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In this paper we study the maximum asymptotic bias of the projection
estimate for multivariate location based on univariate estimates of location
and dispersion. In particular we study the projection estimate that uses
the median and median absolute deviation about the median (MAD) as
univariate location and dispersion estimates respectively. This estimator may
be considered a natural affine equivariant multivariate median. For spherical
distributions the maximum bias of this estimate depends only on the marginal
distributions, and not on the dimension, and is approximately twice the
maximum bias of the univariate median. We also show that for multivariate
normal distributions, its maximum bias compares favorably with those of
the Donoho–Stahel, minimum volume ellipsoid and minimum covariance
determinant estimates. In all these cases the maximum bias increases with
the dimension p.

1. Introduction. There have been several proposals for robust estimation
of multivariate location and scatter based on projections. We can cite the
Stahel–Donoho (SD) estimate [Stahel (1981), Donoho (1982)], the estimates
based on Tukey’s concept of depth, studied by Donoho and Gasko (1992), the
P-estimates of covariance matrices [Maronna, Stahel and Yohai (1992)] and their
extension to multivariate location [Tyler (1994)]. These two last proposals are
closely related to regression P-estimates [Maronna and Yohai (1993)]. Regression
P-estimates possess outstanding robustness properties when the robustness is
measured by the maximum asymptotic bias. In this paper we show that multivariate
location estimates based on the P-estimate approach also have a remarkable bias
performance.

The basic idea common to the different P-estimates is to transform, by means
of projections, a multivariate problem into the corresponding univariate problem,
which is dealt with using univariate estimates. P-estimates of multiple regression
are based on univariate regression and scale estimates, while P-estimates of scatter
(resp. location) require univariate estimates of dispersion (resp. location and
dispersion).
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Let Tn and Sn be location and dispersion univariate estimates; that is, if y∗
i =

ayi + b and a, b ∈ R, then

Tn(y
∗
1 , . . . , y∗

n) = aTn(y1, . . . , yn) + b,

(1)
Sn(y

∗
1 , . . . , y∗

n) = |a|Sn(y1, . . . , yn).

Consider a sample x1, . . . ,xn in R
p. The P-estimate approach relies on the idea

that ζ ∈ R
p is a good center of the data if, for any direction a ∈ R

p , the univariate
projected set a′(x1 − ζ ), . . . ,a′(xn − ζ ) is “well centered” around 0. Then a
measure of how uncentered x1 − ζ , . . . ,xn − ζ are is given by

v(ζ ,Fn) = sup
a �=0

|Tn(a′(x1 − ζ ), . . . ,a′(xn − ζ ))|
Sn(a′x1, . . . ,a′xn)

,

where Fn is the empirical distribution. An ideal center would be a value ζ such that
v(ζ ,Fn) = 0, that is, such that all the projected samples are perfectly centered. But
in general, for an arbitrary data cloud, such a vector ζ does not exist. Tyler (1994)
defines a P-estimate of multivariate location by

TP (Fn) = arg min
ζ∈Rp

v(ζ ,Fn).(2)

Note that

h(ζ ,a,Fn) = |a′ζ − Tn(a′x1, . . . ,a′xn)|
Sn(a′x1, . . . ,a′xn)

is a measure of the outlyingness of a′ζ with respect to the projected sample
a′x1, . . . ,a′xn. Then, supa �=0 h(ζ ,a,Fn) stands for a measure of the outlyingness
of ζ with respect to the data cloud x1, . . . ,xn. Using (1), it is immediate that

h(ζ ,a,Fn) = |Tn(a′(x1 − ζ ), . . . ,a′(xn − ζ ))|
Sn(a′x1, . . . ,a′xn)

and

v(ζ ,Fn) = sup
‖a‖=1

h(ζ ,a,Fn),

which allows for another interpretation of the P-estimate as the center point with
the smallest outlyingness.

Tyler (1994) shows that the P-estimates of multivariate location have a
breakdown point close to 0.5, as long as the corresponding univariate estimates
of location and dispersion also have this property. It is also shown that they are
equivariant. Finally, their rate of consistency is conjectured to be n−1/2.

A good measure of the robustness of an estimate is the maximum bias, which
is the maximum asymptotic bias of the estimate caused by a given fraction of
contamination. Other measures used to summarize the robustness performance of
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an estimate, such as the breakdown point [Hampel (1971)] and the gross error
sensitivity [Hampel (1974)], can be derived from the maximum bias. Riedel (1991)
and He and Simpson (1993) find lower bounds for the maximum bias of equivariant
estimates.

Maronna and Yohai (1993) proved that the maximum bias of the P-estimate
of regression which uses the median of slopes as univariate regression estimate
and the median absolute deviation about the median (MAD) as dispersion is
approximately twice the lower bound for equivariant estimates. The purpose of
this paper is to derive an upper bound for the maximum bias of any P-estimate, in
the case of symmetric distributions, and an exact maxbias curve in the case that the
central model is elliptical and the univariate location and dispersion estimates are
median and MAD respectively. Throughout, this median-based P-estimate will be
called the MP estimate. A lower bound for the maximum bias of any equivariant
estimate of multivariate location is also derived, and it is shown that the maximum
bias of the MP estimate is approximately twice that bound for small contamination.
There are few results on the maximum bias behavior of multivariate location
estimates. We can cite Chen and Tyler (2002), who find the maximum bias and
gross error sensitivity for the location estimate based on Tukey’s depth, and Croux,
Haesbroeck and Rousseeuw (1997), who obtain the maximum bias over point-
mass contaminations of the minimum volume ball, a nonequivariant version of the
minimum volume ellipsoid (MVE) introduced by Rousseeuw (1985).

We compare the maximum bias of the MP estimate for multivariate normal
distributions to other high breakdown point estimates: the MVE estimate, the
minimum covariance determinant (MCD) estimate [Rousseeuw (1985)] and the
SD estimate. Our results show that the maximum bias of the MP estimate is much
better than those of the MVE and MCD estimates for all dimensions, and than that
of the SD estimates for dimensions greater than 5. Moreover, while the maximum
bias of the MP estimate is independent of the dimension, those of the MVE, MCD
and SD estimates increase with the dimension p.

