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PERFORMANCE OF WAVELET METHODS FOR FUNCTIONS
WITH MANY DISCONTINUITIES

By Peter Hall, Ian McKay1 and Berwin A. Turlach

Australian National University

Compared to traditional approaches to curve estimation, such as those
based on kernels, wavelet methods are relatively unaffected by discontinu-
ities and similar aberrations. In particular, the mean square convergence
rate of a wavelet estimator of a fixed, piecewise-smooth curve is not influ-
enced by discontinuities. Nevertheless, it is clear that as the estimation
problem becomes more complex the limitations of wavelet methods must
eventually be apparent. By allowing the number of discontinuities to in-
crease and their size to decrease as the sample grows, we study the limits to
which wavelet methods can be pushed and still exhibit good performance.
We determine the effect of these changes on rates of convergence. For ex-
ample, we derive necessary and sufficient conditions for wavelet methods
applied to increasingly complex, discontinuous functions to achieve conver-
gence rates normally associated only with fixed, smooth functions, and we
determine necessary conditions for mean square consistency.

1. Introduction. A major virtue of wavelet methods in curve estimation
is their very high degree of adaptability to different levels of smoothness. They
capture discontinuous episodes in a curve far better than do many alternative
approaches, such as kernel methods, and achieve this end without requiring
subsidiary adjustments. For example, the formula for mean integrated squared
error of a “standard” rth-order wavelet estimator of a density or regression
function is unaffected, to first order, by a bounded number of jump discon-
tinuities. To achieve the same level of performance when used to estimate
a discontinuous curve, a kernel estimator first requires identification of the
places where jumps occur and then careful manipulation in the neighborhood
of the jumps.

On reflection, however, it is clear that these virtuous properties of wavelet
estimators must depend in some way on the complexity of the target function.
In the present paper we examine the performance of a wavelet estimator for
targets where the number of jumps diverges as sample size increases. Our
aim is to determine factors which limit performance of wavelet estimators in
very difficult problems. We provide a concise description of the rate at which
the number of jump discontinuities may increase if performance of the esti-
mator is not to be affected, to first order, by those jumps. We also describe
the relationship between the number of jumps and the sizes of jumps in this
context—if the jumps are of smaller size, then more jumps are allowed be-
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fore performance deteriorates. We address issues as fundamental as mean
square consistency of wavelet estimators, showing that a certain relationship
between the number of jumps and their sizes is sufficient for convergence in
mean square.

We shall now summarize our main conclusions. Roughly speaking, the
wavelet estimator is consistent if the number of jumps (m, say) multiplied
by the size of the jumps (η, say) is of smaller order than the sample size
(multiplied by a logarithmic factor). If the jumps are relatively large [specifi-
cally, if η is of size �n−1 log n�1/2 or larger], then the wavelet estimator will
converge at the rate for a smooth function if and only if m = O�n1/�2r+1��
(again, multiplied by a suitable logarithmic factor). For smaller jump sizes
the necessary and sufficient condition is mη2 = O�n−�2r−1�/�2r+1��.

We achieve these results by developing explicit formulas for terms which,
in the case of fixed f, are of second order, and monitoring the effect that
changing f (by allowing an unboundedly large number of jumps) has on those
terms. The convergence rate starts to deteriorate, relative to that for a fixed,
piecewise-smooth f, when second-order terms begin to dominate first-order
ones. We shall develop these ideas only in the case of nonparametric den-
sity estimation, but a longer version of the paper [Hall, McKay and Turlach
(1995)] addresses the context of nonparametric regression, and discusses nu-
merical performance. In particular, our theoretical result that mean integrated
squared error increases very nearly linearly in number of jumps, and has slope
that is virtually independent of noise variance (in the context of regression),
is well supported by numerical work. So also is our theoretical conclusion
that the optimal value of the truncation point (q, in the analysis in Section 2)
increases with number of jumps.

The advantages of wavelet thresholding in the context of curve estimation
were first appreciated and analyzed by Donoho, Johnstone, Kerkyacharian and
Picard in an important series of papers [e.g., Donoho, Johnstone, Kerkyachar-
ian and Picard (1995, 1996), Kerkyacharian and Picard (1993) and Donoho
and Johnstone (1994, 1995)]. Their contributions built upon earlier work on
wavelet methods in statistics, for example, that of Doukhan (1988). Concise
first-order mean squared error formulas for fixed, piecewise-smooth functions
were developed by Hall and Patil (1995).

