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( )We dedicate this paper to the memory of Fred C. Schweppe 1934]1988 ,
who made important contributions to robust state estimation in

electric power systems.

A structured linear regression model is one in which there are perma-
nent dependencies among some p row vectors of the n = p design matrix.
To study structured linear regression, we introduce a new class of robust
estimators, called D-estimators, which can be regarded as a generaliza-
tion of the least median of squares and least trimmed squares estimators.
They minimize a dispersion function of the ordered absolute residuals up
to the rank h. We investigate their breakdown point and exact fit point as
a function of h in structured linear regression. It is found that the D- and
S-estimators can achieve the highest possible breakdown point for h
appropriately chosen. It is shown that both the maximum breakdown
point and the corresponding optimal value of h, h , are sample depen-op
dent. They hinge on the design but not on the response. The relationship
between the breakdown point and the design vanishes when h is strictly
larger than h . However, when h is smaller than h , the breakdownop op
point depends in a complicated way on the design as well as on the
response.

Ž .1. Introduction. Since the initial proposal made by Hodges 1967 and
Ž .then further developed by Hampel 1971 , the concept of the breakdown point

has proved to be a powerful tool for the analysis and design of robust
estimators. Roughly speaking, it is defined as the smallest fraction of outliers
that can ruin an estimator. Asymptotically, it cannot exceed 1r2 when
regression equivariance prevails. A finite-sample version of the breakdown
point that has gained wide acceptance was formulated by Donoho and Huber
Ž .1983 . Given a sample ZZ, the breakdown point is defined as the minimum
fraction of observations of ZZ which, when replaced by arbitrary values, can
carry the estimate over all bounds. The highest possible finite-sample break-

Ž .down point under regression equivariance was derived by Rousseeuw 1984 .
He showed that, when there are no linear dependencies among any p row
vectors x t of the n = p design matrix X, a condition known as generali

ŽwŽ . x .position, the breakdown point is at most equal to n y p r2 q 1 rn, where
w x? denotes the greatest integer function. Here n is the number of observa-
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tions in y and p is the number of unknown parameters in u in the linear
model

1.1 y s Xu q e,Ž .

where e is an n = 1 vector of random errors. Again under the general
position assumption, it has been shown that the upper bound of the
breakdown point is attained, for example, by the least median of squares
Ž . Ž .LMS and least trimmed squares LTS estimators proposed by Rousseeuw
Ž . Ž .1984 , the S-estimators initiated by Rousseeuw and Yohai 1984 , the MM-

Ž .estimators developed by Yohai 1987 , the t-estimators suggested by Yohai
Ž .and Zamar 1988 and the one-step GM-estimators of Simpson, Ruppert and

Ž . Ž .Carroll 1992 and Coakley and Hettmansperger 1993 .
It turns out that all these results no longer hold when there are dependen-

cies among some p rows of the design matrix, a situation that occurs quite
often in practice. This is particularly true for the large class of regression
problems characterized by a structured design matrix. Sparsity of the design

w Ž .matrix Mili, Phaniraj and Rousseeuw 1990, 1991 and Ruckstuhl, Stahel
Ž .x w Ž .xand Dressler 1993 , replication of the observations Coakley and Mili 1993

wand certain designs used in response surface methodology Myers and Mont-
Ž .xgomery 1995 are three typical examples of structured regression problems.

This paper derives, for structured regression, the expression for the high-
est possible finite-sample breakdown point that any regression equivariant
estimator may have. It is found that this upper bound depends on the design
matrix X, specifically on the maximum number M of row vectors of X that lie

Ž .on a p y 1 -dimensional hyperplane passing through the origin. For a given
number n of observations, the maximum possible breakdown point is a
decreasing function of M. Asymptotically, this upper bound is smaller than
1r2 if Mrn tends to a positive limit. The paper also introduces a new class of
estimators, called D-estimators to indicate that they minimize a dispersion
function of the ordered absolute residuals up to the rank h. This class can be
regarded as a generalization of the LMS and LTS estimators as well as of the

Ž . Ž .least trimmed absolute deviations LTAD estimator of Bassett 1991 and
Ž .Tableman 1994 . The class of D-estimators also contains the trimmed

Ž .weighted L -estimators of Muller 1995 . Upper and lower bounds of the¨p
breakdown point of the D-estimators are derived as a function of the quantile
index h. It is shown that there exists an optimal value of h for which the D-
and S-estimators achieve the highest possible breakdown point when regres-
sion equivariance holds. An algorithm that calculates M and the optimal h
has been developed. It is available from the authors upon request.