In Section 2 we give the basic definitions and notation. We also give a lower
bound for the maximum bias of an affine equivariant estimate of multivariate
location. In Section 3 we show that the P-estimates are Fisher consistent and
we obtain the maximum bias for the MP estimate. In Section 4.1 we compute
numerically the maximum biases of the MVE, MCD and SD estimates. In
Section 4.2 we report the results of a Monte Carlo study which compares the
efficiencies of the different estimates under the multivariate normal model. The
Appendix contains the proofs.

2. A lower bound for the maximum bias. In the multivariate location model
we observe a p-dimensional random vector X = (X1, . . . ,Xp) with distribution
Fµ = F0(x −µ), where F0 is symmetric around 0; that is, if X has distribution F0,
then −X also has distribution F0. An important case of symmetry are the elliptical
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distributions. We say that X has an elliptical distribution if it has a density of the
form

f (x,µ,�) = 1

(det�)1/2
f0

(
(x − µ)′�−1(x − µ)

)
,(3)

where f0 : R+ → R
+, and � is a p × p positive definite matrix. If X has a

density f (x,0, I ), then a′X has the same distribution for all a ∈ S
p−1 = {a ∈ R

p :
‖a‖ = 1}. This common distribution will be denoted by H0 and its density by h0.

All multivariate location estimates Tn considered in this paper are affine
equivariant; that is, given a sample x1, . . . ,xn, a p × p matrix A and b ∈ R

p ,

Tn(Ax1 + b, . . . ,Axn + b) = ATn(x1, . . . ,xn) + b.(4)

To study the robustness property of the multivariate location estimate we will
consider contamination neighborhoods of the target distribution. Given a fraction
of contamination ε > 0, the corresponding contamination neighborhood of Fµ is
defined by

Vε(Fµ) = {
F = (1 − ε)Fµ + εF ∗ :F ∗ any distribution on R

p
}
.

All estimates studied here are defined by means of a functional on a subset F
of the space of all the distributions on R

p. We will assume that F contains the
empirical distributions and all distributions belonging to Vε(Fµ) and that it is
closed under affine transformations. If x1, . . . ,xn is a random sample from some
distribution F and T is a continuous functional, then T(F ) is the a.s. limit value of
Tn(x1, . . . ,xn). Then it is natural to require that an estimating functional T have
the Fisher consistency property: T(Fµ) = µ. In general, given F ∈ Vε(Fµ) we will
have T(F ) �= µ. Then we define the asymptotic bias of T in F by

b(T,F,µ) = ((
T(F ) − µ

)′
V (F0)

−1(
T(F ) − µ

))1/2
,(5)

where V is an affine equivariant scatter functional. The maximum asymptotic bias
of an estimating functional T for a fraction of contamination ε is defined by

B(T, ε,Fµ) = sup
F∈Vε(Fµ)

b(T,F,µ).(6)

The inclusion of the scatter matrix V (F0) in (5) yields a self-standardizing de-
finition of bias which parallels the notion of self-standardizing gross error sen-
sitivity [see Hampel, Ronchetti, Rousseeuw and Stahel (1986)]. This standard-
ization yields a concept of maximum bias which is invariant by affine trans-
formations when applied to an equivariant functional. Therefore, if the func-
tional T is affine equivariant, the maximum bias does not depend on µ, that is,
B(T, ε,Fµ) = B(T, ε,F0). In the elliptical case, we will assume that the scatter
matrix V used in (5) is Fisher consistent for �, that is, V (Fµ) = �. In this case,
if T is affine equivariant, then the maximum bias is also independent of �. For the
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univariate case (p = 1), the maximum bias of a location estimate T at an arbitrary
distribution G0 reduces to

B(T, ε,G0) = sup
G∈Vε(G0)

∣∣∣∣T (G) − T (G0)

σ (G0)

∣∣∣∣,
where σ(· ) is a dispersion functional.

He and Simpson (1992) introduced the contamination sensitivity of an esti-
mate T as

γ (T,Fµ) = ∂B(T, ε,Fµ)

∂ε

∣∣∣∣
ε=0

.

Observe that γ (T,Fµ) = γ (T,F0) because of the invariance of the bias. For
small ε, the maximum bias can be approximated by

B(T, ε,Fµ) ≈ εγ (T,Fµ).(7)

The contamination sensitivity γ (T,Fµ) is closely related to Hampel’s (1971) gross
error sensitivity γ ∗ (T,Fµ). In fact, it is easy to show that always

γ (T,Fµ) ≥ γ ∗(T,Fµ),

where

γ ∗(T,Fµ) = sup
c∈Rp

∥∥∥∥ lim
ε→0

T((1 − ε)Fµ + εδc) − T(Fµ)

ε

∥∥∥∥,
and δc stands for a point-mass contamination. Under very general regularity
conditions γ ∗(T,Fµ) = γ (T,Fµ).

Huber (1964) proved that if L0 is a univariate symmetric distribution with
unimodal density l0 and Lµ = L0(x − µ), then the maximum bias of the median
estimating functional TM is minimax among the translation equivariant estimates;
that is, if T is another translation equivariant estimating functional, then

B(T, ε,Lµ) ≥ B(TM, ε,Lµ) = L−1
0

(
1

2(1 − ε)

)
= d1(ε,L0).(8)

The maximum bias for the median is achieved when the contaminating distribution
puts all its mass at infinity.

He and Simpson (1993) obtained a lower bound for the maximum bias of
equivariant estimates. Using this result we prove in the next theorem that d1(ε,H0)

is a lower bound for any equivariant multivariate location estimator when the
central model is elliptical, with H0 the univariate marginal distribution for µ = 0
and � = I . Croux, Haesbroeck and Rousseeuw (1997) derived a similar result
when the covariance is known and the central model is multivariate normal.
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THEOREM 1. Assume that X has a distribution with density given by (3),
where f0 is nonincreasing. Then, for any affine equivariant estimate T of
multivariate location, we have

B(T, ε,Fµ) ≥ d1(ε,H0)(9)

and

γ ∗(T,Fµ) ≥ 1

2h0(0)
.(10)

The proof is given in the Appendix.

3. Fisher consistency and maximum bias of P-estimates. Given a distribu-
tion F over R

p , we denote by L(m(X),F ) the law of m(X) when X has distribu-
tion F .

Let T and S be univariate location and dispersion functionals with the following
properties:

P1. They are equivariant; that is, for all a and b,

T (L(X + a,L)) = T (L(X,L)) + a(11)

and

S(L(bX + a,L)) = |b|S(L(X,L)).(12)

P2. The functional T is Fisher consistent for symmetric distributions; that is,
if L is symmetric around 0, then T (L) = 0.