2. Methodology and theoretical results.

2.1. Model for the target function. Our model is of piecewise-continuous
densities f whose complexity increases as the sample size becomes larger, so
that the estimation problem becomes more difficult as the amount of informa-
tion grows. Specifically, we assume that f has an unboundedly large number
of jumps of unboundedly small size. For technical convenience we ask that
for a sample of size n all the jumps be of size η = ηn, this quantity being
assumed bounded but possibly converging to 0. The number of jumps within
the support of f is denoted by m−1, where m =mn ≥ 1 may increase without
bound. Variants of this model may be treated using similar arguments. The
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simplest variant is that where the lth jump is of size ynl η, say, and the ynl’s
are bounded away from 0 and ∞. Results in this context differ in only rela-
tively minor, rather obvious ways from those where the jumps are all equal,
and so do not require specific attention.

Likewise, the case where jump sizes may be grouped into a finite number
of different classes, corresponding to a finite number of pairs �m;η� that vary
in different ways, is effectively subsumed by our model. In that context the
overall convergence rate is the worst of the convergence rates for the different
pairs.

We further assume that consecutive jumps in f are spaced 1/m apart. This
condition may also be relaxed, for example, by asking that spacings vary
within the range �ε/m;1/εm� for some ε ∈ �0;1�, but, again, such general-
izations produce only minor, rather obvious alterations to our results.

There is a wide variety of ways of specifying f between jumps. To minimize
the notational burden, we suppose that f is constructed by vertical shifts of a
single smooth function g, although many other approaches could be adopted.
Details are sketched in Remark 2.4.

Bearing these goals in mind, our class of functions f may be defined as
follows. Let α;β > 1 denote fixed constants, and let g be a function on I =
�0;1� enjoying r ≥ 1 bounded, uniformly continuous derivatives and such that
α−1 ≤ g ≤ α. Divide I = �0;1� into m ≥ 1 equal parts Il ≡ ��l− 1�/m; l/m�,
and let η ∈ �0; α�. Let f denote a density supported on I such that, for each
1 ≤ l ≤m, f restricted to Il is identical to g+klη for some integer kl, where
�kl+1−kl� = 1 for 1 ≤ l ≤m−1, and β−1 ≤ f ≤ β. Write F = F �α;β;gym;η�
for the class of all f’s defined in this way.

For each value n of sample size we select a pair �mn; ηn� and a candidate
fn ∈ Fn = F �α;β;gymn; ηn�, and consider estimating fn from data drawn
from this distribution. We suppress the subscript n in our notation, particu-
larly from fn, �mn; ηn� and Fn.

2.2. Wavelet expansion. Let φ (the “father wavelet” or scale function) and
ψ (the “mother wavelet”) be bounded, Hölder continuous and compactly sup-
ported. Normalize φ so that it integrates to unity, and suppose that integer
translates of φ are orthogonal. We call these conditions (W). If they hold, then,
for any i ≥ 0, −∞ < j <∞ and p > 0 with pi = 2ip, the functions

φj�x� ≡ p1/2φ�px− j�; ψij�x� ≡ p1/2
i ψ�pix− j�

are orthonormal:
∫
φj1

φj2
= δj1; j2

,
∫
ψi1j1

ψi2j2
= δi1i2 δj1j2

and
∫
φj1

ψij2
= 0,

where δij denotes the Dirac delta function. An arbitrary square-integrable
function f may be expanded as a generalized Fourier series

f�x� =
∑
j

bjφj�x� +
∞∑
i=1

∑
j

bijψij�x�;

which converges in mean square. In this formula bj =
∫
φjf and bij =

∫
ψijf.
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The scale function is determined by a dilation equation, φ�x� =∑ cjφ�2x−
j�, for positive constants cj satisfying

∑
cj = 2. Since φ is compactly sup-

ported, only a finite number of the cj’s are nonzero. Let r ≥ 1 denote the
maximal integer such that

∑
j

�−1�j jk cj = 0 for all 0 ≤ k ≤ r− 1;

and define

κ = �r!�−1
∫
yrψ�y�dy = �r!�−1 �− 1

2�r+1∑�−1�j jr cj:

These properties and features of wavelets are discussed in much greater detail
by Strang (1989, 1993), Meyer (1990) and Daubechies (1992).

The quantity p is sometimes called the “primary resolution level” of the
wavelet expansion of f. In the contexts of both density estimation and non-
parametric regression, where the wavelet expansion is approximated by an
empirical version, p plays the role of the inverse of bandwidth. Details are
given in Remark 2.1.