The paper is organized as follows. Section 2 defines a structured regression
model and gives two practical examples of such a model. Section 3 deals with
the expression for the highest possible breakdown point and exact fit point in
structured regression. Section 4 introduces the class of D-estimators. Section
5 gives breakdown bounds for D- and S-estimators and outlines an algorithm
that calculates the optimal quantile index. Section 6 discusses the results and
summarizes some ideas for future work. Complete proofs of all the results in

Ž .this paper are presented in Mili and Coakley 1993 .
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2. Structured linear regression. Only a few published studies of the
Ž .breakdown point in regression estimation, namely Coakley and Mili 1993 ,

Ž . Ž . Ž .Davies 1993 , Mili, Cheniae and Rousseeuw 1994 , Muller 1995 and Ruck-¨
Ž .stuhl 1995 , have treated the situation where the data points are not in

w Ž .xgeneral position Rousseeuw 1984 . General position means that any p data
Ž .points determine a unique nonvertical hyperplane in the p q 1 -dimensional

�Ž .space EE of the n observations contained in the sample ZZ s x , y ; i si i
41, 2, . . . , n . Equivalently, we have the following definition.

Ž .DEFINITION 2.1. The p q 1 -dimensional observations in the sample ZZ
are said to be in general position if any p row vectors x t of the n = p designi

w x tmatrix X s x , . . . , x are linearly independent. Otherwise we say that1 n
they are in reduced position.

Quite simply, reduced position means that there is a linear dependence
between some p vectors of X. Equivalently, in the p-dimensional factor space

w Ž .FF, there exists a hyperplane passing through the origin i.e., a p y 1 -
xdimensional vector subspace containing more than p y 1 vectors x .i

Ž .DEFINITION 2.2. A linear regression model 1.1 is said to be structured if
there are linear dependencies among some p row vectors of the design matrix
X that occur regardless of the values taken by the carriers.

It is clear that in a structured linear regression model the observations are
in reduced position; but the converse does not necessarily hold. Indeed, linear
dependencies among some p row vectors of X may be casual, happening at
one sample but not at another one. In that case they are not intrinsic to the
problem at hand.

By definition, a structured regression model has a design matrix for which
some p row vectors are subject to permanent linear dependencies. Besides
this constraint, all possibilities for fixed and random carriers may be envis-
aged. For instance, some of the carriers may be fixed and the others random,
or all may be of the same type. Some may even have identical values, zero in
many cases. Replication of the observations and sparsity of the design matrix
are two typical examples. Usually, physical phenomena obey some laws such
as Kirchhoff’s and Ohm’s laws in circuit analysis, conservation of mass and
energy in mechanics, fluid mechanics, molecular spectroscopy and crystallog-
raphy, to cite a few. These laws translate into permanent dependencies
among the rows of the design matrix when considering regression models. In

Žaddition, an observation may not be related to all the unknowns parameters
.or state variables but to only a few of them, which makes the design matrix

sparse. Large-scale regression models with hundreds or thousands of un-
knowns usually are of this type. For these reasons, structured regression
models often arise in practice. They constitute a broad family of regression
problems that are especially encountered in the engineering field and physi-
cal sciences.
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Ž . Ž .EXAMPLE 1 Replication . Neter, Wasserman and Kutner 1985 , page 306,
present an example in which a quadratic model is fit to 14 observations
Ž .x , y , with two replicates at each of seven different levels of x. If two casesi i
with the same x value are part of a set of three observations, then there is no
unique determination of u. So these data are in reduced position due to
replication.

Ž .EXAMPLE 2 Sparsity . An electric power system consists of lines and
transformers forming a network that connects electric generators to a host of
consumers spread over a large geographical area. A power system is super-
vised by software which computes a state estimator. Its role is to estimate the
system’s state variables from a collection of measurements on power flows at
some lines and on power injections and voltage magnitudes at some nodes.
The state variables, which include the voltage magnitudes and phase angles
at all the nodes of the network, are related to the measurements through a

Ž .nonlinear regression model. This model can be put into the matrix form 1.1
by performing a linearization around the flat voltage profile, defined as the
state where all the voltages are at their nominal values and all the phase
angles are 0. The main feature of the linear model so derived is that it
involves a design matrix X that is very sparse and possesses many groups of
p row vectors that are linearly dependent.