Given a �= 0 and ζ in R
p , define

h(ζ ,a,F ) = T (L(a′(x − ζ ),F ))

S(L(a′x,F ))
(13)

and

v(ζ ,F ) = sup
a �=0

|h(ζ ,a,F )| = sup
‖a‖=1

|h(ζ ,a,F )|.

Then, the estimating functional associated with the P-estimate of multivariate
location introduced in Section 1 is defined by

TP(F ) = arg min
ζ∈Rp

v(ζ ,F ).(14)

Theorem 2 states the Fisher consistency property of the P-estimates.

THEOREM 2. Assume P1 and P2 and let Fµ = F0(x − µ), where F0 is
symmetric. Then TP(Fµ) = µ.

The proof is given in the Appendix.



1766 J. ADROVER AND V. YOHAI

The next theorem gives an upper bound for the maximum bias of P-estimates
when X is symmetric. Since the bias is invariant we will suppose that µ = 0 and
V (F0) = I . Given a multivariate distribution F on R

p, and a ∈ R
p , we denote

by F (a) the distribution of a′X under F . Denote by

B∗(T , ε,F0) = sup
‖a‖=1

B(T, ε,F
(a)
0 ),(15)

where B is defined as in (6) with V (F
(a)
0 ) = 1. Therefore B∗(T , ε,F0) is the

maximum bias of the univariate location estimate T over the distributions F
(a)
0

with ‖a‖ = 1. Given a univariate distribution L, define

C+(S, ε,L) = sup
L∗∈Vε(L)

S(L∗), C−(S, ε,L) = inf
L∗∈Vε(L)

S(L∗)

and

C∗(S, ε,F0) = sup‖a‖=1 C+(S, ε,F
(a)
0 )

inf‖a‖=1 C−(S, ε,F
(a)
0 )

.

THEOREM 3. Assume P1 and P2 and let Fµ = F0(x − µ), where F0 is
symmetric and standardized so that V (F0) = I . Then

B(TP, ε,Fµ) ≤ B∗(T , ε,F0)
(
1 + C∗(S, ε,F0)

)
.

In particular, if Fµ is elliptical we have

B(TP, ε,Fµ) ≤ B(T, ε,H0)

(
1 + C+(S, ε,H0)

C−(S, ε,H0)

)
.

The proof is given in the Appendix.

REMARK 1. If S is a continuous functional, C∗(S, ε,F0) is approximately 1
for small ε, and therefore

lim
ε→0

B(TP, ε,Fµ)

B∗(T , ε,Fµ)
≤ 2.

REMARK 2. To derive the bound of Theorem 3 we need the assumption of
symmetry of X. Under this assumption the projection estimates coincide with the
center of symmetry, facilitating the derivation of the bound. Without the symmetry
assumption the derivation of an upper bound for the maximum bias of TP seems
intractable.

In the sequel, we focus on the exact computation of the maximum bias of the
MP estimate under an elliptical central model. Without loss of generality we may
assume µ = 0 and � = I .
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The following notation is needed for Theorem 4. Let U be a random variable
with distribution H0 and for c ∈ R, let m1(c, ε) be defined by

PH0

(|U − c| ≤ m1(c, ε)
) = 1 − 2ε

2(1 − ε)
,

and m2(c, ε) by

PH0

(|U − c| ≤ m2(c, ε)
) = 1

2(1 − ε)
.

Let d1 be defined as in (8). We also define d2 = d2(ε,H0) = m2(d1, ε), d3 =
d3(ε,H0) = m1(d1, ε), k(c, ε) = c/m1(c, ε) and

d0 = d0(ε) = sup
{c∈[0,d1]}

k(c, ε).

Since

1

2
<

1

2(1 − ε)
= PH0(−d2 − d1 ≤ U ≤ d2 − d1)(16)

and d1 > 0 we obtain that d2 > d1.

REMARK 3. The quantities d2 and d3 have a clear meaning in this context—
d2 and d3 represent the largest and smallest values for the median of |U − d1|
under contamination respectively: d2 arises when the contamination is placed at
infinity and d3 when the contamination is placed at d1. The symbol d0 stands for
the largest value for the standardized median of |U − c| under contamination.

The following theorem gives the maximum bias and sensitivity of the estimating
functional corresponding to the MP estimate TMP.

THEOREM 4. Assume P1 and P2 and suppose that Fµ has a density given
by (3), where f0 is strictly decreasing. Then we have the following:

(i)

B(TMP, ε,Fµ) = d1 + d2d0.(17)

(ii) If k(c, ε) is nondecreasing for c ≤ d1, then

B(TMP, ε,Fµ) = d1

(
1 + d2

d3

)
.(18)

(iii) If k(c, ε) is nondecreasing in a neighborhood of 0, for all ε in a
neighborhood of 0, then

γ (TMP,Fµ) = γ ∗(TMP,Fµ) = 1

h0(0)
.(19)
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The proof is given in the Appendix.

REMARK 4. Observe that, in the elliptical case, the maximum bias of the
MP estimate depends only on the marginal distribution. Therefore the maximum
bias is not affected by the dimension as long as the marginal distribution remains
unchanged. As we will see in Section 4, for other estimates of multivariate location
such as the MVE and the SD estimates, the maximum bias increases with p even
in the normal case.

The maxbias of Tukey’s median [Chen and Tyler (2002)] is also dimension-free
when considering elliptical distributions. However, this property no longer holds
in the nonelliptical case. A counterexample can be constructed by taking a vector
of p independent Cauchy random variables (as opposed to spherical Cauchy). The
dependency is a factor of the square root of the dimension [Tyler (2000)]. We
conjecture that the maxbias of the MP estimate is also dependent on the dimension
when the marginals of the multivariate distribution consist of independent Cauchy
variables. Unfortunately, we have not been able to prove this fact.

REMARK 5. If X is multivariate normal, then H0 is N(0,1). Numerical
computations show that in this case k(c, ε) is increasing for c ≤ d1 provided
ε < 0.4088, and therefore (18) holds. If ε > 0.4088, then ∂k(c, ε)/∂c|c=d1 < 0
and the maximum of k(c, ε) is attained for c < d1.

REMARK 6. From (7), (10) and (19) it follows that, under the conditions of
Theorem 1, the maximum bias of TMP for small ε is approximately twice the
minimum possible bias for equivariant estimates.

