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A GENERAL BAHADUR REPRESENTATION OF M-ESTIMATORS
AND ITS APPLICATION TO LINEAR REGRESSION WITH

NONSTOCHASTIC DESIGNS
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University of Illinois and University of Oregon

We obtain strong Bahadur representations for a general class of M-
estimators that satisfies

∑
i ψ�xi; θ� = o�δn�, where the xi ’s are indepen-

dent but not necessarily identically distributed random variables. The re-
sults apply readily to M-estimators of regression with nonstochastic de-
signs. More specifically, we consider the minimum Lp distance estimators,
bounded influence GM-estimators and regression quantiles. Under appro-
priate design conditions, the error rates obtained for the first-order approx-
imations are sharp in these cases. We also provide weaker and more easily
verifiable conditions that suffice for an error rate that is suboptimal but
strong enough for deriving the asymptotic distribution of M-estimators in
a wide variety of problems.

1. Introduction. Bahadur representations are often useful to study the
asymptotic properties of statistical estimators. Typically, an estimator is ap-
proximated by a sum of independent variables with a higher-order remainder;
see Bahadur (1966) for some beginning work. The first-order terms may be
used to measure the influence of a single observation or to derive the asymp-
totic distribution of the estimator. The asymptotic joint distribution of multiple
statistics may also be obtained from individual Bahadur representations. Fur-
thermore, a good error bound for the representation provides a quick guide to
how good the linear approximation can be. Because of the wide applicability
of M-estimators in parametric estimation, a number of authors have obtained
Bahadur-type representations for M-estimators in their respective applica-
tions. For example, Carroll (1978) and Martinsek (1989) obtained strong rep-
resentations for location and regression M-estimators with preliminary scale
estimates. Recent work includes, among many others, Portnoy and Koenker
(1989) for regression quantiles, He and Wang (1995) for multivariate location
and scatter estimation, Babu (1989), Pollard (1991) and Arcones (1996a) for
the least absolute deviation regression.

Some recent studies focused on M-estimators in general parametric prob-
lems. Niemiro (1992) and Bai, Rao and Wu (1992) considered a class of
M-estimators defined by minimization of a convex objective function. Bose
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(1996) extended this approach to estimators defined through minimization of
a U-statistic. A technical report of the authors, He and Shao (1994), dealt
with those defined through scoring equations. A related development that
can be found in Jurečková (1985) and Jurečková and Sen (1987) was to
find the second-order asymptotics in weak representations. For example, it
was known that the remainder term of the first-order approximation is of
the order of Op�n−1� when the score function is twice differentiable, but it
becomes Op�n−3/4� if the score function has jump discontinuities. The present
paper shows that an almost sure Bahadur representation with good and often
sharp error bounds can be obtained for a general class of M-estimators of
independent observations.

Consider a sequence of variables �xi; i = 1; : : : ; n� that are independent but
not necessarily identically distributed. Suppose that there exists θ0 such that∑
iEψ�xi; θ0� = 0 for some score function ψ. We work with any M-estimator

θ̂n of θ0 which satisfies

n∑
i=1

ψ�xi; θ̂n� = o�δn�;

for some sequence δn.
Most authors have been concerned with i.i.d. variables. The relaxation of the

assumption of identical distributions here allows this formulation to include
regression models with nonstochastic designs. Representations for regression
estimators with nonstochastic designs are often of more practical interest and
harder to derive. In Section 2, we obtain a strong Bahadur representation for
θ̂n by substantially strengthening the results of Huber (1967). It is developed
for M-type estimation problems in a rather general setting. Specific applica-
tions to linear regression models are given in Section 3, where we show how
the general theorems work for M-estimators with varying degrees of smooth-
ness of their score functions. For example, the exact error bound is obtained
for the minimum Lp distance estimators. The same can be done for regression
quantiles and generalized M-estimators.

The reason we choose the minimum Lp distance estimators to illustrate
the utility of our general representations is that such estimators are rou-
tinely used and analyzed not only in statistics but also in numerical anal-
ysis and computational geometry. There is a vast amount of literature for
the algorithmic aspect of the Lp-approximation [see, e.g., Watson (1980) and
Späth (1991) and the references therein]. Under appropriate conditions on
the design, the error rates in the Bahadur representation are on the order of
��log log n�/n�1/4+p/2 for 1 ≤ p < 3/2, and �log log n�/n for p > 3/2. The same
bounds obtained by Arcones (1996a) for random designs may be derived as a
direct consequence of these results.

In some, if not many, statistical applications, a slightly suboptimal error
rate would serve almost all purposes. The asymptotic distribution of an M-
estimator often follows from an error rate of op�n−1/2�. A slight modification of
our proofs shows that such results can be obtained under weaker conditions
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than required by Huber (1967). Our results may also facilitate asymptotic
analyses for redescending M-estimators, one-step M-estimators and rank-
based estimators [see, e.g., Hössjer (1994)].

The proofs of the general theorems and some of their generalizations are
provided in Section 4, but detailed calculations used in the linear models of
Section 3 are given in Section 5.

2. Bahadur representation: general results. In this section, we con-
sider M-estimators in a general parametric framework. More specific applica-
tions to linear regression models will be discussed later.

Let x1; x2; : : : ; xn be independent observations from probability distribu-
tions Fi; θ; i = 1;2; : : : ; n, with a common unknown parameter θ ∈ 2, an
open subset of Rm, m ≥ 1. We consider an M-estimator θ̂n that satisfies

�2:1�
n∑
i=1

ψ�xi; θ̂n� = o�δn�;

where δn is a sequence of positive numbers. Various forms of δn have been
used in the literature. For example, Huber (1967) considered δn = n for his
consistency theorem and δn =

√
n for asymptotic normality. He and Wang

(1995) used δn =
√
n log log n to establish the law of the iterated logarithm for

θ̂n. In most cases, the left-hand side of (2.1) is actually equal to zero, but the
least absolute deviation of linear regression is one important exception.

