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In this paper the asymptotic normality of a class of statistics, includ-
ing Gini’s index of cograduation and Spearman’s rank correlation coeffi-
cient, is proved. The asymptotic normality is stated under a large class of
alternatives including the bivariate distributions corresponding to a condi-
tion of lack of association introduced in Section 3. The problems of testing
the hypothesis of lack of association and of constructing confidence inter-
vals for the population index of cograduation are also considered.

1. Introduction and summary. Gini (1914) introduced the concept of
cograduation index to provide a summarizing measure of monotone depen-
dence between two ordered statistical characteristics. Two characteristics,
X and Y, say, are monotone dependent if the support S of the cumula-
tive distribution function (c.d.f) of (X,Y) fulfills one of the two following
conditions.

CONCORDANCE CONDITION. (x1, ¥1), (%5, ¥5) € S and x; <x, = y; < y,.
DISCORDANCE CONDITION. (xq, ¥1),(x5, ¥5) € S and x; < x5 = y; > y,.

Gini’s index ranks the data separately within each component, and it has
been used, mainly by Italian statisticians, to test stochastic independence as
an alternative to other common test statistics such as Kendall’'s r and
Spearman’s rank correlation p.

Gini’s cograduation index and Spearman’s p are particular cases of a more
general index—briefly described in Section 2 of the present paper—which
was introduced by Cifarelli and Regazzini (1990) and more recently was
generalized by Conti (1993). From now on, the term “cograduation index” will
designate the general index y,(H) described in Section 2.

If X and Y have continuous c.d.f.’s, then the cograduation index vanishes
not only when X and Y are stochastically independent, but even when the
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c.d.f. of (X,Y) does not exhibit any “tendency” to concordance or to discor-
dance. This last circumstance is made precise in Section 3, and it is called
indifference. Then, in order to decide whether X and Y are monotone depen-
dent, it is reasonable to define a procedure of testing the hypothesis of
indifference in such a way that, at a given level of significance «, the
probability of rejecting that hypothesis is not greater than «, under each
indifferent c.d.f. for (X,Y ). An asymptotic procedure of this kind is explained
in Section 6, where an optimal property of Gini’s index—within the class of
all cograduation indices—is singled out. The implementation of that proce-
dure motivates the main goal of the present paper, namely, the deduction of
the asymptotic distribution of a sample estimate of the cograduation index
under a wide class of generating c.d.f’s. This is done in Section 4 via the
theory of convergence of empirical processes.

Hoeffding (1948) via the theory of U-statistics, proved the asymptotic
normality of Spearman’s rank correlation coefficient. Subsequently, the the-
ory of U-statistics was employed by Cifarelli and Regazzini (1974, 1977) to
state the asymptotic distribution of Gini’s simple cograduation index. Section
5 of the present paper includes a few remarks about the asymptotic equiva-
lence between the general cograduation index and a suitable U-statistic
of degree 2. Such an equivalence is used to obtain a consistent estimator
of the variance of the sample cograduation index. This estimator is used in
Section 6 for determining confidence intervals for the population index of
cograduation.

2. Definition of cograduation indices in a bivariate population.
Throughout this paper, F and G denote two continuous univariate c.d.f’s and
I'(F,G) designates the class of all bivariate c.d.f’s with first and second
marginal c.d.f’s F and G, respectively (Fréchet class). Given H; and H, in
I'(F, @), one says that H, is more concordant, or more positively quadrant
dependent (PQD) than H,, if H/(x,y) > Hy(x, y) for every (x, y) in R? (in
symbols, H; > H,). PQD ordering, originally introduced by Gini around 1915,
was reconsidered, more recently, by Yanagimoto and Okamoto (1969),
Cambanis, Simons and Stout (1976), Kimeldorf and Sampson (1978, 1987)
and Tchen (1980). It is well known that H* and H, defined on R? by

H*(x,y) = min{F(x),G(y)},
H™(x,y) = max{0, F(x) + G(y) — 1},
are elements of I'(F, G) and that
H (x,y) <H(x,y) <H"(x,y)
holds for every H in I'(F, G) and for every (x, y) in R