As an example, consider the system shown in Figure 1. It has five nodes
depicted as horizontal bars and nine real power measurements represented
by circles. These measurements can be expressed in terms of four voltage
phase angles, say those at nodes 1 through 4; the fifth one is taken as a
reference and set arbitrarily to 0. Assuming that the lines are identical, we
get

y1 1 2 1 y1 y1 0 0 0
0 0 y1 y1 1 2 y1 0 0t w xX s x , . . . , x s .1 9 0 0 0 0 0 y1 2 1 0
0 0 0 0 0 0 y1 y1 1

We observe that the sparsity of X induces linear dependencies among many
groups of four row vectors of X, which violates the general position assump-
tion. For instance, when considering the four-dimensional factor space, there

FIG. 1. One-line diagram of the five-bus system. ` denotes a real power measurement.
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are five points lying on a plane passing through the origin. These are data
points 1 through 5, which satisfy x s x s 0.3 4

3. Upper bounds for the breakdown point and exact fit point.

3.1. Definitions. Let us first recall the definition of the finite-sample
Ž .breakdown point proposed by Donoho and Huber 1983 . Consider a sample

�Ž . Ž .4ZZ of n finite data points defined as ZZ s x , y , . . . , x , y . Replace m1 1 n n
observations of ZZ by outliers which may take on arbitrary values, yielding
the corrupted sample ZZ*. Let T be a regression estimator that maps ZZ into

Ž .an estimate of u designated by T ZZ . Let the maximum bias be the supre-
5 Ž . Ž .5 5 5mum of T ZZ* y T ZZ taken over all samples ZZ*, where ? denotes the

Euclidean norm.

U Ž .DEFINITION 3.1. The breakdown point « T, ZZ of an estimator T at an
sample ZZ is defined as

U 5 53.1 « T , ZZ s min « s mrn; sup T ZZ* y T ZZ is infinite .Ž . Ž . Ž . Ž .½ 5n
ZZ*

It is the smallest fraction of outliers for which the maximum bias is un-
5 Ž .5 5 Ž .5bounded or, equivalently, for which T ZZ* is unbounded since T ZZ is

finite by assumption. Here, the outliers have to be placed in the least
favorable way.

Another robustness concept, which is simpler than the breakdown point
but closely related to it, was introduced by Donoho, Rousseeuw and Stahel
w Ž .see, e.g., Donoho, Johnstone, Rousseeuw and Stahel 1985 , Rousseeuw and

Ž . Ž .xLeroy 1987 and Ellis and Morgenthaler 1992 . It derives from the so-called
exact fit property.

DEFINITION 3.2. In linear regression, an estimator of p unknown parame-
ters is said to have the exact fit property of order srn if, whenever s
observations lie exactly on a p-dimensional hyperplane, the fit yields that
hyperplane.

U Ž .The exact fit point of an estimator T is the minimum fraction d T, ZZ ofn
outliers for which the exact fit property no longer holds. Formally, we have

3.2 d U T , ZZ s min mrn; there exists ZZ* such that T ZZ* / u ,� 4Ž . Ž . Ž .n

where ZZ is the original sample containing n observations that lie on a
p-dimensional hyperplane satisfying y s x tu, and where ZZ* is a contami-
nated sample obtained from ZZ by replacing any m observations.

3.2. Upper bound on the breakdown point. Let M be the largest subset of
Ž . Ž .observations x , y whose x lie on a p y 1 -dimensional hyperplane MMi i i

passing through the origin. Assume that the M points in M are the first
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Ž . Ž .numbered points, x , y , . . . , x , y . Although the remaining N s n y M1 1 M M
observations fall outside MM, they span a vector subspace NN whose dimension
may be larger than 1. In fact, NN may even be the whole factor space.

U Ž .THEOREM 3.1. The breakdown point « T, ZZ of any regression equivari-n
ant estimator T is at most equal to

U3.3 « s n y M q 1 r2 rn.Ž . Ž .max, n

PROOF. The proof follows that of Theorem 4 of Rousseeuw and Leroy
Ž .1987 , page 125. Suppose that T is a regression equivariant estimator with a

U 5 Ž .5breakdown point larger than « . Then T ZZ* remains bounded ifmax, n
wŽ . xm s n y M q 1 r2 points of ZZ* take on arbitrary values. Let ZZ* be a

sample obtained by adding x tv to m data points of N, where v g R p isi
orthogonal to the subspace MM. This means that v is such that x tv s 0 fori
i s 1, . . . , M and x tv / 0 for i s M q 1, . . . , n. Let ZZ** be a regressioni
transformation of ZZ* obtained by subtracting x tv from every point in ZZ*.i

wŽ . xThen ZZ** contains n y m y M s n y M r2 F m altered points relative to
ZZ. From the above statements, three results can be inferred:

Ž . 5 Ž .5i T ZZ* is bounded by hypothesis;
Ž . 5 Ž .5ii T ZZ** is bounded by hypothesis;
Ž . 5 Ž .5 5 Ž . 5iii T ZZ** s T ZZ* y v by regression equivariance,

yielding a contradiction because v can be made arbitrarily large. I

An analogous result for regression functionals may be found in Davies
Ž .1993 . It is interesting to note that, when the observations are in general

Ž . U ŽwŽposition, that is, when M s p y 1, formula 3.3 reduces to « s n ymax, n
. x .p r2 q 1 rn, which is precisely the expression for the maximum breakdown

Ž . Ž .point derived by Rousseeuw 1984 ; see also Rousseeuw and Leroy 1987 for
more details.

U Ž .THEOREM 3.2. The exact fit point d T, ZZ of any regression equivariantn
estimator T is at most equal to

U3.4 d s n y M q 1 r2 rn.Ž . Ž .max, n

The proof of this theorem is analogous to that of the maximum breakdown
point given in Theorem 3.1.

Concerning the asymptotic values of the breakdown and exact fit points,
two cases must be considered. In the first case, M remains finite, implying
that the maximum breakdown point tends to 1r2, the same upper bound as
when the data points are in general position. In the second case, M tends to
` with n, implying that the asymptotic maximum breakdown point may be
smaller than 1r2. To see that, let l be the limit of Mrn as n grows to `.

Ž . U Ž .From 3.3 , it follows that « ª 1 y l r2, a limit that vanishes as l ª 1.max, n
Similar conclusions hold for the asymptotic exact fit point.
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Ž .4. D-estimators. Rousseeuw 1984 proposed two estimators which have
an asymptotic breakdown point of 1r2 when the observations are in general
position. These are the well-known LMS and LTS estimators, defined as the
minimizers of the median squared residual r 2 and the sum of the h smallestŽh.
squared residuals, respectively. The fact that these two estimators have
different objective functions but have the same breakdown point has moti-
vated us to define a new class of estimators, called D-estimators and first

Ž .introduced in the simple regression case by Coakley and Mili 1993 . One
characteristic of such estimators is that, as will be seen in Section 5, their
breakdown point is determined by the value of h, which we call the quantile
index.

4.1. Definition of D-estimators. A D-estimator minimizes an objective
Ž .function D u, h; ZZ satisfying the following properties:

Ž .P1. D u, h; ZZ G 0;
< < < < < <P2. D depends only on r , r , . . . , r ;Ž1. Ž2. Žh.

< <P3. D is nondecreasing in each of the r ’s, i s 1, . . . , h y 1, and D isŽ i.
< <strictly increasing in r ;Žh.

< < < < < < Ž .P4. for r , r , . . . , r fixed, lim D u, h; ZZ s `.Ž1. Ž2. Žhy1. < r < ª`Žh.

For each value of h, there is a collection of D-estimators all having the
same breakdown point. One example of a D-objective function is

h

< <4.1 D u , h; ZZ s c r ,Ž . Ž . Ý Ž i.i
is1

where c , c , . . . , c are nonnegative constants and c is a positive constant.1 2 hy1 h
w xIn the location case with h s nr2 q 1, this is the LTAD estimator of

Ž . Ž . Ž .Bassett 1991 and Tableman 1994 . In fact, the D-estimator given by 4.1 is
a generalization of the LTAD estimator to multiple linear regression. Another
example is obtained by squaring the residuals instead of taking their abso-

Ž .lute values in 4.1 . Hence the LMS and LTS are D-estimators. The LMS
corresponds to c s 1 and c s 0 for i - h; the LTS corresponds to c s c sh i 1 2
??? s c s 1.h

Ž .REMARK 4.1. i Our D-estimators have no known connection to the class
of minimum distance estimators referred to as D-estimators by Hampel,

Ž .Ronchetti, Rousseeuw and Stahel 1986 , page 113.
Ž .ii There is very little overlap between the classes of D-estimators and

S-estimators. For instance, S-estimators with continuously differentiable
r-functions are not D-estimators. For an example of a D-estimator that

Ž .is not an S-estimator, consider the D-objective function D u, h; ZZ s
� Ž < < .4 < <exp y1r r r .Ž1. Žh.
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4.2. Equivariance properties and efficiency of D-estimators. It is straight-
forward to see that any D-estimator is affine and regression equivariant
because of the relationships between the transformed and untransformed
residuals. What about the efficiency of D-estimators? Loosely speaking, it

