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The problem of constructing confidence sets for the structural errors-
in-variables model is considered under the assumption that the variance
of the error associated with the covariate is known. Previously proposed
confidence sets for this model suffer from the problem that they all have
zero confidence levels for any sample size, where the confidence level of a
confidence set is defined to be the infimum of coverage probability over the
parameter space. In this paper we construct some asymptotically honest
confidence sets; that is, the limiting values of their confidence levels are
at least as large as the nominal probabilities when the sample size goes to
∞. A desirable property of the proposed confidence set for the slope is also
established.

1. Introduction. Suppose that there are unobservable “true” random
variables �ui; ηi� that satisfy a linear relation,

�1:1� ηi = α+ βui:

We can only observe �Xi;Yi� which are the true random variables plus addi-
tive measurement errors �δi; εi�; that is,

�1:2� Yi = ηi + εi; Xi = ui + δi; i = 1; : : : ; n;

where

�ui; δi; εi�′ ∼i:i:d: N��mu;0;0�′;diag�σ2
u; σ

2
δ ; σ

2
ε ��;

−∞ < α;β;mu < ∞, σ2
u, σ2

δ and σ2
ε > 0: Model (1.1)–(1.2) is called a struc-

tural errors-in-variables model since the covariates ui are independent, iden-
tically distributed random variables. This model is different from a functional
errors-in-variables model, where ui are assumed to be unknown constants, not
random variables. Without extra assumptions about the parameters, however,
the model is unidentifiable. To avoid this difficulty, typically it is assumed that
one of the error variances or their ratio is known. Perhaps the most realistic
assumption is that one of the error variances is estimable by an indepen-
dent estimator, for example, when independent repeated observations made
on ui are available. Surveys of results for structural and functional errors-
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in-variables models can be found in Moran (1971), Kendall and Stuart (1979),
Anderson (1984) and Fuller (1987).

Let X = �X1; : : : ;Xn�, Y = �Y1; : : : ;Yn� and C�X;Y� be a confidence set for
β [or �α;β�]. From now on, the (finite-sample) confidence level of the confidence
set C�X;Y� is defined to be

inf
u∈�

Pu�β ∈ C�X;Y��;

where u and � denote the vector parameter and the corresponding parameter
space, respectively. For the case σ2

ε /σ
2
δ known, a confidence set for β with the

confidence level exactly equal to the nominal probability has been previously
derived by Creasy (1956). Similar results have, however, not been obtained
for other types of identifiability assumptions, although confidence sets with
asymptotic coverage probabilities equal to the nominal probabilities have been
derived (see Section 2 for details). Here the asymptotic coverage probability
of the confidence set C�X;Y� for β is defined as

lim
n→∞

Pu�β ∈ C�X;Y��:

Interestingly, the confidence level of a confidence set could be much smaller
than the asymptotic coverage probability of the same confidence set. This
seems to cause serious concern since the coverage probability of the confi-
dence set on a certain subset of the parameter space could be dangerously
low.

The results of Gleser and Hwang (1987) form a key part of the motivation for
the present study. For models such as (1.1)–(1.2) their general theorem shows
that any almost surely finite-diameter confidence set has a zero confidence
level, where the diameter of a confidence set is defined to be the supremum
distance between any two points in this set. As it turns out, the existing
(except Creasy’s) confidence sets have almost surely finite diameters and hence
zero confidence levels no matter how large the sample size is. In this paper
asymptotically honest confidence sets for β and �α;β� are constructed in the
case when the error variance σ2

δ is known. Here a 100�1− γ�% confidence set
C�X;Y� for β is defined to be asymptotically honest [Li (1989)] if

�1:3� lim
n→∞

inf
u∈�

Pu�β ∈ C�X;Y�� ≥ 1− γ;

where u = �α;β;mu; σ
2
u; σ

2
ε � and � = �uy −∞ < α;β;mu <∞; σ2

u > 0; σ2
ε >

0�. In fact, results stronger than asymptotic honesty are established in Sec-
tions 2 and 3. It is shown that the coverage probabilities of the proposed confi-
dence sets converge to the nominal probabilities uniformly over the parameter
space as the sample size goes to ∞. Furthermore, due to Gleser and Hwang’s
theorem, an asymptotically honest confidence set will inevitably have a pos-
itive probability of having an infinite diameter. However, among all asymp-
totically honest confidence sets for β, the proposed one minimizes the limit of
the supremum as well as the limit of the infimum of this probability over the
parameter space (see Theorem 2.5).
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Although we do not address the more practical situation where the error
variance σ2

δ is unknown but estimable [Madansky (1959)], the present results
do have an implication for such a case. In fact, by substituting an indepen-
dent estimator for σ2

δ and by taking into account the extra variability due to
this substitution, the resultant confidence sets are also asymptotically hon-
est. These results were established in Huwang (1991) and will be reported
elsewhere.