To fix notation, define

3n�θ� =
n∑
i=1

Eψ�xi; θ�

and

�2:2� u�x; θ; d� = sup
�τ−θ�≤d

�ψ�x; τ� − ψ�x; θ��;

where � · � is taken to be the sup norm: �θ� = max��θ1�; : : : ; �θm��, and the
expectations are taken at the underlying distributions of xi’s. We aim for a
generally good error rate in the Bahadur representation of θ̂n, and work under
the following set of conditions (not all conditions are needed for each theorem;
for explanations of what roles each condition plays, see Remark 2.1):

(B1) For each fixed θ ∈ 2, ψ�x; θ� is Borel measurable.
(B2) There exists θ0 ∈ 2 such that 3n�θ0� = 0 and �θ̂n − θ0� → 0 almost

surely as n→∞.
(B3) There exist r>0, d0>0 and a sequence of positive numbers �ai; i≥1�

such that Eu2�xi; θ; d� ≤ a2
id

r for �θ− θ0� ≤ d0 and d ≤ d0.
(B4) A2n = O�An�, where An =

∑n
i=1 a

2
i .
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(B5) There exist 0 < β ≤ α and β1 > 0 such that

Eu2+α�xi; θ0; d� ≤ a2+β1
i d�2+β�r/2 for d ≤ d0;

n∑
i=1

a
2+β1
i = O�A�2+β�/2n �log n�−7−2α�:

(B6) There exists a sequence of positive numbers �sn; n ≥ 1� with sn→∞
and sn ≤ An such that

lim sup
n→∞

�∑n
i=1ψ�xi; θ0��

�sn log log n�1/2 ≤ 2 a.s.

(B7) �3n�θ̂n�� ≥ cn�θ̂n − θ0� for some positive numbers cn.
(B8) There exist a nonsingular matrix Dn and positive numbers �bn� such

that

�3n�θ̂n� −Dn�θ̂n − θ0�� ≤ bn a.s.

Theorem 2.1. Under conditions (B1)–(B7), we have

�2:3� θ̂n − θ0 = O
(
s

1/2
n

cn
�log log n�1/2

(
1+

(
An

sn

)1/2(An

c2
n

log log n
)r/4))

for any sequence θ̂n satisfying (2.1) with δn = O��sn log log n�1/2�. If, in addi-

tion, (B8) is satisfied, then θ̂n has the following almost sure representation:

�2:4� θ̂n − θ0 = −
n∑
i=1

D−1
n ψ�xi; θ0� +O�Rn;1� +O�Rn;2�;

where

Rn;1 = �D−1
n � �A1/2

n �θ̂n − θ0�r/2 + 1��log log n�1/2

and

Rn;2 = �D−1
n ��bn + δn�:

The first remainder term Rn;1 comes from the linearization given in Lem-
ma 4.1. Usually this dominates the error rate in the representation. The sec-
ond remainder Rn;2 is due to other approximations. In typical applications,
especially when each xi has the same distribution, the following corollary
would give a simpler remainder term.

Corollary 2.1. Suppose that (B1)–(B8) are satisfied with n/cn = O�1�,
�D−1

n � = O�n−1�, An = O�n� and bn = O�n1/2−r/4�log log n�r/2�. Then, any

sequence θ̂n satisfying (2.1) with δn = O�n1/2−r/4� has the following almost
sure representation:

�2:5� θ̂n − θ0 = −D−1
n

n∑
i=1

ψ�xi; θ0� +O
(
n−�1/2+r/4��log log n�1/2+r/4

)
:
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The results apply to any consistent estimators as assumed in (B2). In some
cases, the verification of strong consistency could be highly nontrivial. General
conditions on consistency are not discussed in the present paper, but we refer
to Huber (1967), Haberman (1989) and Liese and Vajda (1994) among others.
On the other hand, consistency is often the first step in the asymptotic analysis
and can be found in existing literature for most estimators in use. We also
note that, with some nonessential modifications in the proof of Lemma 4.1,
the results of Theorem 2.1 remain valid if the strong consistency in (B2) is
weakened to the following:

(B2′) There exists θ0 ∈ 2 such that 3n�θ0� = 0 and log��θ̂n − θ0��/ log�n� is
bounded almost surely.

In fact, (B2′) together with other conditions implies strong consistency.

Remark 2.1. The Borel measurability of ψ in condition (B1) is to ensure
measurability of all quantities used in Section 4. Huber (1967) assumed some
form of separability for the same purpose. The major conditions of Theorem
2.1 are (B3) and (B5) as they are used to obtain a linear expansion of 3n�θ̂n�
in Lemma 4.1. Condition (B7) is used to ensure its invertibility in order to
obtain the rate of convergence of θ̂n in (2.3). Condition (B6) is usually a result
of some known law of the iterated logarithm such as those in Wittmann (1987)
and Chen (1993). It is not critical to the representation but simplifies the error
rate expression in (2.4). We require the growth rate ofAn to be limited by (B4),
but this is not essential (see Lemma 4.6). The quantity bn in (B8) is usually
obtainable by Taylor expansion and by (2.3).

The most demanding condition here is (B5). In fact, to get a looser error
bound in the representation that is still strong enough to imply asymptotic
normality, this condition is not needed at all.

Corollary 2.2. Assume conditions (B1), (B2) and (B3) withAn=
∑n
i=1 a

2
i =

O�n�. If, in a neighborhood of θ0, 3n�θ� has a nonsingular derivative Dn�θ�
such that �D−1

n �θ0�� = O�1/n� and �Dn�θ� − Dn�θ0�� ≤ κn�θ − θ0� for some

constant κ, then for any sequence θ̂n satisfying (2.1) with δn = O�n1/2−r/4�,

θ̂n − θ0 = −D−1
n �θ0�

n∑
i=1

ψ�xi; θ0� +O
(
n−�1/2+r/4��log n�3

)
:

The result of Corollary 2.2 holds true even if (B3) is generalized to
Eu2�xi; θ; d� ≤ a2

id
r� log d�. Therefore, our conditions are generally weaker

than those employed by Huber (1967) for asymptotic normality in the special
case of i.i.d. samples. Corollary 2.2 is convenient for verifying asymptotic
normality of M-estimators. The proof is similar to what is given in Section
4, and more details may be obtained in He and Shao (1994), an unpublished
technical report of the authors. On the other hand, if ψ as a function of θ
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satisfies a Hölder condition of some order, the verification of (B5) becomes
straightforward with β1 = β.

Although we are working with a consistent estimator θ̂n, the rate of con-
vergence (2.3), which is typically O��sn log log n�1/2c−1

n �, follows from those
conditions automatically. If, however, a rate of convergence is already known,
an alternative condition (B5′) may be used in lieu of (B5), (B6) and (B7) [in
some applications, (B5′) is much easier to verify]:

(B5′) For some decreasing sequence of positive numbers dn such that dn =
O�d2n� = o�1�, max1≤i≤n u�xi; θ0; dn� = O�A1/2

n d
r/2
n �log n�−2� a.s.

Theorem 2.2. Under conditions (B1)–(B4), (B5′) and (B8), any sequence

θ̂n satisfying (2.1) and �θ̂n − θ0� ≤ dn = o�1� almost surely has the following
representation:

�2:6� θ̂n − θ0 = −
n∑
i=1

D−1
n ψ�xi; θ0� +O�R∗n� a.s.;

where R∗n = �D−1
n ��δn + bn +A

1/2
n d

r/2
n �log log n�1/2 + �log log n�1/2�.