Ž .increases with h. For instance, Coakley 1991 showed that the Gaussian
efficiency of LTS vs. LS surpasses 1r3, 1r2 and 3r4 for h G 0.8n, 0.88n and

Ž .0.96n, respectively. In simple regression, Coakley, Mili and Cheniae 1994
reported on simulations which suggest that the finite-sample efficiencies of
LMS and LTS vs. LS under Gaussian errors are actually higher than their
asymptotic efficiencies. They also showed how the finite-sample efficiencies of
LTS and LMS are related to the value of the quantile index h; the increase in
efficiency is nearly linear in h and is stronger for LTS than for LMS, as one
would expect.

5. Breakdown bounds of D- and S-estimators. In this section we
derive the expression for the finite-sample breakdown point of D- and S-
estimators when the quantile index h is larger than or equal to the optimal
value, h . When h is strictly smaller than h , we give only upper and lowerop op
bounds on the breakdown point of D-estimators. We also derive the expres-
sion for their exact fit point for all h. In the sequel we will make use of the
following relationships:

w x5.1 p q qr2 s 2 p q q r2 ,Ž . Ž .
w x w x5.2 p y qr2 s 2 p y q q 1 r2 for p G qr2 ,Ž . Ž .

w x w x5.3 pr2 y q s p y 2 q r2 for pr2 G q ,Ž . Ž .
where p and q are two positive integers.

5.1. Breakdown point of a D-estimator. We first derive the expression for
h and then investigate the breakdown point of a D-estimator when h G h .op op

THEOREM 5.1. The breakdown point of a D-estimator attains «U smax, n
wŽ . xn y M q 1 r2 rn for any h satisfyingop

5.4 h F h F h ,Ž . L op U

wŽ . x wŽ . xwhere h s n q M q 1 r2 and h s n q M q 2 r2 .L U

PROOF. It suffices to show that the breakdown point of a D-estimator T
Ž . Ufor h given by 5.4 cannot be smaller than « at any sample ZZ.op max, n

5 Ž .5Equivalently, we have to show that T ZZ* cannot be brought to ` for any
wŽcontaminated sample ZZ* obtained from ZZ by replacing m s n y M q

. x wŽ . x1 r2 y 1 s n y M y 1 r2 data points by arbitrary values. Consider a fit
5 5with a finite u . Because ZZ* contains n y m unaltered observations and m

arbitrarily changed ones, the good fit yields n y m finite residuals. Since
n y m s h G h , a D-objective function assessed at this good fit will have aU op
finite value.
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Now we will construct the least favorable bad fit PP passing through mM
�Ž .outliers. This is done as follows. Consider p y 1 points, say x , y ; i s˜ ˜i i

4 5 51, . . . , p y 1 , where all x and y are finite and where the vectors x span˜ ˜ ˜i i i
Ž .the p y 1 -dimensional vector subspace MM. Pick any observation from the

Ž .subset N, say x , y . Since, by definition, the vector x does not lie on MM,n n n
�Ž . Ž . Ž . Ž .4the p points in x , y , x , y , . . . , x , y , x , y uniquely deter-˜ ˜ ˜ ˜ ˜ ˜1 1 2 2 py1 py1 n n

Ž .mine a p-dimensional hyperplane, namely the fit PP . Let x , y be madeM n n
arbitrarily large under the constraint that x remains linearly independentn
with the x . Pick any subset of m y 1 data points from the subset N, say˜ i
�Ž . Ž .4x , y , . . . , x , y . Place them on the hyperplane PP bynymq1 nymq1 ny1 ny1 M

Ž .appropriately adjusting their x , y values, again under the constraint thati i
their x do not lie on MM.i

By construction, the fit PP yields M q m finite residuals, which is theM
highest possible number that any bad fit may have. Since M q m s h y 1 -L

Ž .h , a D-objective function assessed at such a bad fit or any other bad fitop
will be unbounded. Therefore, we conclude that a D-objective function attains

5 5its minimum only at a fit with a bounded u . I

The results given in Theorems 3.1 and 5.1 hold whether or not contamina-
Ž .tion is restricted to the responses; see Muller 1995 . A D-estimator satisfy-¨

Ž .ing 5.4 is called optimal. If the data points are in general position, yielding
w x wŽ . xM s p y 1, then the relationship h s nr2 q M q 2 r2 , which satisfiesop

Ž . Ž . Ž .5.4 , reduces to 4.9 of Rousseeuw and Leroy 1987 , page 124, namely
w x wŽ . xnr2 q p q 1 r2 . The latter can still be used in practice without severe
consequences when m is slightly greater than p y 1, as might happen when
there are dependencies among few groups of p row vectors of X. However,
when M is substantially larger than p y 1, it is advisable to find M and

Ž .then to calculate h using 5.4 . Otherwise, the breakdown point of theop
D-estimator at hand would be much smaller than the maximum.