2.3. Estimation. Let X1; : : : ;Xn denote independent random variables
having a density f ∈ F . Put b̂j = n−1∑

kφj�Xk� and b̂ij = n−1∑
kψij�Xk�,

being unbiased estimators of bj and bij, respectively. Our wavelet estimator
of f is a thresholded, truncated form of the Fourier expansion of f:

hf�x� =
∑
j

b̂jφj�x� +
q−1∑
i=1

∑
j

b̂ij I��b̂ij� > δ�ψij�x�;

where δ > 0 is the threshold and q ≥ 1 is an appropriate truncation point for
the infinite series over different resolution levels.

2.4. Main theorem. We begin with notation. Write log n to denote a natu-
ral logarithm, and log2 n for the logarithm function base 2. Define

9�x� ≡
∫
u≤x

ψ�u�du:

We assume that the variable parameters m = m�n�, p = p�n�, q = q�n� and
η = η�n� satisfy

�2:1�
m ≥ 1; 0 < η = O�1�; log n = O�q�;
n/�p2r+1 log n� → 0; pq�log n�6/n→ 0:

We note that by suitably rescaling we can always guarantee that

�2:2� sup
−∞<j<∞

inf
0≤ε<1

�9�ε+ j�� > 0:

On occasion we shall also ask that either

�2:3� m/p = O�1�
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or

�2:4� m/p→ 0:

If we write ξil ∈ �0;1� for the fractional part of pilm−1, then, as a result of
(2.2), the quantities

s2
il ≡

∑
j

9�ξil + j�2; s2 ≡ pq�m− 1�−1
∞∑
i=q

m−1∑
l=1

p−1
i s

2
il;

s2
0 = p−1

q

∞∑
i=q
p−1
i s

2
i0; s2

1 = p−1
q

∞∑
i=q
p−1
i s

2
im

are bounded away from 0 and ∞ as n→∞. (We define s2 = 1 if m = 1.) Let
the threshold be

�2:5� δ = C�2n−1 log n�1/2;
where C > 0 is a constant.

Put η1 = min�η;1�, and define ρ ≡ nη2/�p log n�, A ≡ 2Cπ−1/2,

B ≡
(
1− 2−2r)−1

κ2
∫ (
g�r�

)2
;

an ≡ n−1 �log n�1/2pq
∫
f1/2 n−C

2/f;

bn ≡





mη2/pq; if m ≤ pq;
�mη/pq�2; if pq < m ≤ pq/η1;

1; if m > pq/η1:

Let B1 = 0 if g restricted to �0;1� is a polynomial of degree r− 1, and B1 = 1
otherwise.

The theorem below presents an expansion of the dominant contributions to
mean integrated squared error, or MISE; the latter is defined as

∫
E�f̂− f�2.

Results (2.6), (2.7) and (2.8) are successively more refined, and hold under
successively stronger assumptions. We adopt the convention that, for arbitrary
sequences �un� and �vn� of positive numbers, un ∼ vn means that the ratio
un/vn converges to 1 as n increases, and un � vn means that un = O�vn� and
vn = O�un�.

Theorem. Under conditions (W) and �2:1�; and with the threshold defined
by �2:5�;

�2:6�
∫
E�f̂−f�2 = O

{
n−1p+p−2r+an+bn+p−1

q +mn−1 min�1; ρ� log n
}
:

If, in addition, �2:2� and �2:3� hold, then

�2:7�

∫
E�f̂− f�2 � n−1p+ p−2rB1 + p−1

q �mη2 + 1� + an

+mn−1 min�1; ρ� log n+ o�p−2r�y
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and if �2:2� and �2:4� hold, then there exists a positive sequence �ζn�; bounded
away from 0 and ∞ uniformly in f ∈ F ; such that

�2:8�

∫
E�f̂− f�2 ∼ n−1p+ p−2rB+ �m− 1�p−1

q η
2s2

+ p−1
q

{
f�0+�2s2

0 + f�1−�2s2
1

}

+ anA+ ζnmn−1 min�1; ρ� log n+ o�p−2r�:

A proof is outlined in Section 3. The arguments there are sufficient to prove
that the bounds and asymptotic equivalences claimed in the theorem are avail-
able uniformly in f ∈ F . Below, in a sequence of remarks, we discuss the the-
orem’s main consequences. There, to avoid trivialities, we shall assume that
g restricted to �0;1� is not simply a polynomial of degree r− 1. We shall say
that un and vn are “of the same size” if un � vn, and that un is “of order vn”
if un = O�vn�.