Some other generalizations of Theorem 2.1 are given briefly at the end of
Section 4. However, we conclude this section with a quick comparison with the
results of Niemiro (1992), who also obtained strong Bahadur representations
of M-estimators.

Niemiro (1992) considers a class of M-estimators defined by minimization
of a convex objective function. The convexity leads to some simplifications,
but excludes redescending M-estimators often used in robust statistics. The
smoothness condition used in Niemiro (1992) is similar in nature to (B3) used
in the present paper. It is sometimes easier to check than our condition (B5),
but the resulting error rates are not as sharp. Finally, the assumption of i.i.d.
observations in Niemiro (1992) is not appropriate for applications in the re-
gression problems with non-stochastic designs.

3. Applications to linear models. One important application of Theo-
rems 2.1 and 2.2 is in the area of linear models. We consider the usual regres-
sion model

yi = z′iθ+ ei;

where the zi’s are nonstochastic design points in Rm, and the ei’s are inde-
pendent error variables with common probability density function f. Without
loss of generality, we assume that the true parameter θ0 = 0. We now con-
sider three different classes of M-estimators that are commonly used in the
literature. As in Section 2, the consistency of these estimators is not explicitly
discussed here but can be found in the existing literature.



2614 X. HE AND Q.-M. SHAO

3.1. M-estimators with smooth score functions. We first consider the sim-
plest case, where θ̂n is defined through

�3:1�
n∑
i=1

φ�yi − z′iθ�zi = 0;

where φ is Lipschitz. Results on consistency and asymptotic normality were
given in Yohai and Maronna (1979). To illustrate the application of Theorem
2.1, we shall not seek the weakest possible assumptions at the cost of clarity.

Let Qn =
∑n
i=1 ziz

′
i. To use Theorem 2.1, we identify xi = �yi; zi� and

ψ�xi; θ� = φ�yi − z′iθ�zi. Note that part of xi has a degenerate point-mass
distribution, but this is allowed in Section 2.

Theorem 3.1. If the following conditions (C1)–(C3) are satisfied, then

θ̂n = −�γQn�−1
n∑
i=1

φ�ei�zi +O
(

log log n
n

)
a.s.:

(C1) both φ and f′ are Lipschitz;
(C2) Eφ�e� = 0, γ =

∫∞
−∞φ�x�f′�x�dx 6= 0 and Eφ2+ε�e� < ∞ for some

ε > 0;
(C3) n−1Qn → Q for some positive definite matrix Q and

∑n
i=1 �zi�4+ε =

O�n� for some ε > 0.

Proof of Theorem 3.1. Since f′ is Lipschitz and
∑n
i=1 �zi�3=O�n�, the

derivative of 3n�θ� equals
∑n
i=1

∫∞
−∞φ�u�f′�u+z′iθ�duziz′i and is Lipschitz in

θ. It then follows that, for sufficiently large n, �3n�θ̂n�� ≥ �1/2�γnλmin�Q��θ̂n�,
where λmin�Q� is the smallest eigenvalue of Q, and (B7) is satisfied with
cn = �1/2�γnλmin�Q�. Similarly, (B8) holds with Dn = γQn, �D−1

n � =
O�n−1� and bn = O�n�. By the standard LIL, (B6) is satisfied with
sn = O�∑n

i=1 �zi�2� = O�n�. Furthermore, because φ is Lipschitz, (B5)
holds with An = O�∑n

i=1 �zi�4� = O�n� and r = 2. The result follows from
Corollary 2.1. 2

3.2. Minimum Lp distance estimators. The minimum Lp distance estima-
tors obtained through minimization of

∑n
i=1 �yi − z′iθ�p for some p ≥ 1 are au-

tomatically scale equivariant. The convexity of the objective function ensures
the existence of a solution. Results on consistency and asymptotic normal-
ity of the Lp regression estimators are covered in Bai, Rao and Wu (1992),
and the Bahadur representation with the exact error rate was obtained by
Arcones (1996a) in the case of random designs. Under appropriate design con-
ditions, our Theorem 2.1 gives the same exact second-order error rate, but for
the more general case of deterministic designs. We first consider the case of
p > 1, where θ̂n solves (3.1) with

�3:2� φ�e� = �e�p−1 sgn�e�
and the case of special interest with p = 1 is considered in Section 3.3.
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Theorem 3.2. If 1 < p ≤ 2 and p 6= 3/2, the minimum Lp distance esti-
mator satisfies

θ̂n = ��p− 1�E�e�p−2Qn�−1
n∑
i=1

φ�ei�zi

+O
(
�log log n/n�min�1;1/4+p/2�) a.s.;

(3.3)

provided that (C3) and the following conditions (C4) and (C5) are satisfied:

(C4)
∑n
i=1E��e− z′iθ�p − �e�p� has a unique minimum at θ = 0;

(C5) f is bounded and E�e− t�p−2 is Lipschitz in t.

Remark 3.1. It can be seen from the proof that the second part of condi-
tion (C3) can be weakened to

∑n
i=1 �zi�2p+1+ε = O�n� for 1 < p < 3/2. The

representation (3.3) also holds for any p > 2 if we have
∑n
i=1�zi�2p+ε = O�n�.

Remark 3.2. The special case of p = 3/2 is not directly covered by Theo-
rem 2.1, but we haveEu2�xi; θ; d� ≤ a2

id
2� log d� for (B3). The proof of Theorem

2.1 can be slightly modified to yield the same representation as (3.3) with the
remainder in the order of �log n�1/2�log log n/n� (see Lemma 4.5). The fact that
p = 3/2 serves as a break point in the second-order error rate has been ob-
served by earlier authors in some restricted settings [see Niemiro (1992) and
Arcones (1996a)].

3.3. The least absolute deviation regression. The minimum L1 distance
estimator is probably the most widely used regression estimator outside the
least squares universe [see Bloomfield and Steiger (1983)]. It is also of special
interest here, as it does not satisfy the requirement (B5) with r = 1. Instead,
we can verify the alternative condition (B5′) to have

Theorem 3.3. The least absolute deviation (LAD) estimator satisfies

�3:4� θ̂n = �2f�0�Qn�−1
n∑
i=1

sgn�ei�zi +O
(( n∑

i=1

�zi�3
n

)1/2( log log n
n

)3/4)
a.s.;

provided that (i) e has zero median and a bounded density function f with
f�0� > 0, (ii) n−1Qn → Q for a nonsingular matrix Q, (iii) maxi≤n �zi� =
O�n1/4�log n�−2� and (iv) f�y� − f�0� = O��y�1/2� as y→ 0.