Now, two random variables (r.v.’s) X and Y with c.d.f’s F and G, respec-
tively, turn out to be concordant (discordant, respectively) if, and only if, their
joint c.d.f. coincides with H™ (H~, respectively). Hence, in the case of
concordance, the random point (F(X), G(Y)) lies almost surely (a.s.) on the
straight line S; = {(x, y): ¥ = x}, while in the case of discordance, the same
point lies a.s. on the straight line S, = {(x, y): ¥y = 1 — x}.
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We are now in a position to propose a summarizing measure of the
monotone dependence of each element H in T'(F,G). It is a function C:
I'(F,G) — [—1,1] such that:

1. C(H) = 1 (-1, respectively) if and only if H = H* (H~, respectively);
2. C(H,) = C(H,) whenever H, and H, belong to I'(F,G) and H, > H,.

Note that the horizontal (= vertical) distance from (F(X),G(Y)) to S,
provides a picture of the concordance of the c.d.f. H of (X,Y). Hence, if g is
any strictly increasing continuous function (with inverse g 1) on I = [0, 1],
the quantity

(H) =g [ g(F(x) + G(») ~ 1) di(x,)]

represents a (strictly) monotone mean of the above random distance. In
Cifarelli and Regazzini (1990) it is shown that if g is convex, then 7, agrees
with the PQD ordering and therefore it can be considered as a measure of

concordance on I'(F, G). Similarly, one can interpret

(1) =57 [ #(1F(x) - G d (x|

as a measure of discordance on I'(F,G). In order to obtain a measure of
monotone dependence, we should combine 7, and §,. Without loss of general-
ity, from now on we will assume that g(0) = 0 and, with no loss of informa-
tion, we will consider », = g(7,) and 8, = g(3,) instead of 7, and §,, respec-
tively. Then, since

maxy,(H) = v,(H") = 8,(H") = maxé,(H) = flg(x) dx,
one easily finds that

() - D U Jelg(x +y — 11) — g(lx — y1)] dMy(x, y)
Y f18(x) dx [18(x) dx

is a measure of monotone dependence, where M, denotes the c.d.f. of
(F(X),G(Y)), and provided that the following assumption holds.

AssuMPTION 1. g: I — R is a strictly increasing, continuous and convex
function, such that g(0) = 0.

This assumption implies that there exists a nonnegative and nondecreas-
ing function /: I — R such that

(2.1) g(x) =[0x1(t)dt, xel,

and

22 g(lx —y)) =g(lz — yI) + fox_zsgn(z +t—y)i(it +2 —yl) dt,

(x,y,2) €I
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In Section 4, the following additional technical assumptions will be used:
AssuMPTION 2. [: I — R is continuous.
ASSUMPTION 3. 5 dMy(x, y) = [s dMy(x, y) = 0.

At any rate, under Assumption 1, v, is the cograduation index mentioned
in Section 1. In fact, for g(x) = x [g(x) = x?, respectively], y, provides the
continuous version of Gini’s simple cograduation index (Spearman’s rank
correlation index, respectively). The reader is referred to Salvemini (1951) for
a few remarks about Gini’s and Spearman’s indices. A nice property of Gini’s
index, connected with the problem of testing indifference of (X,Y), is shown
in Section 6.

Precise and complete formulations of the statements reviewed in the
present section can be found in Cifarelli and Regazzini (1990).

3. A definition of indifferentc.d.f. The aim of this section is to provide
a formal definition of “lack of association” (indifference) of a bivariate distri-
bution, and to single out the class of bivariate c.d.f’s belonging to I'(F, G)
which are “indifferent” with respect to (w.r.t.) the PQD ordering. In view of
this ordering, a c.d.f. H in I'(F,G) is the more concordant (discordant,
respectively) the higher the probability that M, concentrates in rectangles of
the type %, and %, (%, and %,, respectively), where, given any (x, y) in I2:

#, has vertices (0,0), (x,0), (x, y) and (0, y).

A, has vertices (0,1 —y),(x,1 —y),(x,1) and (0,1).

A5 has vertices (1 — x,0),(1,0), (1,y) and (1 — x, y).

Z#, has vertices (1 —x,1 —y),(1,1 —y),(1,1) and (1 — x,1).