An algorithm that calculates M has been developed. It is based on
elemental sets consisting of p y 1 rows of X and it is complete in the sense

Žthat it finds the exact value of M not an estimate of M based on randomly
.chosen elemental subsets . However, it is computationally more efficient than

nŽ .an exhaustive search of all elemental subsets. Instead, it uses thep y 1
Ž .information gained when more than p y 1 points are found on a p y 1 -

dimensional vector subspace of FF in order to skip over some of the elemental
subset calculations. This program is available from the authors upon request.

THEOREM 5.2. A D-estimator T satisfying h G h has a breakdown pointU
given by

5.5 «U T , h; ZZ s n y h q 1 rn.Ž . Ž . Ž .n

U Ž . ŽPROOF. Assume h G h . Let us first show that « T, h; ZZ F n y h qU n
.1 rn. Let ZZ* be a contaminated sample obtained from ZZ by replacing

m s n y h q 1 data points by arbitrary values. Thus, ZZ* contains n y m s
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5 5h y 1 unaltered observations. Consider a fit with a bounded u . By construc-
tion, this fit results in n y m finite residuals. Since n y m - h, we conclude
that a D-objective function assessed at this good fit is unbounded. Because it
will be so for any good fit, it holds that the minimum of a D-objective function

5 5may be attained at a fit with unbounded u .
U Ž . Ž .Now let us prove that « T, h; ZZ G n y h q 1 rn. Equivalently, we haven

to show that a D-estimator does not break down for a contaminated sample
ZZ* obtained from ZZ by replacing m s n y h observations by arbitrary

5 5values. Again, consider a fit with a bounded u . By construction, this good fit
results in n y m finite residuals for the sample ZZ*. Since h s n y m, any
D-objective function assessed at this good fit is finite. Now consider the least

Ž .favorable bad fit PP as described in the proof of Theorem 5.1 that passesM
through the m unbounded points of ZZ*. It gives M q m finite residuals.

wŽ . x wŽ . xSince M q m F M q n y n q M q 2 r2 s n q M y 1 r2 - h, we con-
Žclude that any D-objective function assessed at this bad fit or any other bad

.fit will be unbounded. Consequently, the minimum of a D-objective function
5 5is only attained at a fit with a bounded u . I

5.2. Exact fit point of a D-estimator. We will investigate the exact fit
point of a D-estimator first for M - h F n and then for h F M.

U Ž .THEOREM 5.3. The exact fit point d T, h; ZZ of a D-estimator T is givenn
by

5.6 d U T , h; ZZ s min h y M rn, n y h q 1 rn for M - h F n.� 4Ž . Ž . Ž . Ž .n

U Ž . Ž .PROOF. We first show that d T, h; ZZ F b, where b s n y h q 1 rn forn
Ž .h F h F n and b s h y M rn for M - h - h . Consider a sample ZZ con-U U

taining n points which lie on a p-dimensional hyperplane PP . By regression0
equivariance, we may assume without loss of generality that PP is the0
hyperplane y s 0. Let m s nb observations of ZZ take on arbitrary nonzero
response values. For the resulting sample ZZ*, the fit PP yields n y m zero0
residuals.

Assume that h F h F n. Then n y m s n y nb s h y 1. It follows that aU
D-objective function assessed at the fit PP is unbounded, implying that the0

5 5minimum may be attained at a fit with an unbounded u , which is different
from PP . Hence, the associated D-estimator breaks down.0

Assume that M - h - h . Construct a least favorable bad fit PP satisfy-U M
ing y s x tu, where u is an arbitrary vector different from 0. In addition, PPM

�Ž . 4passes through the M observations x , 0 ; i s 1, . . . , M of M and throughi
Ž .one point x, y , where y / 0 and where x falls outside MM, and hence is˜ ˜ ˜ ˜

� 4linearly independent with a basis of MM, say x , . . . , x . Place m s nb s1 py1
h y M data points of the subset N on PP by changing their y values from 0M i
to y s x tu / 0. These y are different from 0 because x s Ý py1a x q b x̃i i i i js1 i j j i
with b / 0, which implies that y s Ý py1a y q b y, where y s 0 and˜i i js1 i j j i j
y / 0. Consequently, the fit PP results in M q m s h zero residuals, yield-˜ M
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ing the minimum value for a D-objective function, 0, by property P3. The
minimum being attained for a fit different from PP , we conclude that a0

U Ž .D-estimator breaks down. Similarly, it can be shown that d T, h; ZZ G b. In

The following theorem was inspired by a suggestion from Stromberg
Ž .1992 .