Note that the LAD estimator does not necessarily solve (3.1) with φ�e� =
sgn�e�. However, condition (iii) ensures that (2.1) holds with δn = n1/4.

Theorem 3.3 does not assume differentiability of f at zero. Under a weaker
condition on maxi≤n �zi�, Babu (1989) also obtained a strong representation
for the LAD estimator, but the remainder term there is suboptimal. A more
careful study indicates that the order of the remainder term depends not only
on the magnitude of the design points, but also on the behavior of f near 0.
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Remark 3.3. We have assumed here and in condition (C3) that the matrix
Qn is on the order of n. This corresponds to the root-n consistency for each
component of θ̂n. In this case, our error bound in (3.4) is known to be optimal.
In more general designs (which are allowed in Section 2), the components of
θ̂n may converge at different rates. A representation can be derived directly
from Theorem 2.1 for Q1/2

n θ̂n as in Babu (1989) and Pollard (1991), the error
bound, however, may not be optimal unless the transformations from θ to
Q

1/2
n θ and zi to Q−1/2

n zi are used. It is not clear, however, whether and how
Theorem 2.1 should be adjusted at a general level (as in Section 2) to yield the
best possible error rates. The sharp error rate for the least absolute deviation
regression estimator with more general designs (in terms of Qn) has recently
been obtained by Arcones (1996b), and we shall not pursue it further in the
present paper.

Remark 3.4. With some routine modifications, a representation similar to
(3.4) can be derived for regression quantiles of Koenker and Bassett (1978).
We omit the details.

3.4. Generalized M-estimators. An M-estimator defined via a minimiza-
tion of

∑n
i=1 ρ�yi − z′iθ� for some convex objective function ρ may become less

sensitive to outlying response values, but can still be unduly influenced by
leverage points. This is reflected partially in the use of design conditions in
Theorems 3.1–3.3. Hampel, Ronchetti, Rousseeuw and Stahel (1986) studied
the asymptotic behavior of the generalized M-estimators which solve

n∑
i=1

φ�yi − z′iθ�ziw�zi� = 0

for some weight function w. If supz �z�2w�z� < ∞, E�φ�e��2+ε < ∞ for some
ε > 0 and φ is Lipschitz as in Section 3.1, then, for any design, conditions
(C1) and (C2) imply that any consistent sequence of the GM-estimator admits
the following representation:

θ̂n = −
{
γ

n∑
i=1

w�zi�ziz′i
}−1 n∑

i=1

φ�ei�ziw�zi� +O
(

log log n
n

)
a.s.

4. Proofs and generalizations of Theorems 2.1 and 2.2. The basic
idea of our proof takes root in Huber (1967), but a refinement of Huber’s
Lemma 3 is essential for better control of error rates.

Let �xi; i ≥ 1� be independent random vectors. Define λi�θ� = Eψ�xi; θ�
and

�4:1� Zn�τ; θ� =
∣∣∣∣
n∑
i=1

(
ψ�xi; τ� − ψ�xi; θ� − λi�τ� + λi�θ�

)∣∣∣∣:

The following plays the central role in the proof of Theorem 2.1. For conve-
nience, in the proofs of this and next section, we shall use a generic constant
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K which may vary from line to line. It may depend on the fixed quantities
such as m and ψ, but not on the sample size n.

Lemma 4.1. Assume conditions (B1) and (B3)–(B5). We have

�4:2� lim sup
n→∞

sup
�τ−θ0�≤d0

Zn�τ; θ0�
�An�τ − θ0�r + 1�1/2 �log log n�1/2 ≤ C a.s.;

for some constant C <∞.

Proof. Observe that, for any random vectors �Yn = �Yn;1; : : : ;Yn;m��∞n=1
of dimension m,

P��Yn� ≥ C; infinitely often� ≤
m∑
i=1

P��Yn; i� ≥ C; infinitely often�:

Therefore, we can assume, without loss of generality, that ψ is real-valued,
θ0 = 0 and d0 = 1. For simplicity, write

�4:3� ηi�τ� = ψ�xi; τ� − ψ�xi;0� − λi�τ� + λi�0�; Zn�τ� x= Zn�τ;0�:
Since A2n = O�An�, there exists K1 > 1 such that

�4:4� A2n ≤K1An and An ≤ nK1 for n = 2;3; : : : :

It is easy to see that

lim sup
n→∞

sup
�τ�≤1

Zn�τ�
�An�τ�r + 1�1/2 �log log n�1/2

≤ lim sup
k→∞

max
2k−1≤n≤2k

sup
�τ�≤1

Zn�τ�
�An�τ�r + 1�1/2 �log log n�1/2

≤ lim sup
k→∞

max
n≤2k

sup
�τ�≤1

Zn�τ�
�A2k−1 �τ�r + 1�1/2 �log log 2k−1�1/2

≤K1 lim sup
k→∞

max
n≤2k

sup
�τ�≤1

Zn�τ�
�A2k �τ�r + 1�1/2 log1/2 k

:

(4.5)

Let

�4:6� Bk =
{

max
n≤2k

sup
�τ�≤1

�ηn�τ��
�A2k �τ�r + 1�1/2 k−2

≤ 1
}
:

By Lemma 4.2, P�Bc
k; infinitely often� = 0. It suffices to show that

�4:7�
∑
k≥1

P�Ok ∩Bk� <∞;

where

�4:8� Ok =
{

max
n≤2k

sup
�τ�≤1

Zn�τ�(
A2k �τ�r + 1

)1/2 �log k�1/2
≥ 3C

}
;

for some constant C.
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To prove (4.7), we decompose the cube �τx �τ� ≤ 1� in the definition of Ok
into smaller cubes. The Freedman exponential inequality [Freedman (1975)]
is evoked to bound the probabilities on each subcube followed by a chaining
argument to extend the bound to the probability in (4.7).

Before we proceed, we state the following variant of the Freedman inequal-
ity for easy reference.