Hence, in order that a c.d.f. H in I'(F, G) may be considered indifferent, one
can require that My concentrates the same probability in each %, #, and
5. These remarks justify the following definition.

DEFINITION 3.1. The c.d.f. H in I'(F, G) is said to be indifferent if
(3.1) My(x,y)=x—Myz(x,1 —y)=y —Myz(1l—x,y)
for every (x, y) in I2.

Clearly, (3.1) is the same as assuming that
H(x,y) =F(x) —H(x,G"'(1-G(y))) = G(y) —H(F'(1-F(x)),y)
holds for every (x, y) in the interior of the support of H. Here, if V is a c.d.f.
on R, then V™1(x) = inf{¢: V(¢) > x} for every x in I° = (0, 1). Moreover, (3.1)
is equivalent to (F(X),G(Y)), (1 — F(X),G(Y)) and (F(X),1 — G(Y)) being
equal in distribution; in other words, under (3.1), the c.d.f. of (F(X), G(Y)) =
(grade X, grade Y) does not change when either of these grades is reversed.
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Whenever (3.1) holds, one obtains y,(H) = 0, whatever g may be. It is
worth noting that Kendall’s 7 also vanishes when (3.1) holds.
A few examples of indifferent c.d.f’s in I'(F, G) are given below.

ExaMmPLE 3.1. It is easy to show that the following c.d.f’s are indifferent:
H(x,y) =F(x)G(y),
(3.2) H(x,y)={H (x,y) +H (x,y)}/2,

H(x,y) = Y MHi(x,y) |H,indifferent, A, >0,i=1,...,n, ) A, =1
i=1 i=1

ExampLE 3.2. Given 0 < ¢ < 1, let us introduce the sets
A, ={(x,y)el*:Ix—yl<e}, B,={(x,y)€l*x+y—1|<¢}

and the two absolutely continuous c.d.f’s H} and H_, whose density func-
tions are given by

hi(x,y) =f(e)1(x,5),  h (x,5) =f(e)lp(x,y),
respectively, with f(g) ={1 — (1 — £)?}"! and 1, = indicator of A. After
setting

F.(x)=
=/

for every x in R, it is easy to check that H and H_ belong to I'(F,, F.).
Moreover, since the relation 1 — F,(x) = F,(1 — x) holds for every x in I,
then
(3.3) F/'1-F(x))=1-x
for every x in I°. In view of (3.3), the c.d.f.

Hi(x,y) = [H (x,9) + H (x,9)]/2, (x,9) €I?,
is indifferent in T'(F, F,).

hi(u,y)dudy
R

REMARK 3.1. Since
lim My.(x,y) = lim H*(x,y) = [max{x + y — 1,0} + min{x, y}|/2
e>0" N e—>0"

for every (x, y), Example 3.2 shows that (3.2), with F' = G = uniform c.d.f. on
I, can always be considered as the weak limit of a sequence of (absolutely)
continuous bivariate c.d.f.’s whose marginals are uniform on 1.

4. Asymptotic distribution of the sample cograduation index. Let
(X,Y)),...,(X,,Y,) be a random sample from a bivariate c.d.f. H in T'(F, G).

n

One can assume that each (X;,Y;) is a real random vector defined on a
probability space, say (Q, %, P), such that

n

P () o Xi(0) =, %(w) 23} | = [1H(x.5)
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for every (x;,y;)in R%, i =1,...,n, and n > 2. Hence, letting

V=N N {w:Xi(w) #Xj(a)) and Y;( ) #YJ(w)}

n=21<i<j<n

one has P(V) =1, because F and G are continuous c.d.f’s. Then, the
cograduation index for the above sample is defined on V' by

(e[ 120 + 80 = = 11] =5 S IRC0) = 50

where R;,(») = rank(X,(w)) among the X/’s, S;(w) = rank(Y;(w)) among the
Y’s and

1 n
Yen = g, &

ni=1

noo(1
K, = Zg(—|2i -n- 1|).
i=1 \ 1
When g(x) = x, v, , coincides with the simple cograduation index originally
defined by Gini for finite populations without ties. When g(x) = x2, Ye.n
becomes the classical Spearman rank correlation coefficient.

