of any two orthogonal arrays OA 3 , t q

. Ž t .1, 3, t as in Section 2 leads to an orthogonal array OA 2 ? 3 , t q 1, 3, t .
Ž t .Thus, f 2 ? 3 , 3, t G t q 1. Further, for t G 4 it is not hard to see that

Ž t . Ž 4 . Ž 4 .f 2 ? 3 , 3, t F f 2 ? 3 , 3, 4 q t y 4. We will show that f 2 ? 3 , 3, 4 s 5, which
Ž t .will then also establish that f 2 ? 3 , 3, t s t q 1 if t G 4.

Ž 4 .Since f 2 ? 3 , 3, 4 G 5, the result follows if we can show that an orthogo-
Ž .nal array OA 162, 6, 3, 4 does not exist. Let A be a 162 = 6 array based on

Ž .the symbols 0, 1 and 2. Further, let r be a particular run in A and let n ri
denote the number of other runs in A which have exactly i coincidences with

Ž .r. If A is an orthogonal array OA 162, 6, 3, 4 , then it holds that

6 i 6 4y j6 n r s 2 ? 3 y 1 , j s 0, 1, 2, 3, 4.Ž . Ž . Ž .Ý iž / ž /j j
isj
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w Ž .xBose and Bush 1952 . Since the strength and index of the array are 4 and
Ž . Ž .2, respectively, it follows that n r q n r F 1. This implies that the only5 6
Ž .nonnegative integral solutions to 6 are

Ž . Ž . Ž . Ž . Ž .I. n r s 8, n r s 72, n r s 0, n r s 80, n r s 0,0 1 2 3 4

Ž . Ž .n r s 0 and n r s 1.5 6

Ž . Ž . Ž . Ž . Ž .II. n r s 12, n r s 53, n r s 35, n r s 50, n r s 10,0 1 2 3 4

Ž . Ž .n r s 1 and n r s 0.5 6

Ž . Ž . Ž . Ž . Ž .III. n r s 13, n r s 48, n r s 45, n r s 40, n r s 15,0 1 2 3 4

Ž . Ž .n r s 0 and n r s 0.5 6

The desired result, formulated in Theorem 2, is now an immediate conse-
quence of the following three propositions. The proofs of these propositions
are given in the appendices.

Ž .PROPOSITION 1. An OA 162, 6, 3, 4 , if it exists, cannot contain a run such
Ž .that the n r ’s are as in I.i

Ž .PROPOSITION 2. An OA 162, 6, 3, 4 , if it exists, cannot contain a run such
Ž .that the n r ’s are as in II.i

Ž .PROPOSITION 3. Not every run in an OA 162, 6, 3, 4 , if it exists, can yield
Ž .n r ’s as in III.i

THEOREM 2. For t G 4, the maximum number of factors in an orthogonal
array of strength t with three levels and index 2 is t q 1.

Ž t .In closing, as noted previously an OA 2 ? 3 , t q 1, 3, t can be constructed
Ž t .by combining the runs of two orthogonal arrays OA 3 , t q 1, 3, t . This

Ž t . Žconstruction can lead to an OA 2 ? 3 , t q 1, 3, t with no repeated runs a
. tso-called simple orthogonal array , to one in which each of 3 runs is repeated

twice, or to one in which precisely 3ty1 runs are repeated twice. In general,
for an array with index l, we can combine the runs of l arrays with index

Ž t .unity. A characterization of all possible arrays OA l ? 3 , t q 1, 3, t that is
Ž . Žsimilar to that in Seiden and Zemach 1966 for all possible arrays OA l ?

t .2 , t q 1, 2, t is, however, not readily apparent, making it difficult, and
possibly not worthwhile, to identify the number of nonisomorphic orthogonal

Ž t .arrays OA l ? 3 , t q 1, 3, t .

APPENDIX 1

Ž .Proof of Proposition 1. If possible, let A be an OA 162, 6, 3, 4 and let r
Ž . Ž . Ž .be a run in A such that the nonzero n r ’s are as in I: n r s 8, n r s 72,i 0 1
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Ž . Ž .n r s 80, n r s 1. Without loss of generality, we may take r to be the3 6
all-zero run. We will proceed by establishing two properties of the eight runs
with none of the factors at level 0, and then argue that these properties are
not compatible.