Freedman inequality. If �ζi; 1 ≤ i ≤ n� are independent random vari-
ables with Eζi ≤ 0 and ζi ≤ a for each 1 ≤ i ≤ n, then, for any x > 0,

P

(
max
1≤i≤n

i∑
j=1

ζj ≥ x
)
≤ exp

(
− x2

2�ax+∑n
i=1Eζ

2
i �

)

≤ exp
(
− x

4a

)
+ exp

(
− x2

4
∑n
i=1Eζ

2
i

)
:

Let

�4:9� δ x= δk = 1/2�8kK1/r�; M x=Mk = 1/δ = 2�8kK1/r�;

where K1 is defined as in (4.4), and �x� denotes the integer part of x. We use
x= in the proofs to match the symbols on both sides in an obvious way (in
order to simplify writing). Consider the concentric cubes

�4:10� Cl = �τx �τ� ≤ lδ�; l = 1;2; : : : ;M:

Subdivide the difference Cl+1 \ Cl into smaller cubes with edges of length δ.
For each value of l there are ml = �2�l+1��m−�2l�m such small cubes, which
are denoted by C

j
l , j = 1;2; : : : ;ml. Let cjl be the center of C

j
l . Then we have

�cjl � = �l+ 1/2�δ and, for x > 1,
{

max
n≤2k

sup
�τ�≤1

Zn�τ�
�A2k �τ�r + 1�1/2 ≥ 3x

}

⊂
{

sup
τ∈C1

max
n≤2k

Zn�τ�
�A2k �τ�r + 1�1/2 ≥ 3x

}

∪
⋃

1≤l<M

{
sup

τ∈Cl+1\Cl
max
n≤2k

Zn�τ�
�A2k �τ�r + 1�1/2 ≥ 3x

}

⊂
{ 2k∑
i=1

sup
�τ�≤δ
�ηi�τ�� ≥ 3x

}
∪

⋃
1≤l<M

⋃
j≤ml

{
sup
τ∈C j

l

max
n≤2k

Zn�τ�
�A2k �lδ�r + 1�1/2 ≥ 3x

}

⊂
{ 2k∑
i=1

sup
�τ�≤δ
�ηi�τ�� ≥ 1

}
∪

⋃
1≤l<M

⋃
j≤ml

{ 2k∑
i=1

sup
τ∈C j

l

�ηi�τ� − ηi�cjl ��
�A2k �lδ�r + 1�1/2 ≥ 2x

}

∪
⋃

1≤l<M

⋃
j≤ml

{
max
n≤2k

Zn�cjl �
�A2k �lδ�r + 1�1/2 ≥ x

}
:
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Therefore

P�Ok ∩Bk� ≤ P
( 2k∑
i=1

sup
�τ�≤δ
�ηi�τ�� ≥ 1

)

+
∑

1≤l<M

∑
j≤ml

P

( 2k∑
i=1

sup
τ∈C j

l

�ηi�τ� − ηi�cjl ��
�A2k �lδ�r + 1�1/2 ≥ 2C�log k�1/2;Bk

)

+P
( ⋃

1≤l<M

⋃
j≤ml

{
max
n≤2k

Zn�cjl �
�A2k �lδ�r + 1�1/2 ≥ C�log k�1/2;Bk

})

= P�1�k +P
�2�
k +P

�3�
k ;

(4.11)

where P�1�k , P�2�k and P
�3�
k denote the three terms on the right-hand side of

(4.11), respectively. It remains to show that each P�i�k , i = 1;2;3 is summable
over k.

From (B3), (4.4) and (4.9) it follows that

2k∑
i=1

E sup
�τ�≤δ
�ηi�τ�� ≤

2k∑
i=1

2�Eu2�xi;0; δ��1/2

≤ 21+k/2
( 2k∑
i=1

Eu2�xi;0; δ�
)1/2

≤ 2k �A2k δ
r�1/2 ≤ 2−k:

Similarly,

�4:12�
2k∑
i=1

E sup
τ∈C j

l

�ηi�τ� − ηi�cjl �� ≤ 2−k:

By Chebyshev’s inequality,

∑
k≥1

P
�1�
k ≤

∑
k≥1

2k∑
i=1

E sup
�τ�≤δ
�ηi�τ�� ≤

∑
k≥1

2−k <∞:

To estimate P�2�k , we shall use for convenience

πi x= πi; l; j = sup
τ∈C j

l

�ηi�τ� − ηi�cjl ��; Gk; l = �A2k�lδ�r + 1�1/2:
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Note that Bk implies πi ≤ 21+rGk; l k
−2. By (4.12) and the Freedman inequal-

ity, we have

P

( 2k∑
i=1

sup
τ∈C j

l

�ηi�τ� − ηi�cjl ��
�A2k �lδ�r + 1�1/2 ≥ 2C�log k�1/2;Bk

)

≤ P
( 2k∑
i=1

πiI�πi≤21+rGk; lk
−2� ≥ 2CGk; l �log k�1/2

)

≤ P
( 2k∑
i=1

{
πiI�πi≤21+rGk; lk

−2� −EπiI�πi≤21+rGk; lk
−2�
}
≥ CGk; l �log k�1/2

)

≤ exp
(
−CGk; l�log k�1/2

23+rGk; lk
−2

)
+ exp

(
− �CGk; l�log k�1/2�2

4
∑2k
i=1Eπ

2
i I�πi≤21+rGk; lk

−2�

)

≤ exp
(
−Ck

2�log k�1/2
23+r

)
+ exp

(
− �CGk; l�log k�1/2�2

23+rGk; lk
−2∑2k

i=1Eπi

)

≤ exp
(
−Ck

2�log k�1/2
23+r

)
+ exp

(
−C

2Gk; l log k
23+rk−2

)

≤K exp
(
−Ck

2�log k�1/2
23+r

)
:

(4.13)

Also, by the choice of M =Mk, we have, for any C > 1,

∑
k≥1

P
�2�
k ≤K

∑
k≥1

∑
1≤l<M

∑
j≤ml

exp
(
−Ck

2�log k�1/2
23+r

)

≤K
∑
k≥1

�2M�m exp
(
−Ck

2�log k�1/2
16

)
<∞:

(4.14)

By Lemma 4.3, there exists C <∞ such that P�3�k is also summable over k.
The proof of Lemma 4.1 is complete. 2

We shall now prove Lemmas 4.2 and 4.3. The former is rather straightfor-
ward, and the latter is much more technical but based on similar ideas used
above.