THEOREM 5.4. A D-estimator T satisfying h F M has a zero exact fit point.

PROOF. By regression equivariance, we consider, without loss of general-
�Ž . 4ity, ZZ s x , y s 0 , i s 1, . . . , n . It is clear that, without modifying ZZ, anyi i

Ž .fit as steep as desired that passes through the M observations of M yields a
5 5D-objective function with zero value, which is the minimum. Therefore, u

associated with this fit is unbounded. I

The results of Theorems 5.3 and 5.4 are depicted in Figure 2.

5.3. Breakdown bounds of a D-estimator. We now give upper and lower
bounds for the breakdown point of a D-estimator when h is smaller than hop
and show that there exist samples where these bounds are attained.

�Ž . 4THEOREM 5.5. Let ZZ be the sample x , y ; i s 1, . . . , n . Let ZZ9 be ai i
sample obtained from ZZ by changing the response values y so that the n datai
points lie exactly on a hyperplane. A D-estimator T satisfying h - h has aL

U Ž .breakdown point « T, h; ZZ given byn

5.7 d U T , h; ZZ9 F «U T , h; ZZ F min h y p q 1 rn, «U .� 4Ž . Ž . Ž . Ž .n n max, n

FIG. 2. Exact fit point vs. the quantile index h of a D-estimator.
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PROOF. The proof is similar to the proofs of Theorems 5.2 and 5.3 and can
Ž .be found in Mili and Coakley 1993 .

Ž . U Ž .REMARK 5.1. The first inequality in 5.7 , namely d T, h; ZZ9 Fn
U Ž .« T, h; ZZ , seems to contradict the proposition shown by Rousseeuw andn

Ž .Leroy 1987 , page 123, which states that the breakdown point cannot be
larger than the exact fit point for a regression and scale equivariant estima-
tor. However, this proposition is true only when considering the same sample

U Ž .ZZ for both the breakdown point and the exact fit point, viz. d T, h; ZZ Gn
U Ž . Ž .« T, h; ZZ . This does not hold in 5.7 , which involves two different samplesn

ZZ and ZZ9.

It is very difficult to find a simple expression for the breakdown point of a
D-estimator when h - h , because it depends in a complicated way on theL
responses y of the sample ZZ, even for a fixed design. In other words, itsi

Ž .breakdown point is sample dependent. However, the bounds given in 5.7 are
sharp in the sense that there exist designs for which they are attained, as
shown in Theorems 5.6 and 5.7.

THEOREM 5.6. Consider a sample ZZ where all the M data points of the
Ž .subset M lie exactly on a p y 1 -dimensional hyperplane PP. Then a D-

U Ž .estimator T satisfying M - h - h has a breakdown point « T, h; ZZ equalL n
Ž .to h y M rn.

U Ž . ŽPROOF. Assume that h - h . From Theorem 5.5, « T, h; ZZ G h yL n
. U Ž . Ž .M rn. Let us now show that « T, h; ZZ F h y M rn. Equivalently, wen

have to prove that a D-estimator breaks down when m s h y M observa-
tions of ZZ are replaced by arbitrary values. Construct the least favorable bad

Ž .fit PP so that it contains the p y 1 -dimensional hyperplane PP. In thatM
case, PP has a total number of zero residuals equal to M q m s h, whichM
leads to the minimum value for the D-objective function, 0. Consequently, it

5 5may be selected as the final fit, yielding an unbounded u . I

THEOREM 5.7. Consider a sample ZZ that satisfies the following assump-
tions:

A1. The N observations of N are in general position, implying that any
Ž .subset with size min p, N of vectors x associated with N are linearlyi

independent.
A2. The N observations of N along with m observations of M, where

p y 1 F m F M y 1, lie exactly on a p-dimensional hyperplane PP in the
observation space EE of dimension p q 1.