REMARK 7. Chen and Tyler (2002) derive the gross error sensitivity and the
contamination sensitivity for Tukey’s median. They conclude that in the elliptical
case the contamination sensitivity is twice the gross error sensitivity. Unlike the
MP estimate, both concepts do not coincide for Tukey’s median. However, the
contamination sensitivity for the MP estimate coincides with that of Tukey’s
median. A similar situation had been noticed by Adrover, Maronna and Yohai
(2002) in the regression setup: the projection estimate [Maronna and Yohai (1993)]
and the maximum depth estimate [Rousseeuw and Hubert (1999)] have the same
contamination sensitivity.

4. Numerical results.

4.1. Maximum bias computations. In this section we compare the maximum
biases of the MP, MVE, MCD and SD estimates when F0 is the multivariate normal
model. Since there are no theoretical results for the maximum biases of the MVE,
MCD and the SD estimates, they are computed numerically and the maximum is
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taken only over point-mass contaminations. This maximum bias will be denoted
by B(T, ε,F0).

The location and scatter MVE estimating functionals T(F ),V (F ) are defined
as follows: Let � be a positive definite p × p matrix, let µ ∈ R

p , let F be a
distribution function over R

p and let

M(µ,�,F ) = median
F

(X − µ)′�−1(X − µ).

Define

(T(F ),V ∗(F )) = arg min
µ∈Rp,det(�)=1

M(µ,�,F )(20)

and

V (F ) = M
(
T(F ),V ∗(F ),F

)
V ∗(F ).

Therefore, the location and scatter MVE estimates correspond to the center and
matrix which define the minimum volume ellipsoid covering half of the data.

If A is an event based on X, we denote by EF(X | A) and covF (X | A) the
mean and covariance matrix of X given A under F respectively. To define the
MCD estimating functional, consider the set E of all ellipsoids E ⊂ R

p such that
PF (E) = 0.5, and let

E∗ = arg
E∈E

min det
(
cov(X | E)

)
.

Then the location and scatter MCD estimating functionals are the expected value
and covariance matrix corresponding to the data restricted to E∗; that is,

T(F ) = EF(X | E∗), V (F ) = cov
F

(X | E∗).

The multivariate location SD estimating functional is defined as a weighted
mean, where the weights depend on a measure of outlyingness of the observations.
The outlyingness of an observation y ∈ R

p is defined by

v(y,F ) = sup
a∈Rp

|a′y − medianF (a′X)|
MADF (a′X)

.

Then the multivariate location SD estimating functional is defined as

T(F ) = EF (w(v(X,F ))X)

EF (w(v(X,F )))
,

where w is a nonnegative and nonincreasing weight function. We consider two SD
estimates with weight functions w in the Huber family

wH
c (u) = min

(
1

c
,

1

|u|
)
.
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The values of c are 0—which corresponds to the limit case w = 1/|u|—and√
χ2

0.90,p
, where χ2

α,p is the α-quantile of the χ2-distribution with p degrees of

freedom. We have also tried other intermediate values of c, and the maximum
biases in all cases were an increasing function of c.

The procedure to compute the bias for the location SD estimate is analogous to
the procedure for computing the bias of the scatter SD estimate that is described
in Section 3 of Maronna and Yohai (1995).

Since the MVE and MCD estimates are equivariant, the maximum bias for
point-mass contaminations can be computed assuming that F0 is N(0, I ) and
considering only contaminating points of the form (k,0, . . . ,0). Then it can be
shown that the minimum in (20) is attained at µ of the form (µ,0, . . . ,0) and
� of the form diag(r1, r2, . . . , r2), where diag(r1, . . . , rp) is the p × p diagonal
matrix with elements r1, . . . , rp in the diagonal. Since det(�) = 1, we also

have r2 = 1/r
1/(p−1)
1 . Write �(r) = diag(r,1/r1/(p−1), . . . ,1/r1/(p−1)), and let

κ(k,µ, r, ε) be the median of (X−(µ,0, . . . ,0))′�(r)−1(X−(µ,0, . . . ,0)), when
X has distribution (1 − ε)N(0, I ) + εδ(k,0,...,0) and(

µ(k, ε), r(k, ε)
) = arg min

µ,r
κ(k,µ, r, ε).(21)

Then, if T is the location MVE estimate and F0 is the multivariate normal, we have

B(T, ε,F0) = max
k

µ(k, ε).(22)

We wrote a MATLAB function which computes κ(k,µ, r, ε) by numerical
integration. An initial value of µ(k, ε) is obtained by minimizing (21) over a grid
of values of µ and r , with step 0.1 in both variables. Starting from this value we use
the MATLAB function FMINS (Nelder–Mead simplex minimization algorithm) to
obtain a final value of µ(k, ε). We compute µ(k, ε) for a grid of values of k (with
step depending on p) obtaining an initial value for B(T, ε,F0). Using this initial
point, the maximum in (22) is obtained using a bisection maximization algorithm.
A similar procedure was used to compute the maximum bias for the MCD estimate.

The maximum biases, shown in Tables 1 and 2, were computed for 2 ≤ p ≤ 10,
15 and 20, and ε = 0.05, 0.10, 0.15 and 0.20. These tables show that the maximum
bias of the MP estimate is always smaller than those of the MVE, MCD and the two
SD estimates for p ≥ 5. They also show that the maximum biases of the MVE and
SD estimates increase with the dimension for p ≥ 5, except for the MVE estimate
when ε = 0.05. In this latter case, the present computing accuracy of three digits
does not allow us to detect a trend. Therefore, in the case that such a trend exists,
it would be negligible from a practical point of view for p ≤ 20. For fixed ε, the
growth of B(T, ε,F0) for the MVE estimate is very slow, close to linear for the
SD estimate and close to exponential for the MCD estimate. On the other hand,
according to the content of Remark 4, the maximum bias of the MP estimate is in
this case independent of p.
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TABLE 1
Maximum biases for ε = 0.05 and ε = 0.10