The rest of the article is organized as follows. Section 2 deals with the
confidence set for β, whereas Section 3 deals with the confidence set for �α;β�.
Difficulty in constructing the confidence set for α is discussed in Section 4.

2. Confidence set for the slope. Let X̄, Ȳ, S2
X, S2

Y and SXY, respec-
tively, denote

∑
Xi/n,

∑
Yi/n,

∑�Xi − X̄�2/n,
∑�Yi − Ȳ�2/n and

∑�Xi −
X̄��Yi − Ȳ�/n throughout the paper. If the consistent estimators of α and β
are defined by

α̂ = Ȳ− β̂X̄; β̂ = SXY

S2
X − σ2

δ

;

it is well known [Fuller (1987), Theorem 1.2.1] that
√
n�α̂ − α; β̂ − β� con-

verges in distribution to a normal vector random variable with zero mean and
covariance matrix

�2:1� 0 =
[
m2
uσ
−4
u �σ2

Xσ
2
v + σ2

Xv� + σ2
v −muσ

−4
u �σ2

Xσ
2
v + σ2

Xv�
−muσ

−4
u �σ2

Xσ
2
v + σ2

Xv� σ−4
u �σ2

Xσ
2
v + σ2

Xv�

]
;

where vi = Yi − α − βXi = εi − βδi, σ2
X and σ2

v are the variances of Xi and
vi and σXv is the covariance of Xi and vi. Denote

V�β̂� = 1
σ4
u

�σ2
Xσ

2
v + σ2

Xv� =
1
σ4
u

�β2�σ4
δ + σ2

δσ
2
X� + σ2

εσ
2
X�:

Then 0̂ converges in probability to 0, where

0̂ =
[
X̄2V̂�β̂� +S2

v −X̄V̂�β̂�
−X̄V̂�β̂� V̂�β̂�

]
;

�2:2� V̂�β̂� = 1
σ̂4
u

�S2
XS

2
v + β̂2σ4

δ �; S2
v =

1
n− 2

∑
�Yi − Ȳ− �Xi − X̄�β̂�2;

σ̂2
u = S2

X − σ2
δ ; σ̂Xv = −β̂σ2

δ :

From this, it follows that, as n→∞,

Tn =
√
n�β̂− β�√
V̂�β̂�

→N�0;1�
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in distribution. In practice, it seems reasonable to approximate the distribu-
tion of Tn with the distribution of t with n − 2 degrees of freedom. Conse-
quently, a 100�1− γ�% confidence set for β is defined by

�2:3� �Tn� ≤ tn−2�γ/2�;

where tn−2�γ/2� is the upper 100�γ/2� percentile of the t distribution with n−2
degrees of freedom. Although the confidence set (2.3) has a 1 − γ asymptotic
coverage probability, it has a finite diameter (almost surely) and hence a zero
confidence level by virtue of Gleser and Hwang’s theorem. Actually, by consec-
utively applying the dominated convergence theorem twice, it is easy to show
that, for each n,

lim
β→∞

lim
σ2
u→0

Pu��Tn� ≤ tn−2�γ/2�� = 0:

Hence the finite-sample coverage probability of (2.3) could be extremely low
on certain subsets of the parameter space �.

To derive an alternative confidence set for β, we consider the pivotal

�2:4� T∗n =
√
n�β̂− β�√
V∗�β̂�

;

where V∗�β̂� is obtained from V�β̂� wherein the parameters σ2
u, σ2

X and σ2
ε

are replaced by

�2:5� σ̂2
u = S2

X − σ2
δ ; σ̂2

X = S2
X; σ̂2

ε =
n

n− 2

(
S2
Y −

S2
XY

S2
X − σ2

δ

)
;

respectively. Precisely,

�2:6� V∗�β̂� = 1
σ̂4
u

�β2�σ4
δ + σ2

δ σ̂
2
X� + σ̂2

ε σ̂
2
X�:

Based on T∗n in (2.4), a 100�1− γ�% confidence set for β is defined by

�2:7� �T∗n� ≤ tn−2�γ/2�:

Note that the major difference betweenV∗�β̂� and V̂�β̂� (and henceT∗n andTn)
is that, unlike V̂�β̂�, the parameter β is not estimated in V∗�β̂�. Hence V∗�β̂�
here is not a real estimator of V�β̂� (because it depends on β) but a “pseudo-
estimator,” with which we can form a pivotal to construct a confidence set. The
approach of not estimating β inV∗�β̂� has been previously proposed by Hwang
(1988) although the problem considered there was different. Consequently,
inequality (2.7) is equivalent to

[
�S2

X − σ2
δ �2 −

t2n−2�γ/2�
n

�σ4
δ + σ2

δS
2
X�
]
β2 − 2SXY�S2

X − σ2
δ �β

+S2
XY −

t2n−2�γ/2�
n

σ̂2
εS

2
X ≤ 0:

(2.8)
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It is worth noting that the confidence set in (2.8) is equal to the usual t-interval
when σ2

δ = 0 and its diameter can be infinite if the leading coefficient of the
quadratic expression in β on the left of (2.8) is negative. Now the uniform
convergence theorem of this confidence set is presented.

Lemma 2.1. Assume that model (1.1)–(1.2) holds with σ2
δ known. Then

lim
n→∞

sup
u∈�
�Pu�Zn ≤ z� −8�z�� = 0;

where

�2:9� Zn =
√
n�SXY − β�S2

X − σ2
δ ��√

β2�σ4
δ + σ2

δσ
2
X� + σ2

εσ
2
X

and 8�z� denotes the distribution function of N�0;1�.

Proof. Since subtracting mu from ui and α from Yi in model (1.1)–(1.2)
leaves Zn unchanged, we can assume without loss of generality that mu =
α = 0:

Write Zn as An +Bn; where

An =
√
n
[∑

XiYi/n− β�
∑
X2
i /n− σ2

δ �
]

√
β2�σ4

δ + σ2
δσ

2
X� + σ2

εσ
2
X

; Bn =
√
nX̄�βX̄− Ȳ�√

β2�σ4
δ + σ2

δσ
2
X� + σ2

εσ
2
X

:

To prove the result, it suffices to show that An →L N�0;1� and Bn →P 0
uniformly in u as n → ∞, where the notation →L and →P is used to de-
note convergence in distribution and in probability, respectively. By a direct
computation, we have

β2�σ4
δ + σ2

δσ
2
X� + σ2

εσ
2
X ≥ n2σ2

X̄
σ2
βδ̄−ε̄;

where δ̄ = ∑ δi/n, ε̄ = ∑ εi/n and σ2
X̄

and σ2
βδ̄−ε̄ are the variances of X̄ and

βδ̄− ε̄, respectively. Consequently,

�Bn� ≤
1√
n

∣∣∣∣
X̄

σX̄

�βδ̄− ε̄�
σβδ̄−ε̄

∣∣∣∣→ 0

uniformly in u as n→∞.
Substituting ui + δi and βui + εi for Xi and Yi, respectively, in An and by

a straightforward manipulation, we have

An =
1√
n

∑[
ui
σu

εi
σε
σuσε +

δiεi
σδσε

σδσε −
(

δ2
i√

2σ2
δ

− 1√
2

)√
2βσ2

δ −
uiδi
σuσδ

βσuσδ

]

× 1√
β2�σ4

δ + σ2
δσ

2
X� + σ2

εσ
2
X

;
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which is denoted by n−1/2∑n
i=1Ti: Note that the Ti’s are independent, identi-

cally distributed random variables with mean 0 and variance 1: By the triangle
inequality and the convexity of a cube function,

E�Ti�3 ≤ E
(∣∣∣∣
uiεi
σuσε

∣∣∣∣+
∣∣∣∣
δiεi
σδσε

∣∣∣∣+
∣∣∣∣
δ2
i√

2σ2
δ

− 1√
2

∣∣∣∣+
∣∣∣∣
uiδi
σuσδ

∣∣∣∣
)3

≤ 16E
{∣∣∣∣
uiεi
σuσε

∣∣∣∣
3

+
∣∣∣∣
δiεi
σδσε

∣∣∣∣
3

+
∣∣∣∣
δ2
i√

2σ2
δ

− 1√
2

∣∣∣∣
3

+
∣∣∣∣
uiδi
σuσδ

∣∣∣∣
3}
≤K;

where K �> 0� is a constant which is independent of u since the distributions
of ui/σu, δi/σδ, εi/σε and δ2

i /�
√

2σ2
δ � are the same. Now by the Berry–Esseen

theorem [Chung (1974)]

sup
z
�P�An ≤ z� −8�z�� ≤

3K√
n
:

From this, it is easy to complete the proof. 2

Lemma 2.2. Under the assumptions of Lemma 2.1, ∀ η > 0;

lim
n→∞

sup
u∈�

Pu��Rn − 1� > η� = 0;

where

�2:10� Rn =
√
β2�σ4

δ + σ2
δσ

2
X� + σ2

εσ
2
X

β2�σ4
δ + σ2

δS
2
X� + σ̂2

εS
2
X

:

Proof. It is easy to see that

lim
n→∞

Pu��Rn − 1� > η� = 0 ∀ u ∈ �:

Our proof that this convergence is uniform in u is lengthy and hence is omitted.
Interested readers may refer to Huwang (1991), Theorem 2.2.7. 2

Theorem 2.3. Under model (1.1)–(1.2) with σ2
δ known,

�2:11� lim
n→∞

sup
u∈�
�Pu�T∗n ≤ tn−2�γ/2�� − �1− γ/2�� = 0;

where T∗n is given by (2.4).

Proof. Since 8�tn−2�γ/2�� → 1− γ/2 as n→∞, by the triangle inequality
it suffices to show that T∗n →L N�0;1� uniformly in u as n→∞. By the fact
that T∗n = ZnRn, where Zn and Rn are given by (2.9) and (2.10), respectively,
the result follows easily from Lemmas 2.1 and 2.2. 2

Note that Theorem 2.3 clearly implies that the two-sided confidence set
(2.7) has coverage probability converging to 1− γ uniformly in u and has the
property of asymptotic honesty as defined in (1.3).
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We now discuss a desirable property of confidence set (2.7). Let C =
�C�X;Y�y C�X;Y� satisfies (1.3)� be the set of all 100�1− γ�% asymptotically
honest confidence sets C�X;Y� for β. Then, on the basis of Gleser and Hwang’s
theorem, each confidence set in C will inevitably have a positive probability
of having an infinite diameter. However, one would want this probability to
be as small as possible. Therefore, among the class C , it is desirable to seek
a confidence set such that the supremum as well as the infimum probability
over the parameter space of having an infinite diameter is asymptotically
minimized.

Theorem 2.4. Assume that model (1.1)–(1.2) holds with σ2
δ known. Then,

for each C�X;Y� ∈ C ,

�2:13� lim sup
n→∞

sup
u∈�

Pu�diameter of C�X;Y� = ∞� ≥ 1− γ:

Proof. This result follows from the similar arguments of Gleser and
Hwang (Theorem 1); see Huwang (1991), Lemma 2.3.2, for details.

In the following theorem we will establish that the proposed confidence set
(2.7) minimizes the quantity on the left-hand side of (2.13), and we will find
the value of

lim sup
n→∞

inf
u∈�

Pu�diameter of C�X;Y� = ∞�:

Theorem 2.5. Assume that model (1.1)–(1.2) holds with σ2
δ known and that

σ2
u varies as a function of n. As n→∞,

Pσ2
u
�diameter of confidence set (2.7) = ∞�

→





1− γ; if
√
nσ2

u → 0;
8�−c/�

√
2σ2

δ � + zγ/2� −8�−c/�
√

2σ2
δ � − zγ/2�; if

√
nσ2

u → c;
0; if

√
nσ2

u →∞;

(2.14)

where c is any positive constant. As a consequence, confidence set (2.7) satisfies

�2:15� lim
n→∞

sup
u∈�

Pu�diameter of confidence set (2.7) = ∞� = 1− γ

and

�2:16� lim
n→∞

inf
u∈�

Pu�diameter of confidence set (2.7) = ∞� = 0:

Proof. First of all, note that the confidence set (2.7) has an infinite diame-
ter if and only if the leading coefficientA = �S2

x−σ2
δ �2−n−1t2n−2�γ/2��σ4

δ+σ2
δS

2
x�

of the quadratic expression in β on the left of (2.8) is less than 0. By a straight-
forward manipulation, A < 0 is equivalent to

�2:17� W2 − �2nr+ t2n−2�γ/2�r�W+ �n2r2 − nr2t2n−2�γ/2�� < 0;
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where σ2
X = σ2

u+σ2
δ , r = σ2

δ/σ
2
X and W = nS2

X/σ
2
X is a chi-square distribution

with n − 1 degrees of freedom. Since the leading coefficient of the quadratic
expression in W on the left of (2.17) equals 1 and the discriminant is greater
than 0,