To obtain an extension of vy, , to the whole space (), one can resort to
Section 3 in Cifarelli and Regazzini (1990). Since P(V¢) = 0, the distribution
of such an extension does not depend on its definition on V¢. From now on,
Ye,n Will designate the extension which vanishes on V*.

We now show that Vn (v,,» — 7,(H)) converges in law to a normal r.v. as
n — o, In view of Assumption 1, it is possible to write

n 1
1 = dx =K
nm;lo - /Og(x) X
and
. 1
ygn= gn+0(;)’
where

1
Yun = g L {8 F(2) + G() = 1]) =g (|Fu(x) = Gu(9) )} dH, (%, 7)

and H,, F, and G, denote the joint and marginal empirical c.d.f’s of the
random sample, respectively.

The asymptotic normality of Vn (%, » — ¥,(H)) will be deduced from some
basic results concerning two-dimensional empirical processes. A review is in
Gaenssler and Stute [(1979), Section 2.1]. Let D, be the set of all real
functions f on I?%, such that for each t = (¢, ¢,) the limit lim, _, . f(t,) exists
for all sequences {t,}, . ; converging to t in some quadrant with corner t, and
such that f is continuous from above. Then, there exists a separable and
complete Skorohod’s metric d, in D, [Neuhaus (1971)] whose corresponding
o-field %(d,) of Borel sets equals the smallest o-field of subsets of D, for
which all coordinate mappings are measurable. Hence, B,(x, y) =
Vn(H (x,y) — H(x, y)), with (x, y) in I? (the marginal c.d.f’s F and G are
assumed uniform on I), is a random element in D,, and B, converges weakly
to B, on (D,, #(d,)) as n goes to infinity, where B, is a Brownian sheet,
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that is, a centered Gaussian process with continuous sample paths (with
probability 1) tied down to zero at (1, 1), and covariance function

Cov( Bo(t1,ts), Bo(s1,82)) = H(t A's) — H(t)H(s), t,s eI’
where t A s = (min(¢,, s,), min(¢,, s,)). Finally, from Skorohod’s representa-
tion theorem, there exist versions B of B, (in the sense that ,8 and B, have
the same distribution for every n) on an appropriate probability space
(0, %, P) such that dy(,, B,) — 0. Then, since S, has continuous sample
paths as. (P), 21D and (2.2) in Neuhaus (1971) imply that o B, By) =
supteIzIB t) — ,BO(t)I - 0as.(P)as n - .

THEOREM 4.1. If (X,,Y)),...,(X,,Y,),... is a sequence of i.i.d. random

vectors with common c.d.f. H in F(F G) and if Assumptions 1-3 hold, then
the asymptotic distribution (as n — ©) of

‘/;(Vg,n — % (H))
is normal with mean 0 and variance o, defined by (4.1).
PrOOF. It suffices to prove the asymptotic normality of Vn (i/g’n —

Y,(H)) = (A, + A, , +A4;,)/K, where F and G are supposed to be uniform
on I and

M=V [ {g(I1 =2 =y = vu(x, ) /n]) — g1 = x = 5)
—g(|x =y + A (x,9) /Vn|) + g(x =y} dH(x, y),

= [ (g1 —x =) —a(x ~ ) dB,(x. ).

= [ et =x =y = we) ) — g1 - x =)

—g(|x =y + A (x,9) V) + g(x = 1)} dB,(x, ),

¢n(x, y) = :Bn(x’ 1) + Bn(l’ y)’ /\n(x’ y) = Bn(x’l) - Bn(17 y)'
After observing that (A, ,,A, ,,A; ) and (Al’n, Az,m AS,n) have the same
probability distribution (if the quantities A; , j = 1,2,3, are defined in the
same way as the quantities A; ,, except for the terms B, that are replaced by
the corresponding terms ,8 ) one splits the proof into three steps.