Remark 2.1 (Necessary and sufficient conditions for achieving specified con-
vergence rates). If C ≥ �supf�1/2, then the terms in an in (2.6)–(2.8) are
negligibly small, and may be dropped. We shall assume in this remark that
this has been done. If m and η are fixed, so that f is smooth in a piecewise
sense, then the optimal convergence rate of MISE is O�n−2r/�2r+1��, and is
achieved when p is of size n1/�2r+1�. See Hall and Patil (1995). We observe
from (2.7) that if (2.1) and (2.2) hold, but m and η are allowed to vary, then
the same convergence rate is achieved if and only if p is of size n1/�2r+1�,
mη2 = O�n−2r/�2r+1�pq� and

mmin
(
1; n2r/�2r+1�η2/ log n

)
= O

(
n1/�2r+1�/ log n

)
:

Additionally, using (2.6), we may readily derive sufficient conditions for
consistency. Indeed, if η = O�n−γ� for some γ ≥ 0, and if pq is of size n �log n�−δ
for some δ > 6, then the wavelet estimator is mean-square consistent if (a)m =
o�n1+γ �log n�−δ� and (b) p→∞ more rapidly than �n/ log n�1/�2r+1�.

Remark 2.2 [Importance of conditions �2:3� and �2:4�]. If m/p diverges as
n increases, then all the wavelet coefficients bj, and also the bij’s for suffi-
ciently small i ≥ 1, are affected by an unboundedly large number of jump dis-
continuities. In this case a concise analysis can depend on positions of jumps
relative to features of the mother and father wavelet functions, and results
such as (2.8) do not appear possible. Similar difficulties arise in the case of
(2.7) if m/p converges to a finite, positive limit.

Remark 2.3 [Sizes of an and p−1
q �mη2+1�]. Suppose f�x� = fn�x� ≤ C2ξ−1

for all n and x, where ξ > 0 andC is as in (2.5). Then, if q ≤ �ξ−ε� log2 n+O�1�
for some ε > 0, an is negligible to first order: an = o�n−1p+ p−2r�. Similarly,
it may be proved that if f is smooth in a neighborhood of its global maximum,
the condition q ≤ ξ log2 n+O�1� is necessary for first-order negligibility of an.
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If p is of the size (i.e., n1/�2r+1�; see Remark 2.1) which minimizes MISE
in the case of a smooth f, then, in order for p−1

q �mη2 + 1� to be of smaller
order than n−1p + p−2r, uniformly in pairs �m;η� satisfying (2.1) and (2.4),
it is necessary and sufficient that q ≥ �2r/�2r + 1�� log2 n +O�1�. From this
result and that in the previous paragraph we see that, in a wide range of
circumstances, in order for an and p−1

q �mη2+1� to both equal o�n−1p+p−2r�
for all �m;η� satisfying (2.1) and (2.4), it is necessary that C be chosen so
large that σ ≡ supf ≤ 1

2C
2�2+ r−1� and that q satisfy

2�2+ r−1�−1 log2 n+O�1� ≤ q ≤ C2σ−1 log2 n+O�1�;

and sufficient that σ < C2�2+ r−1� and

2�2+ r−1�−1 log2 n+O�1� ≤ q ≤ �C2σ−1 − ε� log2 n+O�1�

for some ε > 0. For these choices of C and q, and for all �m;η� satisfying
(2.1) and (2.4), mean integrated squared error in the presence of many dis-
continuities admits the same asymptotic formula that it does for a smooth
function.

Remark 2.4 (Densities f with variation). The total variation of f equals
mη +

∫
�g′�, which is bounded if and only if mη is. In this case mη2 = O�1�,

and equals o�1� if m diverges. Therefore, if f is of bounded variation, then
second-order terms in an expansion of MISE are of the same size they would
be for fixed f. In particular, first-order theory such as that described by Hall
and Patil (1995) remains valid.

Remark 2.5 (Different ways of aligning f at discontinuities). Our defi-
nition of f ensures that all derivatives except the zeroth match perfectly at
discontinuities. Identical results may be obtained under the assumption that f
be bounded away from 0 on I ; that between discontinuities, f and its deriva-
tives be uniformly bounded; and that at discontinuities (where f jumps by an
amount η) kth derivatives jump by an amount of smaller order than ηpk/2 for
each 1 ≤ k ≤ r. Of course, the latter restriction is only significant when η is
relatively small. It is necessary to replace

∫
�g�r��2 by

∫
�f�r��2, where f�r� is

defined arbitrarily at jumps, in the definition of B.