To establish the first property, choose any three factors and any 3-tuple
based on levels 1 and 2 only. If this 3-tuple appears a times, say, as a level
combination for the selected factors in the 80 runs with precisely three
factors at level 0, then, in order to form the right number of 4-tuples in which
one of the other factors is at level 0, it must appear 6 y 3a times for the
three selected factors in the 72 runs with precisely one factor at level 0. Since
for any three factors, every 3-tuple must appear six times in the entire array,
this means that the selected 3-tuple must appear 2a times for the selected
factors in the eight runs with none of the factors at level 0. That establishes
the first property: For any three factors we have that every 3-tuple based on 1

Ž .and 2 appears an even number of times possibly zero times in the eight runs
with none of the six factors at level 0.

The second property is established by considering 2-tuples based on 1 and
2 only. Choose any two factors and any 2-tuple based on 1 and 2. All 4-tuples
with these two factors at the level combination given by this 2-tuple and with
two other factors at level 0 must appear twice. This implies that the 2-tuple
must appear four times for the two selected factors in the runs with precisely
three factors at level 0. Considering 3-tuples with these two factors at the
level combination given by this 2-tuple and with only one other factor at level
0, this now also means that the 2-tuple must appear 12 times for the two
selected factors in the runs with precisely one factor at level 0. Since every
2-tuple must appear 18 times in the entire array for every two factors, this
means that the selected 2-tuple must appear twice for the selected factors in
the eight runs with none of the factors at level 0. This establishes the second
property: the eight runs with none of the factors at level 0 must form an

Ž .orthogonal array OA 8, 6, 2, 2 based on levels 1 and 2.
By the second property the eight runs with none of the factors at level 0

must, up to a permutation of the runs, be of the following form, where )
indicates that an entry is 1 or 2.

1 1 ) ) ) )
1 1 ) ) ) )
1 2 ) ) ) )
1 2 ) ) ) )
2 1 ) ) ) )
2 1 ) ) ) )
2 2 ) ) ) )
2 2 ) ) ) )

By the first property the third entry in the two runs of the form 1 1 ) ) ) )
must be the same. The same conclusion holds for the fourth, fifth and sixth
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entries. In other words, the two runs that start with 1 1 must be identical.
The same is true for the two runs that start with 1 2, for those that start with
2 1 and for those that start with 2 2. Hence, the eight runs can be formed by
repeating each run of a four-run array twice. In order for the eight-run array

Ž .to be an OA 8, 6, 2, 2 , as required by the second property, the four-run array
Ž .must be an orthogonal array OA 4, 6, 2, 2 . However, the maximum possible

Ž .value for k in an OA 4, k, 2, 2 is 3, so that we have shown that there cannot
be an array that possesses both of the above properties. I

APPENDIX 2

Ž .Proof of Proposition 2. If possible, let A be an OA 162, 6, 3, 4 and let r
Ž . Ž .be a row in A such that the nonzero n r ’s are as in II: n r s 12,i 0

Ž . Ž . Ž . Ž . Ž .n r s 53, n r s 35, n r s 50, n r s 10, n r s 1. Without loss of1 2 3 4 5
generality, we can take r and the run with five coincidences with r as 000001

Ž j .and 000002. To describe the remaining 160 runs, we let R 0 , i denote the
number of runs of the array with precisely j of the first five factors at level 0

Ž j .and with factor 6 at level i. It can be shown that the values of the R 0 , i ’s
that are not zero are

R 03 , 0 s 20, R 03 , 1 s R 03 , 2 s 10, R 02 , 1 s R 02 , 2 s 20,Ž . Ž . Ž . Ž . Ž .
R 01 , 0 s 30, R 01 , 1 s R 01 , 2 s 15, R 00 , 0 s 4,Ž . Ž . Ž . Ž .
R 01 , 1 s R 00 , 2 s8.Ž . Ž .

5� 4 � 4Moreover, for each i g 0, 1, 2 and j g 0, 1, 2, 3 , each possible pattern of ž /j
Ž j .zeros for the first five factors appears equally often in the R 0 , i runs.