Claim 1. We have

Ay, 1L

= j;z{éo(x,l)[l — (%, y)] + éo(l,y)[l - 9012(x,y)]}
X dg(lx +y — 1])

a.s. (P) as n — =, where
@o(x,y) = Fo(ylx) + Foy(1 — ylx),
@12(x,y) = Fip(xly) + Fio(1 — xly)
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and F,,(-|x) [F;,(-ly), respectively] is the conditional c.d.f. of Y (X, respec-
tively) given X = x (Y = y, respectively).
To prove Claim 1, one observes that (2.1) implies

I, = flz{éo(x, 1)[sgn(x +y — 1)i(lx +y — 1) — sgn(x — y)I(lx — yI)]
—Bo(1, y)[sgn(1 —x — y) (Il +y — 1)
+sgn(y —x)(lx — yl)]} dH(x,y)
and that (2.2) yields

d,(x,y)
Vn

l—x-y-—

|

1 3 X
=g(1—x—yl)+ ﬁ{foﬁ"( Vsgn

t+ B (1,
x+y—1+—'3‘;£ y))
n
t+ B.(1, )
X1 +y—-—14+4 ———|| dt
x+y I~
+f7é"(1’y)sgn 1—x—y+i)
0 Vn
t
X1 ‘1—x—y+f)dt}.
n

Thanks to Lebesgue’s dominated convergence theorem, the term in braces
converges a.s. (P) to

Bo(x,1)sgn(x +y — 1)i(lx +y — 1]) — Bo(1, y)sgn(l —x — y)I(lx +y — 1])

for every (x, y) in J = I2\ {S; U S,}. In the same way, one obtains

syt An(\/%y) )
=g(|x—y|)+%{j;é”(x’l)sgn x—y+ ‘/£ y))
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and the term under braces converges a.s. (P) to
Bo(x, 1)sgn(x — y)l(Ix = y1) + Bo(1, y)sgn(y — x)I(lx — yI)
(x,y) €d.

At this stage, Claim 1 follows from Assumption 3 and the dominated conver-
gence theorem. .

Claim 2. A; , > 0 as. (P)as n > .

By resorting to a well-known multivariate version of the theorem of
integration by parts [cf. Hildebrandt (1963), page 127], one has

[Ag(lx =y + Ao, 9) V) g = 3D} dBy(x, 7)
= Wl,n + WZ,n + W3 n»

where
Wi = = [BuCx Da{g(lx = 1+ B(x, 1) /Vn]) —g(1 - x)),
Won = = [ (L w)a{g (|1 =y + B,(1,0) /Vn]) - (1 = ),
Won = [ Bl n)d{g(|x =y + Az, 3) /) (e = o))}

Taking into account that the function g has total variation g(1) and, conse-
quently, the function g(lx —y + A (x, y)/ Vn|) — g(lx — y|) has total varia-
tion less than or equal to 2g(1), one obtains

Wl <[ [ BoCx vyl =y + A(x]) gt = o)

+22(1)o( B, Bo),

and the conclusion W; , — 0 ass. (P) easily follows.

In a similar way it can be shown that W, , - 0 and W, , — 0 a=s. (P). This
proves Claim 2. .

Claim 3. A2n - M, = [{B(x, y) + Bo(x,1 — y) — By(x, 1) —
,80(1 ydg(x +y — 1)) as. (P), as n — .

Integration by parts yields

Ay = = [Bu(x, Dd(g(x) — (1 =) = [B.(Ly)dla(y) —&(1 =)

[ Bux y)d(g(lx +y = 1) = g(k — D))

and Claim 3 follows from the Lebesgue dominated convergence theorem.
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In conclusion, the asymptotic distribution of Vn (%, — %,(H)) coincides
with the distribution of the r.v.

1 N A
Y= 2 [ LB, y) + By, 1)

—Bo(x, ) @oy(x, ) — Bo(1, ¥) ¢1a(x, ¥)} dg(lx +y — 1I),

which is normal with mean zero and variance

1 R
2 _ _ _
(41) 0f = 45 /IZ/IZ{E(f(x,y)g(s,t))}dg(lx +y—1l)dg(ls + ¢ — 1I),
where E denotes expectation w.r.t. ﬁ,

E(x,y) = éo(x,y) + [§O(x,1 -y) - ,[;’O(x,l)gom(x,y) - ,[;’O(l,y)golz(x,y)
and

E( éo(tl’tz)éo(sp%)) =My (2, Nsy, by ANSy) — My (ty,ty)Mp(sy,8,). O

REMARK 4.1. If H+ H",H and I(0) = 0, then Assumption 3 can be
dropped.