3. Proof of the theorem. We derive only (2.6) and (2.8), since a proof of
(2.7) is similar.

Step 1. Preliminaries. In view of the orthogonality properties of wavelets
and the wavelet expansion of f,

�3:1�
∫
�f̂− f�2 = S1 + · · · +S4;
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where

S1 =
∑
j

�b̂j − bj�2; S2 =
q−1∑
i=1

∑
j

�b̂ij − bij�2 I��b̂ij� > δ�;

S3 =
q−1∑
i=1

∑
j

b2
ij I��b̂ij� ≤ δ�; S4 =

∞∑
i=q

∑
j

b2
ij:

Choose v > 0 so large that the support of φ and ψ is contained in �−v; v�.
For each 0 ≤ l ≤ m and i ≥ 1, put Kil = �jx j ∈ �pilm−1 − v;pilm−1 + v��.
Note particularly that each set Kil contains no more than 2v + 1 elements.
Unless j ∈Kil for some l, the wavelet coefficients bij are determined entirely
from integrals over regions where f is continuous, and likewise the empirical
wavelet coefficients b̂ij are constructed entirely from data within such regions.
Put K�i� =

⋃
l Kil and let K̃�i� denote the complement of K�i� in the set of all

integers. In this notation we may for sufficiently large n write Sj = S′j + S′′j
for j = 2;3, where

S′2 =
q−1∑
i=1

∑

j∈K̃�i�

�b̂ij − bij�2 I��b̂ij� > δ�;

S′3 =
q−1∑
i=1

∑

j∈K̃�i�

b2
ij I��b̂ij� ≤ δ�;

S5 =
q−1∑
i=1

∑
j∈K�i�

{
�b̂ij − bij�2 I��b̂ij� > δ� + b2

ij I��b̂ij� ≤ δ�
}
:

Therefore, by (3.1),

�3:2�
∫
�f̂− f�2 = S1 +S′2 +S′3 +S4 +S5:

Step 2. Approximation to E�S1�. Analogously to Kil, define Kl = �jx j ∈
�plm−1−v;plm−1+v��. Let K̃ denote the complement of

⋃
l Kl in the set of

all integers, and put

σ2
j ≡ n var�b̂j� =

∫
φ�y�2 f��y+ j�/p�dy− b2

j:

If j ∈ K̃ , then, by Taylor expansion of f��y+ j�/p� about f�j/p�,

bj = p−1/2
∫
φ�y�f��y+ j�/p�dy = p−1/2f�j/p� +O

(
p−3/2);

∫
φ�y�2 f��y+ j�/p�dy = f�j/p� +O

(
p−1);

where the “O�·�” terms are of the stated orders uniformly in j ∈ K̃ and f ∈ F .
More simply, �bj� = O�p−1/2� uniformly in −∞ < j <∞ and f ∈ F . Note, too,
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that σ2
j is nonzero only for O�p� values of j. Hence, (a), without assuming

(2.4),

�3:3a� nE�S1� =
∑
j

σ2
j = O�p�

uniformly in f ∈ F ; and (b) a slightly finer analysis gives p�1+O�ηm/p� +
o�1�� in place of O�p� so that assuming (2.4) gives

�3:3b� nE�S1� =
∑
j

σ2
j =

∑

j∈K̃
f�j/p� +O�m� = �1+ o�1��p;

again uniformly in f ∈ F .

Step 3. Approximation to E�S′3�. Observe that

�3:4�
bij = p−1/2

i

∫
ψ�y�f��y+ j�/pi�dy

= κp−�r+�1/2��i f�r��j/pi� + o
(
p
−�r+�1/2��
i

)

uniformly in j ∈ K̃�i� and f ∈ F . Furthermore,

�3:5� σ2
ij ≡ n var�b̂ij� =

∫
ψ�y�2 f��y+ j�/pi�dy− b2

ij;

and so n var�b̂ij� is bounded uniformly in j. It follows from these results and
the fact that n/�p2r+1 log n� → 0 that E�b̂2

ij� = o�n−1 log n� uniformly in pairs
�i; j� such that j ∈ K̃�i�. Hence, by Chebyshev’s inequality, P��b̂ij� ≤ δ� → 1
uniformly in such �i; j�. It follows that (a), without assuming (2.4),

�3:6a� E�S′3� =
q−1∑
i=1

∑

j∈K̃�i�

b2
ijP��b̂ij� ≤ δ� = O

(
p−2r);

and (b), assuming (2.4),

�3:6b� E�S′3� = �1+ o�1��
(
1− 2−2r)−1

κ2p−2r
∫ (
g�r�

)2
;

both uniformly in f ∈ F .