Pσ2
u
�A < 0�

= Pσ2
u

{
W ∈ 1

2

[
2nr+ tn−2�γ/2�r

(
tn−2�γ/2� ±

√
8n+ t2n−2�γ/2�

)]}

= Pσ2
u




W− �n− 1�√

2�n− 1�

∈
n�r− 1� + 1+ tn−2�γ/2�r

[
1
2tn−2�γ/2� ±

√
2n+ 1

4t
2
n−2�γ/2�

]

√
2�n− 1�




;

which converges to the desired result by the fact that �W − �n − 1��/√
2�n− 1� →L N�0;1� and tn−2�γ/2�→ zγ/2 as n→∞. 2

Remark 1. It is conjectured that every asymptotically honest confidence
set for β would, under each of the three cases in (2.14), have a limiting prob-
ability of infinite length at least equal to the value in (2.14). Therefore, the
confidence set (2.7) would be the best possible among C . However, this is dif-
ficult to resolve.

Remark 2. In addition to (2.16), confidence set (2.7) also has the desirable
property that

lim
n→∞

Pu�diameter of confidence set (2.7) = ∞� = 0 ∀ u ∈ �;

and, in fact, this limit holds uniformly on any compact subset of �.

3. Confidence set for the slope and intercept. Based on the same
idea used in constructing an asymptotically honest confidence set for β, a
confidence set for �α;β� can be derived from the pivotal Q∗n defined by

Q∗n = n�α̂− α; β̂− β�0̂∗
−1�α̂− α; β̂− β�′

= n�Ȳ− α− βX̄�
2

β2σ2
δ + σ̂2

ε

+ n�SXY − β�S2
X − σ2

δ ��2
β2�σ4

δ + σ2
δS

2
X� + σ̂2

εS
2
X

:
(3.1)

Here 0̂∗ is obtained from 0̂ in (2.2) by substituting V∗�β̂� of (2.6) and S∗
2

v =
β2σ2

δ + σ̂2
ε for V̂�β̂� and S2

v in 0̂ and hence the parameter β is not estimated
in 0̂∗. It is easy to see that Q∗n converges in distribution to a chi-square with
2 degrees of freedom. In practice, it seems reasonable to approximate the
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distribution of Q∗n/2 with that of F with 2 and n − 2 degrees of freedom.
Consequently, a 100�1− γ�% confidence set for �α;β� is defined by

�3:2� 1
2Q
∗
n < F2; n−2�γ�;

where F2; n−2�γ� is the upper 100γ percentile of the F distribution with 2 and
n− 2 degrees of freedom.

Note that confidence set (3.2) is the usual F confidence region when σ2
δ = 0.

In fact, an explicit formula for (3.2) is obtainable which will be described below.
First of all, by taking α = Ȳ− βX̄ the minimum of Q∗n over the space of α

is achieved with the value

Bn�β� =
n�SXY − β�S2

X − σ2
δ ��2

β2�σ4
δ + σ2

δS
2
X� + σ̂2

εS
2
X

:

Therefore, the range of β, denoted by Cs�X;Y�, can be first obtained by solving
β from

1
2Bn�β� < F2; n−2�γ�;

or equivalently from
[
�S2

X − σ2
δ �2 −

2F2;n−2�γ�
n

�σ4
δ + σ2

δS
2
X�
]
β2 − 2�S2

X − σ2
δ �SXYβ

+S2
XY −

2F2;n−2�γ�
n

σ̂2
εS

2
X < 0:

(3.3)

As a consequence,

Cs�X;Y� =




�r1; r2�; if L > 0;
�r1; r2�c; if L < 0 and D > 0;
�−∞;∞�; if L < 0 and D < 0;

where L, D, r1 and r2 are, respectively, the leading coefficient, the discrim-
inant and the two roots of the quadratic expression in β on the left of (3.3).
For each β ∈ Cs�X;Y�, the range of α, denoted by Ci�X;Y�; can be obtained
by solving α from (3.2). After algebraic simplification,

Ci�X;Y� = Ȳ− βX̄±
√
�2F2; n−2�γ� −Bn�β���β2σ2

δ + σ̂2
ε �/n:

In summary, this confidence set consists of �α;β� wherein β ∈ Cs�X;Y� and,
for each β in Cs�X;Y�, α ∈ Ci�X;Y�.

Confidence set (3.2) is asymptotically honest as expected and, in fact, it
has the stronger property of uniform convergence which is established in the
following theorem.