Estimate (ε = 0.05) Estimate (ε = 0.10)

p SD0 SD90 MVE MCD MP SD0 SD90 MVE MCD MP

2 0.077 0.131 0.395 0.277 0.141 0.159 0.292 0.619 0.539 0.321
3 0.095 0.149 0.395 0.307 0.141 0.200 0.333 0.69 0.655 0.321
4 0.123 0.192 0.395 0.336 0.141 0.267 0.436 0.72 0.786 0.321
5 0.160 0.226 0.395 0.369 0.141 0.361 0.523 0.73 0.935 0.321
6 0.197 0.255 0.395 0.406 0.141 0.483 0.613 0.74 1.094 0.321
7 0.246 0.298 0.395 0.440 0.141 0.617 0.717 0.75 1.277 0.321
8 0.310 0.347 0.395 0.480 0.141 0.762 0.837 0.75 1.481 0.321
9 0.368 0.394 0.395 0.520 0.141 0.898 0.951 0.75 1.703 0.321

10 0.418 0.443 0.395 0.560 0.141 1.021 1.066 0.75 1.965 0.321
15 0.715 0.719 0.395 0.781 0.141 1.746 1.751 0.765 3.846 0.321
20 1.013 1.013 0.395 1.117 0.141 2.471 2.472 0.775 7.005 0.321

4.2. Monte Carlo efficiencies. We performed a Monte Carlo study to compare
the efficiencies under multivariate normal distribution for finite sample size of
the estimates considered in Section 4.1. Since all the estimates are equivariant
we consider without loss of generality only the case of zero mean and identity
covariance matrix. We also include in this study the sample mean which is optimal
in the normal case. We take p = 2–10,15 and 20. The sample size n was chosen as
equal to 50 and 100. The number of replications was 500. For each estimate T we
compute the mean square error (MSE) defined by

1

500

500∑
i=1

‖Ti‖2,

where Ti is the value of the estimate for the ith sample.

TABLE 2
Maximum biases for ε = 0.15 and ε = 0.20

Estimate (ε = 0.15) Estimate (ε = 0.20)

p SD0 SD90 MVE MCD MP SD0 SD90 MVE MCD MP

2 0.27 0.51 0.91 0.90 0.56 0.40 0.81 1.29 1.49 0.90
3 0.36 0.56 1.03 1.20 0.56 0.57 0.98 1.48 2.22 0.90
4 0.48 0.79 1.08 1.58 0.56 0.84 1.31 1.57 3.19 0.90
5 0.67 0.95 1.12 2.04 0.56 1.18 1.59 1.65 4.46 0.90
6 0.90 1.14 1.14 2.58 0.56 1.58 1.91 1.71 6.17 0.90
7 1.13 1.33 1.16 3.23 0.56 1.98 2.25 1.78 8.53 0.90
8 1.41 1.54 1.18 4.07 0.56 2.44 2.62 1.84 11.69 0.90
9 1.67 1.77 1.20 5.05 0.56 2.91 3.02 1.90 15.92 0.90

10 1.91 1.99 1.22 6.28 0.56 3.41 3.48 1.97 21.68 0.90
15 3.27 3.28 1.31 18.00 0.56 5.76 5.77 2.30 116.8 0.90
20 4.63 4.63 1.41 49.92 0.56 8.12 8.11 2.65 412.0 0.90
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TABLE 3
MSE of the mean and relative efficiencies of robust estimates for Gaussian distribution, n = 50

MSE Efficiency

p mean SD0 SD90 MVE MCD MP

2 0.0386 0.81 0.97 0.21 0.24 0.77
3 0.0599 0.82 0.97 0.22 0.29 0.77
4 0.0794 0.87 0.97 0.21 0.33 0.79
5 0.1016 0.87 0.96 0.21 0.35 0.82
6 0.1149 0.87 0.95 0.20 0.35 0.82
7 0.1365 0.89 0.95 0.22 0.38 0.82
8 0.1544 0.91 0.95 0.22 0.39 0.82
9 0.1763 0.91 0.95 0.25 0.42 0.81

10 0.2031 0.92 0.95 0.26 0.43 0.82
15 0.2999 0.92 0.93 0.34 0.45 0.80
20 0.4029 0.92 0.92 0.44 0.47 0.79

We compute an approximate MP estimate as follows. Consider a sample
x1, . . . ,xn in R

p. First, we compute the approximate outlyingness vn(xi) for
each observation of the sample as in Section 4.1 of Maronna and Yohai (1995).
According to (2), the location MP estimate is the value in R

p with the smallest
outlyingness. Then an approximate MP estimate is computed by µn = xi0 , where

i0 = arg min
1≤i≤n

vn(xi ).

In Table 3 for n = 50 and in Table 4 for n = 100 we report the MSE for the
mean and the relative efficiencies with respect to the mean for the other estimates.
We observe that, for both sample sizes, the most efficient estimates are both SD

TABLE 4
MSE of the mean and relative efficiencies of robust estimates for Gaussian distribution, n = 100

MSE Efficiency

p mean SD0 SD90 MVE MCD MP

2 0.0193 0.80 0.97 0.17 0.20 0.76
3 0.0277 0.83 0.98 0.14 0.22 0.76
4 0.0390 0.89 0.98 0.13 0.28 0.76
5 0.0502 0.89 0.98 0.13 0.30 0.78
6 0.0608 0.91 0.98 0.13 0.32 0.80
7 0.0686 0.91 0.98 0.13 0.34 0.84
8 0.0809 0.92 0.99 0.13 0.35 0.86
9 0.0907 0.93 0.99 0.13 0.38 0.89

10 0.103 0.94 0.99 0.14 0.39 0.90
15 0.153 0.95 0.99 0.18 0.43 0.91
20 0.200 0.95 0.99 0.22 0.45 0.89
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estimates followed by the MP estimate. The simulations show that MVE and MCD
estimates are quite inefficient in agreement with the known asymptotic results of
Davies (1992) and Butler, Davies and Jhun (1993). For n = 50, the efficiencies of
the MVE, MCD and SD0 estimates increase with p. For n = 100, all the estimates
increase their efficiency.

APPENDIX

Because of the affine equivariance of the P-estimate, without loss of generality
we will assume in this appendix that the true parameters are µ = 0 and � = I .