Step 4. Approximation to S4. When (2.4) holds,

�3:7� bij = p−1/2
i η9�pilm−1 − j� +O

(
ηp
−3/2
i + p−�r+�1/2��i

)

uniformly in �i; j� such that j ∈ Kil and 1 ≤ l ≤ m − 1, and in f ∈ F . The
analogous results for l = 0 and l = m have η replaced by f�0+� and f�1−�,
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respectively. Therefore,

∞∑
i=q

m∑
l=0

∑
j∈Kil

b2
ij

= η2
∞∑
i=q

m−1∑
l=1

∑
j∈Kil

p−1
i 9�pilm−1 − j�2

+
∞∑
i=q
p−1
i

{
9�−j�2f�0+�2 +9�pi − j�2f�1−�2

}

+O
{ ∞∑
i=q

m−1∑
l=1

∑
j∈Kil

(
η2p−2

i + ηp
−�r+1�
i + p−�2r+1�

i

)}
+ o

(
p−1
q

)

= s2�m− 1�η2p−1
q + p−1

q

{
f�0+�2s2

0 + f�1−�2s2
1

}

+O
{
m
(
η2p−2

q + ηp
−�r+1�
q + p−�2r+1�

q

)}
+ o

(
p−1
q

)
:

(3.8)

Next, we treat the terms bij not covered by these bounds. By (3.4), �bij� =
O�p−�r+�1/2��i � uniformly in �i; j� such that j ∈ K̃�i�, and uniformly in f ∈ F .
For each i, bij is nonzero only for O�pi� values of j, and so the contribution
made to S4 by the sum of b2

ij over j ∈ K̃�i� is of order p−2r
i uniformly in i and

f ∈ F . Furthermore, the sum of p−2r
i over i ≥ q is of order p−2r

q . This result
and (3.8) imply that

�3:9b�
S4 = s2�m+ 1�η2p−1

q + p−1
q

{
f�0+�2s2

0 + f�1−�2s2
1

}

+ o
(
mη2p−1

q + p−2r)

uniformly in f ∈ F .
Finally, we treat the case where (2.4) is not assumed. Write Nij for the

number of discontinuities of f in the interval ��j − v�/pi; �j + v�/pi�, where
j ∈K�i�. Then 1 ≤Nij ≤ const. max�1;m/pi�. Furthermore, using essentially
the argument at (3.7), �bij� = O�min�1;Nijη�p−1/2

i + p−�r+�1/2��i � for j ∈ Kil

and 1 ≤ l ≤m−1. Also, the number of elements of K�i� equals O�min�m;pi��.
Therefore,

S ≡
∞∑
i=q

∑
j∈K�i�

b2
ij

= O
[ ∞∑
i=q

∑
j∈K�i�

{
min

(
1;N2

ijη
2)p−1

i + p
−�2r+1�
i

}
+ p−1

q

]

= O
(
η2��m/pq�I�m ≤ pq� + �1+ log�m/pq��I�m > pq�� + p−1

q +T
)
;
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where

T ≡
∑

i≥qx pi≤m
pi min

{
1; �ηm/pi�2

}
p−1
i

= O
[ ∞∑
i=q

min
{
1; �ηm/pi�2

}
I�pi ≤m�

]
:

If ηm/pq ≤ 1, then T ≤ const.�ηm/pq�2; otherwise, we use the bound S ≤∫
f2. From these results and the fact that the sum of b2

ij over j ∈ K̃�i� and
i ≥ q is of order p−2r

q , we deduce that

�3:9a�
S4 = O

{
�η2m/pq�I�m ≤ pq� + �ηm/pq�2 I

(
pq < m ≤ η−1

1 pq
)

+ I
(
m > η−1

1 pq
)
+ p−1

q

}
:

In the next three steps we develop approximations to E�S′2� and E�S5�.
Our technique is to work first under the fictitious assumption, which we de-
note by (N), that b̂ij is exactly normally distributed with the same mean and
variance as b̂ij. Then we develop bounds to the error committed by making
this assumption.

Step 5. Approximation to E�S′2�. Let Z denote a random variable with
the standard normal distribution, and write t = C1�2 log n�1/2 and u =
C2�2 log n�1/2, where C1, C2 ≥ 0. Put en�C1;C2� ≡ E�Z2 I��Z + t� > u��.
Integration by parts shows that

en�C1;C2� = π−1/2 �log n�1/2n−C2
2n−C

2
1

×
[
�C2 +C1�n−2C1C2 + �C2 −C1�n2C1C2

](
1+O�log n�−1)

uniformly over all C2 − C1 ≥ ε for an arbitrary ε > 0. Letting C1 tend to 0,
we see that, for a fixed but arbitrary sequence % = %�n� → 0,

�3:10� en�C1;C2� = π−1/2C2 n
−C2

2 �log n�1/2 �2+ o�1��
uniformly in values ofC1 = C1�n� andC2 = C2�n� satisfying �C1� ≤ %�n�/ log n
andC2 = o�1/%�n��. We will choose %�n� = �n/�p2r+1 log n��1/2; by assumption,
this tends to 0.