Lemma 4.2. Under the assumptions of Lemma 4.1, we have

∑
k≥1

P

(
max
n≤2k

sup
�τ�≤1

�ηn�τ��
�A2k �τ�r + 1�1/2 k−2

≥ 1
)
<∞:

Proof. Using the same notation Bk as in (4.6), we have

P�Bc
k� ≤

∑

n≤2k
P

(
sup
�τ�≤1

�ηn�τ��
�A2k �τ�r + 1�1/2 k−2

≥ 1
)
x=

∑

n≤2k
pn;k:
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Let Ik = �lx − �log2A2k�/r ≤ l ≤ 0� be an index set. From (B5) it follows that

pn;k ≤ P
(

sup
�τ�≤A−1/r

2k

�ηn�τ�� ≥ k−2
)
+P

(
sup

A
−1/r
2k
≤�τ�≤1

�ηn�τ��
�A2k �τ�r�1/2

≥ k−2
)

≤ k4+2αE sup
�τ�≤A−1/r

2k

�ηn�τ��2+α +
∑
l∈Ik

P
(

sup
2l−1≤�τ�≤2l

�ηn�τ�� ≥ k−2�A2k 2�l−1�r�1/2
)

≤ 8k4+2α
{
Eu2+α�xn;0;A−1/r

2k � +
∑
l∈Ik
�A2k 2�l−1�r�−�2+α�/2Eu2+α�xn;0;2l�

}

≤ 8k4+2α
{
a2+β1
n A

−�2+β�/2
2k +

∑
l∈Ik
�A2k2

�l−1�r�−�2+α�/2a2+β1
n 2lr�2+β�/2

}

≤Kk4+2αa2+β1
n A

−�2+β�/2
2k

{
1+A−�α−β�/22k

∑
l∈Ik

2lr�β−α�/2
}

≤Kk4+2αa2+β1
n A

−�2+β�/2
2k

{
1+ k

}

≤Kk5+2αA
−�2+β�/2
2k a2+β1

n :

Therefore, P�Bc
k� ≤Kk−2; from which the lemma follows immediately. 2

Lemma 4.3. Under the assumptions of Lemma 4.1,
∑
kP
�3�
k < ∞ for some

constant C, where P
�3�
k is defined in the proof of Lemma 4.1.

Proof. We shall continue to use the partition and the associated notation
used around (4.10). Furthermore, let

N = �log2M� − 1 = �8kK1/r� − 1 and Qu =
{
c
j
l x j ≤ml; l < 2u+1}

for u = 0;1; : : : ;N. Note that the subscript k for N is suppressed in our
notation here and that Qu is actually the set of centers of the small cubes
with edges of length δ in C2u+1 . It is easy to see that

⋃
1≤l<M

⋃
j≤ml

{
max
n≤2k

Zn�cjl �
�A2k �lδ�r + 1�1/2 ≥ C log1/2 k

}

⊂
⋃

0≤u≤N

⋃

2u≤l<2u+1

⋃
j≤ml

{
max
n≤2k

Zn�cjl �
�A2k �2uδ�r + 1�1/2 ≥ C log1/2 k

}

⊂
⋃

0≤u≤N

{
max
τ∈Qu

max
n≤2k

Zn�τ�
�A2k �2uδ�r + 1�1/2 ≥ C log1/2 k

}
:

(4.15)

For 0 ≤ p ≤ u + 1, subdivide C2u+1 into smaller cubes with edges of length
2pδ. There are mu;p x= �2u+2−p�m such subcubes, which will be called C

j
u;p,

whose centers are denoted by cju;p, j = 1;2; : : : ;mu;p. Let

Qu;p =
{
cju;px j = 1;2; : : : ;mu;p

}
:
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Please note the difference between Qu and the Qu;p’s. For any τ ∈ Qu and for
each 0 ≤ p ≤ u+ 1, there is a unique C

jp; τ
u;p which contains τ. When p = 0, we

have τ = cj0; τ

0 for some j0; τ. Moreover, C
jp; τ
u;p is increasing in p, and

�4:16�
∣∣cjp; τu;p − cjp+1; τ

u;p+1

∣∣ = 2p−1δ:

Hence,

Zn�τ� = Zn

(
c
ju+1; τ

u;u+1

)
+

∑
0≤p≤u

(
Zn�c

jp; τ
u;p� −Zn

(
c
jp+1; τ

u;p+1

))
;

and

max
τ∈Qu

Zn�τ� ≤ max
τ∈Qu

Zn

(
c
ju+1; τ

u;u+1

)
+

∑
0≤p≤u

max
τ∈Qu

∣∣Zn

(
c
jp; τ
u;p

)
−Zn

(
c
jp+1; τ

u;p+1

)∣∣

≤ max
τ∈Qu;u+1

Zn�τ� +
∑

0≤p≤u
max
τ∈Qu;p

∣∣Zn

(
c
jp; τ
u;p

)
−Zn

(
c
jp+1; τ

u;p+1

)∣∣

≤ max
τ∈Qu;u+1

Zn�τ� +
∑

0≤p≤u
max
τ∈Qu;p

∣∣∣∣
n∑
i=1

ηi
(
c
jp; τ
u;p

)
− ηi

(
c
jp+1; τ

u;p+1

)∣∣∣∣:

(4.17)

For further notational convenience, let

χk;u;p = k−1�A2k�2uδ�r + 1�1/2 + �u+ 2− p�
(
A2k�2p δ�r

)1/2
:

It is easy to show that
∑

0≤p≤u+1

χk;u;p ≤K�A2k�2uδ�r + 1�1/2:

Thus,
{

max
τ∈Qu

max
n≤2k

Zn�τ�(
A2k �2uδ�r + 1

)1/2 ≥ C log1/2 k

}

⊂
⋃

τ∈Qu;u+1

{
max
n≤2k

Zn�τ� ≥ C1/2 χk;u;u+1 log1/2 k

}

∪
⋃

0≤p≤u

⋃
τ∈Qu;p

{
max
n≤2k

∣∣∣∣
n∑
i=1

ηi
(
c
jp; τ
u;p

)
− ηi

(
c
jp+1; τ

u;p+1

)∣∣∣∣ ≥ C
1/2 χk;u;p log1/2 k

}
;

(4.18)

provided that C is sufficiently large.
For 0 ≤ p ≤ u and τ ∈ Qu;p, the event Bk implies that

∣∣ηi
(
c
jp; τ
u;p

)
− ηi

(
c
jp+1; τ

u;p+1

)∣∣ ≤ 41+r k−2�A2k�2uδ�r + 1�1/2:
Similar to the proof of (4.13), we have, by the Freedman inequality,

P

(
max
n≤2k

∣∣∣∣
n∑
i=1

ηi
(
c
jp; τ
u;p

)
− ηi

(
c
jp+1; τ

u;p+1

)∣∣∣∣ ≥ C
1/2 χk;u;p log1/2 k; Bk

)

≤ 2 exp
(
−C

1/2k log1/2 k

42+r

)
+ 2 exp

(
−C �u+ 2− p�2 log k

16

)
:

(4.19)
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Similarly, we obtain, for τ ∈ Qu;u+1,

P
(

max
n≤2k

Zn�τ� ≥ C1/2 ck;u;u+1 log1/2 k;Bk

)

≤K exp
(
−C

1/2 k log1/2 k

42+r

)
+K exp

(
−C log k

16

)
;

(4.20)

for some constant K. We conclude from (4.15) and (4.18)–(4.20) that

P
�3�
k ≤K

∑
0≤u≤N

{
exp

(
−C

1/2 k log1/2 k

42+r

)
+ exp

(
−C log k

16

)

+
∑

0≤p≤u
�2u+2−p�m

{
exp

(
−C

1/2 k log1/2 k

16

)

+ exp
(
−C �u+ 2− p�2 log k

42+r

)}}

≤Kk−2;

for sufficiently large k. Therefore P�3�k is summable over k. 2

Theorem 2.1 follows directly from the following lemma.