PROOF OF THEOREM 1. We only have to verify the lower bound for
contamination bias provided by Theorem 2.1 of He and Simpson (1993). Given
F and G distribution functions on R

p and f and g the corresponding density
functions, the variation norm between F and G is given by

dv(F,G) = sup
meas.A

|F(A) − G(A)| = 1
2

∫
|f (x) − g(x)|dx,

where the last equality is Scheffé’s theorem [Scheffé (1947)]. According to He and
Simpson’s result, an equivariant multivariate location functional T satisfies

B(T, ε,F0) ≥ 1

2
bv

(
ε

1 − ε
;F0

)
,

where bv(δ,F0) = sup{‖θ‖ :dv(Fθ ,F0) ≤ δ} (variation gauge). Then

dv(Fθ ,F0) = dv(Fθ/2,F−θ/2) = 1

2

[∫ ∣∣∣∣f0

(∥∥∥∥x − θ

2

∥∥∥∥
)

− f0

(∥∥∥∥x + θ

2

∥∥∥∥
)∣∣∣∣dx

]

= 1

2

[∫ (
f0

(∥∥∥∥x + θ

2

∥∥∥∥
)

− f0

(∥∥∥∥x − θ

2

∥∥∥∥
))

1(−∞,0)(θ
′x) dx

+
∫ (

f0

(∥∥∥∥x − θ

2

∥∥∥∥
)

− f0

(∥∥∥∥x + θ

2

∥∥∥∥
))

1(0,∞)(θ
′x) dx

]

=
∫ (

f0

(∥∥∥∥x + θ

2

∥∥∥∥
)
1(−∞,0)(θ

′x) − f0

(∥∥∥∥x + θ

2

∥∥∥∥
)
1(0,∞)(θ

′x)

)
dx

= 2
∫

f0

(∥∥∥∥x + θ

2

∥∥∥∥
)
1(−∞,0)(θ

′x) dx − 1

= 2
∫

f0(‖x‖)1(−∞,‖θ‖2/2)(θ
′x) dx − 1

= 2
∫

f0(‖x‖)1(−∞,‖θ‖2/2)(x1) dx − 1 = 2H0

(‖θ‖
2

)
− 1.
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It follows that

1

2
bv

(
ε

1 − ε
;F0

)
= H−1

0

(
1

2(1 − ε)

)
= d1(ε,H0)

and (9) holds. Differentiating d1(ε,H0) we get (10). �

PROOF OF THEOREM 2. Given any a �= 0 and b �= 0, a′x/b is a symmetric
random variable around 0. Then T (L(a′x/b),F0) = 0 and then h(0,a,F0) = 0.
This implies that

v(0,F0) = 0.(23)

On the other hand, take ζ �= µ and put a0 = −ζ . Then

a′
0(x − ζ )

b
= a′x

b
+ a′

0a0

b

and T (L(a′
0(x−ζ )/b),F0) = a′

0a0/b > 0. Then h(ζ ,a,F0) > 0 for any a �= 0 and

v(ζ ,F0) > 0.(24)

From (23) and (24) the theorem follows. �

PROOF OF THEOREM 3. Let ‖ν0‖ > B∗(T , ε,F0)(1 + C∗(S, ε,F0)) and
a0 = ν0/‖ν0‖. Then, by (15), for any F ∈ Vε(F0) we have

|T (L(a′
0(X − ν0),F ))|

S(L(a′
0X,F ))

= |T (L(a′
0X,F )) − ‖ν0‖|

S(L(a′
0X,F ))

≥ ‖ν0‖ − B∗(T , ε,F0)

S(L(a′
0X,F ))

(25)

>
C∗(S, ε,F0)B

∗(T , ε,F0)

sup‖a‖=1 S(L(a′X,F ))

≥ B∗(T , ε,F0)

inf‖a‖=1 infF∈Vε(F0) S(L(a′X,F ))
.

Now take ν1 = 0 and take any a ∈ R
p such that ‖a‖ = 1. Then

|T (L(a′(X − ν1),F ))|
S(L(a′X,F ))

≤ B∗(T , ε,F0)|
inf‖a‖=1 infF∈Vε(F0) S(L(a′X,F ))

.(26)

From (25) and (26) we obtain that TP (F ) �= ν0, proving the theorem. �

LEMMA 1. If h0(t) is nonincreasing in |t| then mi(x) is nondecreasing in |x|,
i = 1,2.
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PROOF. Let 0 < x1 < x2, a1 = (1 − 2ε)/(2(1 − ε)) and a2 = 1 − a1. Then

ai = P
(|a′X − x1| ≤ mi(x1)

) = P
(
x1 − mi(x1) ≤ a′X ≤ x1 + mi(x1)

)
≥ P

(
x2 − mi(x1) ≤ a′X ≤ x2 + mi(x1)

)
,

and mi(x2) ≥ mi(x1), i = 1,2. �

The following lemma shows that d1(1 + d2d0/d1) is an upper bound for B(T).

LEMMA 2. Let h0(t) be nonincreasing in |t|. Then B(TMP, ε,F0) ≤ d1(1 +
d2d0/d1).

PROOF. Let ν ∈ R
p be such that ‖ν‖ > d1 and a1 = ν/‖ν‖. Let G ∈ Vε(F0).

Then, since |medianG(a′
1X)| ≤ d1, we obtain

sup
‖a‖=1

∣∣ medianG

(
a′(X − ν)

)∣∣
≥ ∣∣medianG(a′

1X) − ‖ν‖∣∣ = ∣∣‖ν‖ − medianG(a′
1X)

∣∣ ≥ |‖ν‖ − d1|.
From Lemma 1 we obtain that MADG(a′X) ≤ m2(d1, ε) = d2 for all a ∈ Sp−1 and
G ∈ Vε . Therefore

sup
‖a‖=1

|medianG(a′(X − ν))|
MADG(a′X)

≥ (‖ν‖ − d1)
1

d2
.(27)

On the other hand, we can suppose without loss of generality that

sup
‖a‖=1

|medianG(a′(X − ν))|
MADG(a′X)

≤ sup
‖a‖=1

|medianG(a′X)|
MADG(a′X)

.

Since m1(medianG(a′X), ε) ≤ MADG(a′X), we get

sup
‖a‖=1

|medianG(a′(X − ν))|
MADG(a′X)

≤ sup
‖a‖=1

|medianG(a′X)|
MADG(a′X)

(28)

≤ |medianG(a′X))|
m1(medianG(a′X), ε)

≤ d0.

From (27) and (28) we get that ‖ν‖ ≤ d1 + d0d2 and the result follows. �

Lemmas 3–6 show that the maximum bias produced by point-mass contamina-
tions attains the upper bound given in Lemma 2.