Our attention will focus entirely on the 54 runs with factor 6 at level 0.
Restricted to the first five factors, these 54 runs form an orthogonal array

Ž . Ž .OA 54, 5, 3, 3 with each pattern of three zeros appearing twice 20 runs ,
Ž .each pattern of one zero appearing six times 30 runs , and with four runs
Ž .with none of the factors at level 0. For this OA 54, 5, 3, 3 , if it exists, choose

two factors and a 2-tuple based on 1 and 2 only. If this 2-tuple appears a
times, say, for the two factors in the 20 runs with precisely three zeros, then,
in order to form the right number of 3-tuples with one of the other factors at
level 0, it must appear 6 y 3a times for the selected factors in the 30 runs
with precisely one zero. Consequently, it must appear 2a times for the
selected factors in the four runs with none of the factors at level 0. Thus, each

Ž .2-tuple must appear an even number of times possibly zero times for any
pair of factors in the four runs with none of the five factors at level 0. It is
easily seen that this implies that at least two of these four runs must be

Ž .identical. That also means that the original OA 162, 6, 3, 4 must have two
Ž .identical runs, which implies that there is a row r with n r s 1. This6

possibility, however, was already excluded by Proposition 1, which estab-
lishes the result. I
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APPENDIX 3

Ž .Proof of Proposition 3. If possible, let A be an OA 162, 6, 3, 4 such
Ž . Ž . Ž .that for each run r the nonzero n r ’s are as in III: n r s 13, n r s 48,i 0 1

Ž . Ž . Ž .n r s 45, n r s 40, n r s 15. Without loss of generality, we may as-2 3 4
sume that the all-zero run is one of the runs. It can be shown that the
remaining 161 runs can be partitioned into the following five parts.

Part A. Fifteen runs with precisely four factors at level 0, each pattern of
four zeros appearing once.

Part B. Forty runs with precisely three factors at level 0, each pattern of
three zeros appearing twice.

Part C. Forty-five runs with precisely two factors at level 0, each pattern
of two zeros appearing thrice.

Part D. Forty-eight runs with precisely one factor at level 0, each pattern
of one zero appearing eight times.

Part E. Thirteen runs with none of the factors at level 0.

The 15 rows in Part A are as shown below, where we have named the runs
from A1 to A15:

A1 0 0 0 0
A2 0 0 0 0
A3 0 0 0 0
A4 0 0 0 0
A5 0 0 0 0
A6 0 0 0 0
A7 0 0 0 0
A8 0 0 0 0
A9 0 0 0 0
A10 0 0 0 0
A11 0 0 0 0
A12 0 0 0 0
A13 0 0 0 0
A14 0 0 0 0
A15 0 0 0 0

In runs A11]A15 we can without loss of generality assume that at least
three of the runs have factor 1 at level 1. We can also assume without loss of
generality that these three runs are A11, A12 and A13. Further, in the runs
A11, A12 and A13 we can choose the nonzero levels of factors 6, 5 and 4,
respectively, as level 2. Thus, runs A11]A13 can be taken as follows:

1 0 0 0 0 2
.1 0 0 0 2 0

1 0 0 2 0 0
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From these three runs and the fact that any two runs can have at most four
coincidences, we find that Part B must contain the following six runs:

2 0 0 0 1 1
2 0 0 0 2 2

2 0 0 1 0 1
2 0 0 2 0 2

2 0 0 1 1 0
2 0 0 2 2 0

ŽA box that contains a 1 and a 2 indicates that of the two entries covered by
.the box exactly one must be equal to 1 and the other must be equal to 2.

These six runs and runs A11]A13 determine runs A1]A3 in Part A as:

0 0 0 0 1 1
.0 0 0 1 0 1

0 0 0 1 1 0

Considering runs A1 and A2 and using again that any two runs have at most
four coincidences leads to the following two runs in Part B:

0 0 0 1 1 2 .0 0 0 2 2 2

These last two runs and runs A2 and A3 contain the 4-tuple 0001 three times
for the first four factors. This contradicts that the array is an orthogonal
array with strength 4 and index 2. I
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