A3. The remaining M y m observations of M fall outside the hyperplane
PP. Under these assumptions, a D-estimator T defined with h s n«U q m,max, n

U Ž . U Ž .where « is given by 3.3 , has a breakdown point « T, h; ZZ equal tomax, n n
«U .max, n
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wŽ . x wŽPROOF. Note that we have n y M q 1 r2 q p y 1 F h F n y M q
. x Ž . U1 r2 q M y 1 - h . The first inequality yields h y p q 1 rn G « ,L max, n

U Ž . Uwhich, by Theorem 5.5, implies that « T, h; ZZ F « . It remains then ton max, n
U Ž . Ushow that « T, h; Z G « . In other words, we have to prove that an max, n

D-estimator with an h as previously defined remains bounded when m s
wŽ . xn y M y 1 r2 observations of ZZ have been changed to arbitrary values.
With the contaminated sample ZZ* so obtained, the fit PP defined under

5 5assumption A2, which has a bounded u , leads to a number of zero residuals
wŽ . xthat is no smaller than N q m y m s n y M q 2 r2 q m G h. Thus, a

D-objective function assessed at this good fit has zero value for any set of m
altered points. Now consider the least favorable fit PP , which yields M q mM

wŽ . xfinite residuals. Because M q m s n y M q 1 r2 q M y 1 G h, a D-objec-
tive function assessed at this bad fit is finite. It will be different from 0,
however, because the total number of zero residuals is strictly smaller than
h. Indeed, the largest number of zero residuals is achieved when PP con-M
tains, in addition to the m altered points of N, the m observations of M that
are on PP. This yields a maximum number of zero residuals equal to m q m s
wŽ . xn y M y 1 r2 q m F h y 1. Since any other bad fit leads to a number of
zero residuals that is no larger than m q m, we conclude that the minimum

5 5of a D-objective function is reached at the fit PP, which has a bounded u . I

5.4. Breakdown point of an S-estimator. Let r be a function that is
Ž . Ž . Ž .i symmetric and continuously differentiable with r 0 s 0, and ii strictly

w x w .increasingly on 0, c and constant on c, ` , where c is a positive constant.
Then an S-estimator minimizes

5.8 s r u , . . . , r uŽ . Ž . Ž .Ž .1 n

subject to
n1 ri

5.9 r s k ,Ž . Ý ž /n sis1

w Ž . xwhere k is a given nonnegative constant Rousseeuw and Yohai 1984 .

THEOREM 5.8. Consider an integer h that satisfies h F h F n. Then anU
Ž . Ž .S-estimator T defined with krr c s n y h q 1 rn has a breakdown point

Ž .and an exact fit point equal to n y h q 1 rn.

Ž .PROOF. Following Croux, Rousseeuw and Hossjer 1994 , Theorem 3, and¨
Ž .Rousseeuw and Leroy 1987 , Lemma 4, page 136, it can easily be shown that

< < < <5.10 a r F s r u , . . . , r u F b r ,Ž . Ž . Ž .Ž .Žh. Žh.1 n

y1Ž Ž . Ž ..where a s 1rc and b s r r c r h q 1 . Hence, the proofs of Theorems
5.1, 5.2 and 5.3 for h G h hold for the S-estimators as well. IU

Theorem 5.8 shows that the S-estimators do attain the maximum break-
Ž . U Ž .down point for krr c s « and h satisfying 5.4 .max, n op
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6. Discussion and future work. In structured linear regression, the
breakdown point of a D-estimator may hinge on the sample ZZ at hand. It
depends in a very complicated way on both the response and the design when
the quantile index h is strictly smaller than h , a value at which theop
breakdown point is maximum. When h is strictly larger than h , bothop
dependencies vanish and the breakdown point is expressed only in terms of h
and n. When h is at the optimal value, h , the dependencies on the responseop
disappear, but those related to the design remain. Note that the maximum
breakdown point and h are expressed in terms of M. In structured regres-op
sion, M may be much larger than p y 1, hence the need to calculate M
whenever such a situation occurs. Yet, this can be performed prior to experi-
mentation in a designed regression. An algorithm that does precisely that has
been developed.

Several lines of future work remain open. One is to extend these results to
Ž .the generalized S-estimators of Croux, Rousseeuw and Hossjer 1994 . Of¨

great interest is the analysis of the effect of reduced position on the maxi-
wmum bias curve for all these estimators see Martin, Yohai and Zamar

Ž .x1989 . Another possibility is to investigate the local breakdown point con-
w Ž . Ž .xcept Mili, Cheniae and Rousseeuw 1994 and Ruckstuhl 1995 in conjunc-

tion with the decomposition of the design space into subspaces.
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