Under assumption (N) we may write eij ≡ E��b̂ij−bij�2 I��b̂ij� > δ�� as eij =
n−1σ2

ij en�C1ij;C2ij�, where σ2
ij is given by (3.5), C1ij = �n/2 log n�1/2 �bij�/σij

and C2ij = C/σij. Since f is bounded away from 0 and ∞, and �bij� → 0
uniformly in pairs �i; j� such that j ∈ K̃�i�, then σij is bounded away from 0
and ∞ uniformly in such i and j for all sufficiently large n. From this result
and (3.4), noting too that n/�p2r+1 log n� → 0, we may deduce that

�3:11� C1ij = O
[{
n/
(
p2r+1
i log n

)}1/2] = o�1�

uniformly in i ≥ 1 and j ∈ K̃�i�. Similarly, if

i0 ≡ 2�1+ ε���2r+ 1� log 2�−1 log log n
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and

T = T �ε� = ��i; j�x i ≥ i0; j ∈ K̃�i��

for ε > 0, then

sup
�i;j�∈T

C1ij = O
[

sup
�i;j�∈T

{
np−�2r+1��log n�−12−�2r+1�i}1/2

]

= o
{
�log n�−�1+ε�

}
:

Hence, by (3.10) and (3.11),

�3:12� E�S′2� =
q−1∑
i=1

∑

j∈K̃�i�

eij = �2+ o�1��T1 +T2;

where, for a sequence ξ = ξ�n� ↓ 0,

�3:13�

T1 ≡ π−1/2n−1�log n�1/2
q−1∑
i=i0

∑

j∈K̃�i�

σ2
ijC2ijn

−C2
2ij;

T2 = O
[
n−1�log n�1/2

i0−1∑
i=1

∑

j∈K̃�i�

exp
{
ξ �log n�/2�2r+1�i}n−C2

2ij

]
;

and the “o�1�” and “O�·�” terms in (3.12) and (3.13) are of the indicated orders
uniformly in f ∈ F .

Define

T3 ≡
q−1∑
i=1

∑

j∈K̃�i�

σ2
ijC2ijn

−C2
2ij; T4 ≡ n−1 �log n�1/2pq

∫
n−C

2/f

and T5 ≡ π−1/2n−1�log n�1/2T3. Noting that the sum over 1 ≤ i < i0 includes
only O�log log n� terms, while that over i ≥ i0 includes at least a constant
multiple of log n terms, we may show that T1 = T5 + o�T4� and T2 = o�T4�.
(A detailed proof of these results is arguably simpler if one notes that, without
essential loss of generality, it may be assumed thatm/p→ l, where 0 ≤ l ≤ ∞,
and treats separately the cases l = 0, 0 < l <∞ and l = ∞.) The remainders
in both these relations are of the stated orders uniformly in f ∈ F . Therefore,
by (3.12),

�3:14� E�S′2� = T5 + o�T4�

uniformly in f ∈ F .
Observe next that σ2

ij = f�j/pi� + O�p−1
i � uniformly in i ≥ 1, j ∈ K̃�i�

and f ∈ F . Therefore, C2ij = Cf�j/pi�−1/2 +O�p−1
i � uniformly in such i, j
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and f. Hence, since p−1
i ≤ p−1 = O�n−ε� for some ε > 0, then T3 = T6 +

o�n �log n�−1/2T4�, where

T6 ≡
q−1∑
i=1

∑

j∈K̃�i�

Cf�j/pi�1/2 n−C
2/f�j/pi�:

It follows from these results, (3.14) and the argument that we shall give below
in our more detailed treatment of the case where (2.4) holds, that, without
needing to assume (2.4),

�3:15a�
E�S′2� = O

{
n−1 �log n�1/2

q−1∑
i=1

∑
j

n−C
2/f�j/pi�

}

= O�T4�:
To conclude, we treat the case where (2.4) holds. Recall the definition Il ≡

��l−1�/m; l/m�, let Jil denote the set of indices j ∈ K̃�i� such that j/pi ∈ Il,
and put

T1il ≡
∑
j∈Jil

Cf�j/pi�1/2 n−C
2/f�j/pi�:

In this notation T6 =
∑
i≤q

∑
l≤m T1il. Noting that Jil is a sequence of consec-

utive integers contained within the interval �pi�l−1�m−1−v;pilm−1+v� and
containing all integers in the interval �pi�l− 1�m−1+ v;pilm−1− v� and that
supip

−1
i = O�n−ε� for some ε > 0, we may deduce that T1il/T2il = 1 + o�1�

uniformly in 1 ≤ i ≤ q− 1 and 1 ≤ l ≤m, where

T2il ≡ pi
∫

Il

Cf�x�1/2 n−C2/f�x� dx:

Now,
∑

1≤i≤q−1pi ∼ pq as p;q→∞, and so

T3 ∼
q−1∑
i=1

m∑
l=1

T1i ∼
q−1∑
i=1

m∑
l=1

T2i

∼ pq
∫ 1

0
Cf�x�−1/2 n−C

2/f�x� dx:

Therefore, by (3.14),

�3:15b� E�S′2� = �1+ o�1��π−1/2n−1 �log n�1/2pq
∫
Cf1/2 n−C

2/f:

Step 6. Approximating E�S5� under assumption (N). Again, let t =
C1�2 log n�1/2 and u = C2�2 log n�1/2, where C1, C2 > 0, let C1ij and C2ij
be as in Step 5, let Z denote a standard normal variable, and define
dij ≡ dn�C1ij;C2ij� and

dn�C1;C2� ≡ E�Z2I��Z+ t� > u�� + 2C2
1 log nP��Z+ t� ≤ u�:
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In this notation and assuming condition (N),

E
{
�b̂ij − bij�2 I��b̂ij� > δ� + b2

ij I��b̂ij� ≤ δ�
}
= n−1σ2

ijdij:

Hence, assuming condition (N),

nE�S5� =
q−1∑
i=1

∑
j∈K�i�

σ2
ijdij

= O
{q−1∑
i=1

∑
j∈K�i�

(
E
[
Z2I

{
Z > �C2ij −C1ij� �2 log n�1/2

}]

+C2
1ij �log n�P

{
Z > �C1ij −C2ij� �2 log n�1/2

})}
:

(3.16)

Now, C1ij ≤ c1��ρ2−i�1/2 + �ρ1p
−�2r+1�
i �1/2� and C2ij ≥ c2, where c1, c2 > 0 and

ρ1 = n/ log n. From this result, noting that the number of elements of K�i�
equals O�min�m;pi�� uniformly in i and that q = O�log n�, we may prove
that

�3:17a� nE�S5� = O�mmin�1; ρ� log n+ nmin�m/p;1�p−2r�:
To derive a lower bound, we assume both (2.2) and (2.4). Define

Cij =
∫
ψ�y�2 f��y+j�/pi�dy; Dij ≡

∣∣9
(
pilm

−1−j
)∣∣; C0ij ≡ Dij/Cij:

In this notation, for constants A1, A2; : : : not depending on n and satisfying
0 < A3 ≤ A2 <∞ and 0 < A6 ≤ A5 <∞, we see from (3.16) that

�3:17b�

nE�S5� + o�np−2r�

≥ A1

q−1∑
i=1

m∑
l=0

∑
j∈Kil

{
I�ρ2−iC0ij > A2�

+ ρ2−iC2
0ij �log n�I�ρ2−iC0ij ≤ A3�

}

≥ A4m
q−1∑
i=1

{
I�ρ2−i > A5� + ρ2−i �log n�I�ρ2−i ≤ A6�

}

≥ A7mmin�1; ρ� log n:

The theorem, assuming condition (N), follows from (3.2), (3.3), (3.6), (3.9),
(3.15) and (3.17). [Except in the case of (3.17) we employ version (a) of these
respective results when establishing (2.6), and version (b) for (2.8). When using
(3.17), both versions are needed to derive the last term in (2.8).]

Step 7. Completion. It remains to show that the error committed by mak-
ing assumption (N) is of no larger order than the remainder terms in (2.6)
and (2.8). To this end, let Xkij, k ≥ 1, denote independent random variables,
independent also of the data X1; : : : ;Xn, whose distribution equals that of
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X1 conditional on X1 ∈ Iij ≡ ��j − v�/pi; �j + v�/pi�, and let Mij equal the
number of data values Xt, 1 ≤ t ≤ n, that lie in Iij. Write Z for a stan-
dard normal random variable, and define Zij ≡ �b̂ij − bij�/�var b̂ij�1/2. Using
Bernstein’s inequality and classical methods for estimating large deviations
[see, e.g., Petrov (1975), Chapter 8], it may be proved that there exist positive
constants Dn, diverging to ∞, such that

�3:18�
∣∣∣∣1−

P�Zij > z�
P�Z > z�

∣∣∣∣+
∣∣∣∣1−

P�Zij ≤ −z�
P�Z > z�

∣∣∣∣ = o�1�

uniformly in 0 ≤ z ≤ Dn log n, and integers i, j such that 1 ≤ i ≤ q and
Iij ⊆ I = �0;1�. For each i there are no more than two values of j such
that Iij∩I is nonempty. This result may be employed to show that the error
arising from assumption (N) is negligibly small. 2
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