The following lemma is immediate.
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LEMMA 3. Consider a distribution function L on R and suppose that a =
L−1(1/(2(1− ε))) and b = L−1((1 − 2ε)/(2(1 − ε))) are well defined. Let c ∈ R

and L∗ = (1 − ε)L + δc. Then

medianL∗(X) = min
(
b,max(a, c)

)
.

Given c ∈ R
p , let Gc = (1 − ε)F0 + εδc.

LEMMA 4. If a ∈ S
p−1, then

median
Gc

(a′X) = min
(−d1,max(d1,a′c)

)
,

MADGc(a
′X) =




d2, a′c ≤ −d1 − d2,

|a′c + d1|, −d1 − d2 ≤ a′c ≤ −d1 − d3,

d3, −d1 − d3 ≤ a′c ≤ −d1,

m1(a′c, ε), |a′c| ≤ d1,

d3, d1 ≤ a′c ≤ d1 + d3,

|a′c − d1|, d1 + d3 ≤ a′c ≤ d1 + d2,

d2, a′c ≥ d1 + d2,

and therefore

h(ν,a,Gc) =
∣∣∣∣a′ν − medianGc(a

′X)

MADGc(a′X)

∣∣∣∣

=




|a′ν + d1|/d2, a′c ≤ −d1 − d2,

|a′ν + d1|/|a′c + d1|, −d1 − d2 ≤ a′c ≤ −d1 − d3,

|a′ν + d1|/d3, −d1 − d3 ≤ a′c ≤ −d1,

|a′ν − a′c|/m1(a′c, ε), |a′c| ≤ d1,

|a′ν − d1|/d3, d1 ≤ a′c ≤ d1 + d3,

|a′ν − d1|/|a′c − d1|, d1 + d3 ≤ a′c ≤ d1 + d2,

|a′ν − d1|/d2, a′c ≥ d1 + d2.

PROOF. The lemma follows from Lemma 3. �

The following lemma gives the value of ν minimizing v(ν,Gc) =
supa∈Sp−1 h(ν,a,Gc) when the search for the minimum is restricted to points of
the form ν= tc. Lemma 6 will show that this constrained estimator is actually the
projection estimate; that is, the MP estimate has the same direction as the contam-
inating point. We will focus on the case ‖c‖ ≥ d1 + d2 since it is going to yield the
maximum bias as ‖c‖ tends to infinity.

LEMMA 5. Let c ∈ R
p , l(c) = mint∈R+ v(tc,Gc) and T1(c) =

arg mint∈R+ v(tc,Gc). Then if ‖c‖ > d1 + d2,

l(c) = d0(‖c‖ − d1)

‖c‖ + d0d2
and T1(c) = d1 + d0d2

‖c‖ + d0d2
.
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PROOF. From Lemma 4 we get

v(tc, c) = max
{∣∣∣∣t d1 + d3

d2
− d1

d2

∣∣∣∣,
∣∣∣∣t ‖c‖

d2
− d1

d2

∣∣∣∣,
∣∣∣∣t d1 + d3

d3
− d1

d3

∣∣∣∣,∣∣∣∣t d1

d3
− d1

d3

∣∣∣∣, |td0 − d0|
}
.

Since ∣∣∣∣t d1 + d3

d3
− d1

d3

∣∣∣∣ >

∣∣∣∣t d1 + d3

d2
− d1

d2

∣∣∣∣ and |td0 − d0| >
∣∣∣∣t d1

d3
− d1

d3

∣∣∣∣,
we get

v(tc,Gc) = max
{∣∣∣∣t ‖c‖

d2
− d1

d2

∣∣∣∣,
∣∣∣∣t d1 + d3

d3
− d1

d3

∣∣∣∣, |td0 − d0|
}

= max
{
q1(t), q2(t), q3(t)

}
.

Note that q1(d1/(d1 + d3)) = q2(d1/‖c‖) = q3(1) = 0 and d1/‖c‖ < d1/(d1 +
d3) < 1. Define t0 and t1 as the points such that q1(t0) = q3(t0) and q2(t1) = q3(t1).
Then

t0 = d1 + d0d3

d1 + d3 + d0d3
, t1 = d1 + d0d2

‖c‖ + d0d2
.

Since ‖c‖ > d1 + d2, we have t0 > t1 and this implies

v(tc,Gc) =



d0 − td0, if t < t1,

t
‖c‖
d2

− d1

d2
, otherwise.

Therefore

T1(c) = t1 = d1 + d0d2

‖c‖ + d0d2
.

This completes the proof of Lemma 5. �

The following lemma shows that the estimator follows the direction of the point-
mass c if ‖c‖ ≥ d1 + d2.

LEMMA 6. Let ν ∈ R
p − {0} such that ν′c/‖c‖‖ν‖ < 1 and ‖c‖ ≥ d1 + d2.

Then v(ν,Gc) > l(c).

PROOF. We can write ν = t‖c‖ν∗, t ∈ R
+, ν∗ ∈ S

p−1. Let ζ = c1c/‖c‖+c2ν
∗

be such that ζ ′c = 0 and ζ ∈ Sp−1. If ν∗′c ≥ 0, then we choose c1 ≤ 0 and
c2 ≥ 0. If ν∗′c < 0, then we choose c1 > 0 and c2 > 0. Let A = {a ∈ R

p : a =
a1c/‖c‖ + a2ζ }. Define the following sets: B1 = {a ∈ A ∩ S

p−1 :a1 ≥ 0, a2 ≥ 0},
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B2 = {a ∈ A ∩ S
p−1 :a1 ≤ 0, a2 ≥ 0}, B3 = {a ∈ A ∩ S

p−1 :a1 ≤ 0, a2 ≤ 0} and
B4 = {a ∈ A ∩ S

p−1 :a1 ≥ 0, a2 ≤ 0}.
For the sake of simplicity we will only consider henceforth the case ν∗ ∈ B1;

other cases can be treated similarly. We have to consider several cases for ν∗. Let
us suppose first that |ν∗′c| ≤ d1. Take

t1 = d1 + d0d2

‖c‖ + d0d2
.