Theorem 3.1. Assume that model (1.1)–(1.2) holds with σ2
δ known. Then

lim
n→∞

sup
u∈�
� Pu�Q∗n ≤ 2F2; n−2�γ�� − �1− γ� �= 0:
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Proof. Since P�χ2
2 ≤ 2F2; n−2�γ�� → 1 − γ, by the triangle inequality, it

suffices to show that Q∗n →L χ2
2 uniformly in u as n → ∞. Rewrite Q∗n as

N1R1 +N2R2:

N1 =
n�Ȳ− α− βX̄�2
β2σ2

δ + σ2
ε

; R1 =
β2σ2

δ + σ2
ε

β2σ2
δ + σ̂2

ε

; N2 = Z2
n; R2 = R2

n;

where Zn and Rn are given by (2.9) and (2.10), respectively. Although N1,
R1, N2 and R2 defined above depend on n, this is not made explicit in the
notation. By Lemma 2.2 and a result similar to it, we have

σ̂2
ε − σ2

ε

β2σ2
δ + σ2

ε

�= R−1
1 − 1� →P 0 and R

1/2
2 →P 1

uniformly in u as n→∞, and hence R1 and R2 converge to 1 uniformly.
For each ξ ∈ �0;1� and t ∈ �0;∞�, it is easy to establish that

Pu

(
N1 +N2 ≤

t

1+ ξ

)
−P�χ2

2 ≤ t� −Pu�R1 ∈ �1± ξ�c or R2 ∈ �1± ξ�c�

≤ Pu�N1R1 +N2R2 ≤ t� −P�χ2
2 ≤ t�

(3.4)

and

Pu

(
N1 +N2 ≤

t

1− ξ

)
−P�χ2

2 ≤ t� +Pu�R1 ∈ �1± ξ�c or R2 ∈ �1± ξ�c�

≥ Pu�N1R1 +N2R2 ≤ t� −P�χ2
2 ≤ t�:

(3.5)

Therefore, the absolute value of the right-hand side of (3.4) is bounded by the
maximum of
∣∣∣∣Pu

(
N1 +N2 ≤

t

1+ ξ

)
−P

(
χ2

2 ≤
t

1+ ξ

)∣∣∣∣+
∣∣∣∣P
(
χ2

2 ≤
t

1+ ξ

)
−P�χ2

2 ≤ t�
∣∣∣∣

+Pu�R1 ∈ �1± ξ�c or R2 ∈ �1± ξ�c�

and
∣∣∣∣Pu

(
N1 +N2 ≤

t

1− ξ

)
−P

(
χ2

2 ≤
t

1− ξ

)∣∣∣∣+
∣∣∣∣P
(
χ2

2 ≤
t

1− ξ

)
−P�χ2

2 ≤ t�
∣∣∣∣

+Pu�R1 ∈ �1± ξ�c or R2 ∈ �1± ξ�c�:

Since R1 →P 1 and R2 →P 1 uniformly in u as n→∞ and ξ is arbitrary, the
theorem will be proven if we can show thatN1+N2 →L χ

2
2 uniformly. Observe

that N1 has a χ2
1 distribution because Ȳ − α − βX̄ ∼ N�0; �β2σ2

δ + σ2
ε �/n�:

By Lemma 2.1, it follows that N2 →L χ
2
1 uniformly in u as n→∞. The result

follows from the fact that N1 and N2 are independent. 2
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4. Confidence set for the intercept. The scenario for constructing an
asymptotically honest confidence set for α is quite different from that of β de-
scribed previously. From 0 given by (2.1), note that

√
n�α̂−α� has the asymp-

totic variance

�4:1� m2
u

σ4
u

�β2�σ4
δ + σ2

δσ
2
X� + σ2

εσ
2
X� + β2σ2

δ + σ2
ε ;

which depends on β but not α. If we estimate all parameters (including β)
in (4.1) and apply the traditional method to construct a confidence set for α,
the resultant one will have an almost surely finite diameter and hence have
a zero confidence level due to the results of Gleser and Hwang. Therefore, the
approach to the asymptotically honest confidence set for β used previously
cannot be adapted in this situation. Scheffé’s projection method is another
possible way to attack the problem. A 100�1− γ�% confidence set for α can be
obtained by projecting (3.2) onto the α-axis. Obviously, the projected confidence
set is asymptotically honest. However, this approach needs tedious numerical
computations and the result may be too conservative. Hence it will not be
pursued here.
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