Lemma 4.4. Under conditions (B1)–(B7) we have, for any θ̂n satisfying (2.1)
with δn = O��sn log log n�1/2�,

�4:21� θ̂n − θ0 = O
(
�s1/2
n c−1

n +A1/2+r/4
n c−1−r/2

n �log log n�r/4��log log n�1/2
)

and

�4:22�
n∑
i=1

ψ�xi; θ0� +
n∑
i=1

λi�θ̂n� = O�Rn� a.s.;

where Rn = A1/2
n �θ̂n − θ0�r/2�log log n�1/2 + �log log n�1/2 + δn.

Proof. Without loss of generality, assume θ0 = 0 and d0 = 1. Let �′ be
the set of ω such that

lim sup
n→∞

�θ̂n� ≤ �2C�−2/r;

lim sup
n→∞

�∑n
i=1ψ�xi;0��

s
1/2
n �log log n�1/2

≤ 2:5;

lim sup
n→∞

sup
�τ�≤1

�∑n
i=1�ψ�xi; τ� − ψ�xi;0� − λi�τ���
�An�τ�r + 1�1/2�log log n�1/2 ≤ C;

where C is the same constant as in (4.2).
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By (B2), (B6) and Lemma 4.1, P��′� = 1. We will show that (4.22) holds
on �′. Note that (B5) implies An → ∞ and that, for each ω ∈ �′ and for
sufficiently large n,

∣∣∣∣
n∑
i=1

ψ�xi;0� +
n∑
i=1

λi�θ̂n�
∣∣∣∣

≤
∣∣∣∣
n∑
i=1

ψ�xi; θ̂n�
∣∣∣∣+

∣∣∣∣
n∑
i=1

�ψ�xi;0� − ψ�xi; θ̂n� + λi�θ̂n��
∣∣∣∣

≤
∣∣∣∣
n∑
i=1

ψ�xi; θ̂n�
∣∣∣∣+ �An�θ̂n�r + 1�1/2�log log n�1/2

× sup
�τ�≤1

�∑n
i=1�ψ�xi;0� − ψ�xi; τ� + λi�τ���
�An�τ�r + 1�1/2�log log n�1/2

≤ CA1/2
n �θ̂n�r/2�log log n�1/2 +C�log log n�1/2 + o�δn�

≤ 1
4
A1/2
n �log log n�1/2 +C�log log n�1/2 + o�δn�

≤ 1
2
A1/2
n �log log n�1/2:

(4.23)

By (B7), we have

cn�θ̂n� ≤
∣∣∣∣
n∑
i=1

ψ�xi;0�
∣∣∣∣+

∣∣∣∣
n∑
i=1

ψ�xi;0� +
n∑
i=1

λi�θ̂n�
∣∣∣∣ ≤ 3�An log log n�1/2;

for sufficiently large n. Using

�4:24� �θ̂n� ≤ 3c−1
n �An log log n�1/2

in (4.23), we obtain

∣∣∣∣
n∑
i=1

ψ�xi;0� +
n∑
i=1

λi�θ̂n�
∣∣∣∣

≤ 3CA1/2
n

(
�An log log n�1/2/cn

)r/2�log log n�1/2 +C�log log n�1/2 + o�δn�:

Therefore,

cn�θ̂n� ≤ 3�log log n�1/2
(
s1/2
n +CA1/2

n ��An log log n�1/2/cn�r/2 +C
)
+ o�δn�

from which Lemma 4.4 follows. 2
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Lemma 4.1 can be generalized in several ways. Two useful ones are dealt
with in Lemmas 4.5 and 4.6. One is to remove condition (B4), and the other
is to generalize the conditions (B3) and (B5).

Lemma 4.5. Suppose that there exist σ�d�, 0 < β ≤ α ≤ 1, 0 ≤ β1 <∞ and
a sequence of positive numbers �ai; i ≥ 1� such that

Eu2�xi; θ; d� ≤ a2
iσ�d� for �θ− θ0� + d ≤ 2d0;

Eu2+α�xi; θ0; d� ≤ a2+β1
i σ�d��2+β�/2 for d ≤ d0

and
∑
i≤n
a

2+β1
i = O

(
A
�2+β�/2
n �log n�−7−2α);

where An =
∑n
i=1 a

2
i . Assume that there are r > 0 and L > 0 such that σ�d�/dr

is nondecreasing and σ�2d� ≤ Lσ�d�. Then we have

lim sup
n→∞

sup
�τ−θ0�≤d0

Zn�τ; θ0�
�Anσ��τ − θ0�� + 1�1/2 �log log�n+An��1/2

≤ C a.s.;

for some constant C <∞.

The proof of Lemma 4.5 is similar to that of Lemma 4.1, and Theorem 2.1
can also be modified under the weaker conditions. We omit the details. One
can also use (B5′) to replace (B4) and (B5).

Lemma 4.6. Assume that (B1), (B3) and (B5′) are satisfied. Then we have

lim sup
n→∞

sup
�τ−θ0�≤dn

Zn�τ; θ0�
�And

r
n + 1�1/2 �log log�n+An��1/2

≤ C a.s.;

for some constant C <∞.

The proof of Lemma 4.6 is also a variant of that of Lemma 4.1. The following
lemma is analogous to Lemma 4.4.

Lemma 4.7. Under the conditions of Theorem 2.2, for any sequence θ̂n sat-

isfying (2.1) and �θ̂n − θ0� ≤ dn almost surely,

n∑
i=1

ψ�xi; θ0� +
n∑
i=1

λi�θ̂n� = O�δn +A1/2
n dr/2n �log log n�1/2� a.s.

Theorem 2.2 is a direct consequence of the preceding lemma.
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5. Proofs of Theorems 3.2 and 3.3. Theorems 3.2 and 3.3 are direct
applications of Theorems 2.1 and 2.2, respectively. We give some nontrivial
details in both verifications.