REMARK 4.2. Assumptions 2 and 3 can be weakened. In fact, Theorem 4.1
holds provided that the probability measure generated by H gives the set

dUD{(x,y) €R*: |F(x) - G(y)|=d V|F(x) + G(y) — 1| =d}

probability zero, D being the set of discontinuity points of [.

REMARK 4.3. If H is indifferent, then, from Theorem 4.1, AL . — O0as. (P)
as n — «. Consequently, the asymptotic distribution of Vn (Y0 — Y.(H))
coincides with that of A, , /K, which is normal with mean zero and variance

(4.2) %fﬂ(gzax — 1) —g(lx — y)g(1 — x — y1)) dMy(x, ).

In particular, if g(x) = x (Gini’s cograduation index), (4.2) becomes
3211 - 22lM,;(, x) dx — 16/3
0
and if g(x) = x? (Spearman’s rank correlation coefficient), (4.2) becomes

144f2x2y2dMH(x,y) — 15.
1

5. Estimation of asymptotic variance. In this section we introduce
and analyze the main properties of the U-statistic (of degree 2)

-1
Ug,n=(g) Zk(xiayi;xj’yj);

i<j
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where
R(x, 3525, %) = [v(x, 90 %5, ) + v(x, 5 %, 9)] /(2K),
(x5 55 %5, ) = 8(|F(x;) + G(y,) — 1]) = g(|F(x;) — G(y:)])
+sgn(F(x;) + G(y;) — DI(|F(x,) + G(y;) — 1])
X{u(xj’xi) +u(y;,y;) — [F(x;) + G(yi)]}
+sgn(F(x;) — G(5:))I(|F(x;) — G(y)])
X{u(yj’yi) —u(x;,x;) — [G(y:) - F(xl)]}

and u(x,y)=1if y > x, u(x,y) =0if y < x.

In fact, using this statistic, one can determine a consistent estimator of the
asymptotic variance of v, ,. The basic result is stated in the following
proposition. Its proof, almost identical to the one of Theorem 4.1, is omitted
[cf. Conti (1993)].

THEOREM 5.1. Under Assumptions 1-3,
\/;(Ug,n - ’Yg,n) -p 0 and ‘/E(Ug,n - ’/)\/g,n) -p 0
as n — «,

Thus, if the marginal c.d.f’s F and G of H are assigned, then U, , is an
unbiased, consistent estimator of the population cograduation index yg(H ).
From Theorem 5.1, v, , has the same asymptotic distribution as U, ,, which
is normal by virtue of well-known results by Hoeffding (1948). Consequently,
Ye,n @nd U, , have the same asymptotic variance and, from a theorem in Sen
(1960), the estimator

1 n 9 n
ZZZ(‘ZL'_Ug,n)= ZV2_

i=1

S| =

(V=21 .icnklx;, 55 %), yj)/(n —1),i=1,...,n] is a consistent estima-

tor of 0'2 /4. Unfortunately, in our case S; 2 n cannot be directly employed to

estlmate a-g2 because it involves the unknown marginal c.d.f’s F and G.
one can consider the statistic

Instead of S?
1, . 2
 Z (V= %)

s n

where the Vi’s are defined in the same way as the V,’s, with F' and G replaced
by F, and G, respectively. The following proposition holds.

THEOREM 5.2. Under Assumptions 1-3, S, >p 02/4 asn — .

A proof of Theorem 5.2 can be found in Conti (1993).
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6. A few applications of the previous results. This section deals with
two classical inferential problems in the presence of a large sample size:

ProBLEM A. Testing the hypothesis of indifference between two statistical
characteristics.

PrROBLEM B. Determining a confidence interval for the population index of
cograduation.

As far as Problem A is concerned, define:

1. Z to be the class of all functions satisfying Assumptions 1 and 2.
2. T" to be the class of all c.d.f’s in T'(F, G) satisfying Assumption 3.
3. %, to be the class of all indifferent c.d.f’s in I".