Let b2 ∈ B2 be such that cos(b2, c) = −d1/‖c‖. Then

v(ν,Gc) ≥ sup
a∈Sp−1,−d1≥a′c≥−d1−d3

1

d3

∣∣t‖c‖ cos(a,ν∗) + d1
∣∣

≥ 1

d3

∣∣t‖c‖ cos(b2,ν
∗) + d1

∣∣.
We also have

cos(b2,ν
∗) = − d1

‖c‖ cos(c,ν∗) +
√

1 − d2
1

‖c‖2 sin(c,ν∗) ≥
(

1 − 2d2
1

‖c‖2

)
.(29)

Since ‖c‖ ≥ d1 +d2, then d1/‖c‖ ≤ 0.5. Therefore, cos(b2,ν
∗) ≥ 0. Consequently,

for t ≥ t1, (29) and the fact that t1d1 < ‖c‖ let us conclude that

v(ν,Gc) ≥ 1

d3

∣∣t1‖c‖ − d1
∣∣ >

1

d2

∣∣t1‖c‖ − d1
∣∣ = v(t1c,Gc) = l(c).(30)

Consider now the case t < t1. We always have

|t‖c‖ cos(a,ν∗) − ‖c‖ cos(a, c)|
m1(a′c, ε)

= |a′c|
m1(a′c, ε)

∣∣∣∣t cos(a, ν∗)
cos(a, c)

− 1
∣∣∣∣.(31)

Define the following sets for j ∈ {1,2,3,4},

Mj =
{

a ∈ Bj ∩ [|a′c| ≤ d1] : max
b∈Bj ∩[|a′c|≤d1]

|b′c|
m1(|b′c|, ε) = |a′c|

m1(|a′c|, ε)
}
.(32)

We easily observe that M3 = −M1 and M4 = −M2. Let us take a0 ∈ M2. If
0 ≤ cos(a0,ν

∗), then we get, for t < t1 ≤ 1,

t
cos(a0,ν

∗)
cos(a0, c)

− 1 < t − 1 ≤ 0.(33)

If cos(a0,ν
∗) < 0, we take −a0 ∈ M4 such that

1 − t
cos(a0,ν

∗)
cos(a0, c)

> 1 − t ≥ 0.(34)

Then, if t < t1, we get

v(ν,Gc) > d0|t − 1| = v(tc,Gc) ≥ l(c).(35)
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Suppose now that d1 ≤ |ν∗′c| ≤ d1 +d3. Since ν∗ ∈ S
p−1 ∩{a :d1 ≤ a′c ≤ d1 +d3}

we get

v(ν,Gc) ≥ sup
a∈Sp−1, d1≤a′c≤d1+d3

|t‖c‖ cos(a, ν∗) − d1|
d3

(36)

≥ 1

d3

∣∣‖c‖t − d1
∣∣ ≥ 1

d2

∣∣‖c‖t − d1
∣∣.

If t ≥ t1, then

1

d2

∣∣‖c‖t − d1
∣∣ = v(tc,Gc) ≥ l(c).(37)

If t < t1, we take a0 ∈ M4. Therefore, either 0 < cos(a0,ν
∗) < cos(a0, c) or

cos(a0,ν
∗) < 0 < cos(a0, c). From (31), (33) and (34) we conclude

v(ν,Gc) ≥ |a′
0c|

m1(a′
0c, ε)

∣∣∣∣t cos(a0,ν
∗)

cos(a0, c)
− 1

∣∣∣∣ > d0|t − 1| = v(tc,Gc) ≥ l(c).(38)

Then, (36)–(38) entail that v(ν,Gc) > l(c) provided d1 ≤ |ν∗′c| ≤ d1 + d3.
The proof for the case d1 + d3 ≤ |ν∗′c| ≤ d1 + d2 is similar. We should

distinguish the cases t ≥ t1 and t ≤ t1. In the case t ≥ t1 we obtain

v(ν,Gc) ≥ sup
a∈Sp−1,d1+d3≤a′c≤d1+d2

|t‖c‖ cos(a,ν∗) − d1|
|‖c‖ cos(a, c) − d1|

≥ 1

|d1 + d2 − d1|
∣∣‖c‖t − d1

∣∣ = 1

d2

∣∣‖c‖t − d1
∣∣ = v(tc,Gc) ≥ l(c),

since ν∗ ∈ S
p−1 ∩ {a :d1 + d3 ≤ a′c ≤ d1 + d2}. In the case t ≤ t1, inequalities

(33)–(35) are still valid and consequently v(ν,Gc) > l(c). We cope with the case
d1 + d2 ≤ |ν∗′c| similarly. This concludes the proof. �

PROOF OF THEOREM 4. By Lemma 2, B(TMP, ε,F0) ≤ d0d2 + d1 and, by
Lemmas 5 and 6,

B(TMP, ε,F0) ≥ lim
u→∞u

d1 + d0d2

u + d0d2
= d0d2 + d1,

and therefore (i) follows. Part (ii) is immediate from (i). To prove (iii) observe that

∂B(TMP, ε,F0)

∂ε

= ∂d1(ε,H0)

∂ε

∣∣∣∣
ε=0

(
1 + d2(0,H0)

d3(0,H0)

)
+ ∂(d2(ε,H0)/d3(ε,H0))

∂ε

∣∣∣∣
ε=0

.

Then, since d1(0,H0) = 0 and d2(0,H0) = d3(0,H0), we get

γ (TMP,F0) = 1

h0(0)
.(39)
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On the other hand, we also have that

lim
ε→0

d1(ε,H0) = 0, lim
ε→0

d3(ε,H0) = lim
ε→0

d2(ε,H0) = l2 > 0.

Let ‖c1‖ > l2 . Then, by Lemmas 5 and 6, we get

T((1 − ε)F0 + εδc1) − T(F0)

ε

= (d1(ε,H0) − d1(0,H0))

ε

(1 + d2(ε,H0) /d3(ε,H0))

‖c1‖ + d1(ε,H0)d2(ε,H0)/d3(ε,H0)
c1.

As ε → 0 we obtain

lim
ε→0

T((1 − ε)F0 + εδc1) − T(F0)

ε
= 2

∂d1(ε,H0)

∂ε

∣∣∣∣
ε=0

c1

‖c1‖ .

Then

γ ∗(TMP,F0) = sup
c∈Rp

∥∥∥∥ lim
ε→0

T((1 − ε)F0 + εδc1) − T(F0)

ε

∥∥∥∥
(40)

≥ 2
∂d1(ε,H0)

∂ε

∣∣∣∣
ε=0

= γ (TMP,F0).

Since γ ∗(TMP,F0) ≤ γ (TMP,F0), (iii) follows from (39) and (40). �
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