Proof of Theorem 3.2. To verify conditions (B3) and (B7), we have, by
direct calculations,

d3n�θ�
dθ

= �p− 1�
n∑
i=1

zi z
′
iE�e− z′iθ�p−2;

which is Lipschitz in θ under the assumptions of (C3) and (C5). We now turn
to condition (B5). The same proof would validate (B3), whereas the remaining
conditions of Theorem 2.1 are easy to check.

It suffices to show that, for sufficiently small α ≥ 0 and for every i ≥ 1,

�5:1� Eu2+α�xi; θ; d� ≤K �zi�min�2p+1;4�+ε1dmin�2p−1;2��2+αmin�2�p−1�;1��/2

for some constant ε1 ∈ �0; ε�. As can be seen from the proof below, one may
take ε1 to be 2α if 2/3 < p ≤ 2 and pα if 1 ≤ p < 3/2.

Recall that φ�e� = sgn�e��e�p−1. First note that, for any s; t ∈ R and 1 ≤
p ≤ 2,

�φ�t+ s� −φ�t�� ≤ 5 min��s��t�p−2; �s�p−1�

[cf. Arcones (1996a), Lemma 4]. Therefore

u�xi; θ; d� = sup
�τ−θ�≤d

∣∣(φ�yi − z′iθ+ z′i�τ − θ�� −φ�yi − z′iθ�
)
zi
∣∣

≤ 5 sup
�τ−θ�≤d

min
(
�z′i�τ − θ�� �yi − z′iθ�p−2�zi�; �z′i�τ − θ��p−1�zi�

)

≤ 5 min
(
�zi�2 d �yi − z′iθ�p−2; dp−1�zi�p

)
:

(5.2)

We complete the proof for two cases.
Case 1. 3/2<p≤2. Let 0 ≤ α < min��2p−3�/2; ε/2�. Since 0 ≥ �p−2��2+

α� > −1 and f is bounded, we have

Eu2+α�xi; θ; d� ≤ 52+αd2+α�zi�4+2αE�yi − z′iθ��p−2��2+α�

≤Kd2+α�zi�4+2α:

Case 2. 1≤p<3/2. Let 0 ≤ α < ε/2, and let

u1 = �zi�2 d �yi − z′iθ�p−2 I��yi−z′iθ�≥�zi�d� and u2 = dp−1�zi�p I��yi−z′iθ�≤�zi�d�:
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It is easy to see that

Eu2+α
1 ≤ ��zi�2d�2+α

{
I��zi�d≤1�

(
E�yi − z′iθ��p−2��2+α�I��yi−z′iθ�>1�

+E�yi − z′iθ��p−2��2+α�I��zi�d≤�yi−z′iθ�≤1�
)

+ I��zi�d>1�E�yi − z′iθ��p−2��2+α�I��yi−z′iθ�≥�zi�d�
}

≤ ��zi�2d�2+α
{
I��zi�d≤1�

(
1+

∫
�zi�d≤�yi�≤1

�yi��p−2��2+α�f�y+ z′iθ�dy
)

+ I��zi�d>1���zi�d��p−2��2+α�
}

≤K��zi�2d�2+α
{
I��zi�d≤1�

(
1+ ��zi�d��p−2��2+α�+1)

+ I��zi�d>1���zi�d��p−2��2+α�
}

≤K
{
�zi�p�2+α�+1d�p−1��2+α�+1 + I��zi�d>1��zi�p�2+α�d�p−1��2+α�

}

≤K �zi�2p+1+pαd�2p−1��2+2α�p−1��/2;

and

Eu2+α
2 = d�p−1��2+α��zi�p�2+α�P

(
�yi − z′iθ� ≤ �zi�d

)

≤Kd�p−1��2+α��zi�p�2+α��zi�d
=K �zi�2p+1+pαd�2p−1��2+2α�p−1��/2:

Therefore, (5.1) follows from (5.2). 2

Remark 5.1. When p = 3/2, following the proof of Case 2 above, we have

Eu2�xi; θ; d� ≤K�1+ �zi�4+ε�d2� log d�:

The Bahadur representation in this case follows from Lemma 4.5 and a cor-
responding modification of Theorem 2.1.

Proof of Theorem 3.3. We first note that a corollary of Babu (1989) im-
plies

�5:3� lim sup
n→∞

�n/ log log n�1/2�θ̂n� ≤K

for some constant K. Arguments similar to those used in the proof of The-
orem 3.2 show that (B3) holds with r = 1 and An = K

∑n
i=1�zi�3. Since
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n−1∑n
i=1 ziz

′
i → Q, we have

∑n
i=1�zi�2 = trace�∑n

i=1ziz
′
i� = O�n�. Further-

more,

3n�θ̂n� = −2
n∑
i=1

zi

∫ z′iθ̂n
0

f�y�dy

= −2
n∑
i=1

zi

(∫ z′iθ̂n
0

f�0�dy+
∫ z′iθ̂n

0
�f�y� − f�0��dy

)

= −2f�0�Qn θ̂n − 2
n∑
i=1

zi

∫ z′iθ̂n
0
�f�y� − f�0��dy:

Therefore, by (5.3) and condition (iv),

�3n�θ̂n� + 2f�0�Qn θ̂n� ≤
n∑
i=1

�zi�
∣∣∣∣
∫ z′iθ̂n

0
�f�y� − f�0��dy

∣∣∣∣

= O
( n∑
i=1

�zi�
∫ �z′iθ̂n�

0
y1/2 dy

)

= O
((

log log n
n

)3/4 n∑
i=1

�zi�5/2
)

a.s.

On the other hand, by the Lyapunov inequality

n∑
i=1

�zi�5/2 ≤
( n∑
i=1

�zi�2
)1/2( n∑

i=1

�zi�3
)1/2

= O
(( n∑

i=1

�zi�3
)1/2

n1/2
)
:

Thus, we have

�3n�θ̂n� + 2f�0�Qn θ̂n� = O
(( n∑

i=1

�zi�3
)1/2

n1/2��log log n�/n�3/4
)

a.s.

This means that (B8) is satisfied with

bn = O
((
n

n∑
i=1

�zi�3
)1/2

��log log n�/n�3/4
)

and Dn = −2f�0�Qn. Condition (B5′) is clearly satisfied by assumption (iii),
and other conditions of Theorem 2.2 are easy to verify with n/cn = O�1� and
sn = O�n�. 2

Note that condition (B8) would be easier to check under the stronger con-
dition on the design used in Theorem 3.2. In Theorem 3.3, we allow for the
cases where n−1∑

i �zi�3 is unbounded in n.
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