Thanks to Theorem 4.1, if H belongs to .7, if g is an element of £ and if n is
sufficiently large, then Vn Y,.» can be (approximately) considered as normally
distributed with mean zero and variance (4.2). Consequently, a conservative
test of the composite hypothesis H,: H belongs to .#, versus the alternative
H,: H belongs to I"\.% should reject H, whenever |y, ,|>c, where
d(—cvn / G,) = a/2, a represents the significance level of the test, ® is the
standard normal c.d.f. and &, = sup{g,(H): H €.%}. The conservative char-
acter of such a procedure could be mitigated by selecting the g’s for which g,
attains its minimum value. Now, since the statements

(6.1) if g(x) = x, then 6, = y/4/3
and
(6.2) if g € Z and g(x) # x for some x, then a, > /4/3

hold under the assumptions of Theorem 4.1, then the previous asymptotic
procedure to test H, against H, leads us to prefer Gini’s index as a test
statistic, in the class of all cograduation indices. The resulting asymptotic
rule consists in rejecting H, if |y, ,| > ¢, where, given the significance level
a, the critical value ¢ is determined by ®(—c¢V3n /2) = a/2.

In particular, Gini’s index should be preferred to the more popular
Spearman rank correlation coefficient.

To complete the present point, it only remains to prove (6.1) and (6.2). One
can start by observing that, for every H in .# [ = class of all indifferent c.d.f’s
in I'(F, G)],

x/2, if x € [0,1/2],

MH(x’x)SMH*(x’x)z (3x—1)/2, ifxe[1/2’1]’

where H* coincides with (3.2). Therefore, in view of Remark 3.1, one has

g(x)=x(x€l) = & =32 11— 2xMy.(x,x)dx — 16/3 = 4/3.
0
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This proves (6.1). To prove (6.2), after indicating the value of (4.2) at M- by
R(g), one observes that R(g) is an accumulation point of the set {o,(H):
H .7} for every g satisfying Assumption 1; see Remark 3.1. Hence,

2

5= R(g) = ['¢(x)° dx/(/olg(x) s

and to prove (6.2) it suffices to show that
(6.3) R(g)>4/3

holds for every g satisfying Assumption 1 and such that g(x) # x on I.
Inequality (6.3) is true if and only if

(6.4) folq'>(g(x)/2) dx > folqb(xfolg(u) du) dx

with ¢(x) = x2 on I. In view of the strict convexity of ¢ and a refinement of a
proposition by Hardy, Littlewood and Pélya (1929), (6.4) holds if

(6.5) %/;g(x)dx— f;x(folg(u) du) dx >0

for all ¢ in [0, 1], and the set

(6.6) {§€[0,1]:%/;g(x)dx—f;x(folg(u) du) dx>0}

has positive Lebesgue measure. In fact, thanks to (2.1), the left-hand side of
(6.5) reduces to

;fol(foxuu)du) dx — %fj(foxl(u) du) dx

E% 4 x
= ?[0 /0 {I(w) — I(éu)} dudx > 0
for all ¢ in I. Furthermore, if g(x) # x on I, then there exists & € (0, 1) such

that
1 X -
fofo{Z(u)—Z(gu)}dudx>o, ¢e o, €],

and this yields (6.6). A
Problem B can be solved thanks to the consistent estimator S7 , of the
asymptotic variance of vy, ,, given in Section 5. In fact, in view of Theorems

5.1 and 5.2,
’Yg,n t 2za/2S\g,n/\/;

represent the extreme points of an asymptotic (1 — «) confidence interval for
v,(H), 2, ,5 being the a/2th quantile of the standard normal c.d.f.

The same interval can be used to test hypotheses on the value of v,(H) too.
For instance, let us consider hypothesis Hj: y, = y* versus H;: vy,(H) # v*,
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y* being a fixed element in (-1, 1). The test which rejects Hj, if and only if
e n = v > 22, 58, .1/ Vn , represents an asymptotic test of size a, for H,
versus Hj.

Acknowledgments. The authors are grateful to the referees for many
valuable comments. A referee suggested study of the properties of sup, v, ,
as a test statistic. We were not able to do this, but, in any case, it would be
desirable to pursue this line of thought.
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