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A PLUG-IN APPROACH TO SUPPORT ESTIMATION

By Antonio Cuevas1 and Ricardo Fraiman2

Universidad Autónoma de Madrid and
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We suggest a new approach, based on the use of density estimators, for
the problem of estimating the (compact) support of a multivariate density.
This subject (motivated in terms of pattern analysis by Grenander) has
interesting connections with detection and clustering.

A natural class of density-based estimators is defined. Universal consis-
tency results and convergence rates are established for these estimators,
with respect to the usual measure-based metric dµ between sets. Further
convergence rates (with respect to both dµ and the Hausdorff metric dH)
are also obtained under some, fairly intuitive, shape restrictions.

1. Introduction.

1.1. The problem: background and motivation. This paper is concerned
with a problem of nonparametric set estimation: let f be a (Lebesgue) proba-
bility density on <d. Define, as usual, the support S of f as the minimal closed
set having f-probability 1. Assume that S is compact. We want to estimate S
from a random sample X1; : : : ;Xn of f. Some references are Geffroy (1964),
Chevalier (1976), Devroye and Wise (1980), Grenander (1981), Cuevas (1990),
Korostelev and Tsybakov (1993), Mammen and Tsybakov (1995), Korostelev,
Simar and Tsybakov (1995), Härdle, Park and Tsybakov (1995), Polonik (1995)
and Tsybakov (1997).

A very simple and intuitive estimator is defined by

Ŝn =
n⋃
i=1

B�Xi; εn�;(1)

where B�x; a� denotes the closed ball centered at x with radius a and εn is a
sequence of smoothing parameters.

Some suitable criterion of proximity between sets is required in order to
analyze the performance of the estimates. A standard choice is the measure-
based distance defined by

dµ�T;S� = µ�T1S�;(2)
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where 1 denotes the symmetric difference, µ is a measure on <d (very often
µ = µL, the Lebesgue measure) andPX is the common underlying distribution
of the observations Xi (we identify T and S if they differ by a null set).

Devroye and Wise (1980) have proved dµ-consistency results for the naı̈ve
estimator (1) under some conditions on the sequence �εn� which are analogous
to those imposed on the bandwidth parameters in kernel density estimation
[see, e.g., Devroye and Györfi (1985)]. These results are universal: they hold
for any S and any probability µ such that µ� PX (on S).

However, some assumptions on both the density f and the shape of the
support S are usually needed to get dµ-convergence rates or optimality re-
sults [see Korostelev and Tsybakov (1993), Chapter 7, and Härdle, Park and
Tsybakov (1995)].

Another natural criterion of proximity between sets is given by the Haus-
dorff metric,

dH�T;S� = inf
{
ε > 0x T ⊂ Sε and S ⊂ Tε

}
;(3)

where Sε denotes the union of all open balls with radius ε around points of
S. This distance corresponds to an intuitive notion of “physical proximity”
between sets. It has been used in different settings, including fractal theory
and random sets. Some results on dH-based support estimation can be found
in Cuevas (1990), Korostelev and Tsybakov (1993) and Korostelev, Simar and
Tsybakov (1995).

As for the practical applications of support estimation let us mention clus-
ter analysis [Hartigan (1975)] and detection of abnormal behavior in a sys-
tem [Devroye and Wise (1980)]. A more detailed account, including references
to other related problems, can be seen in Korostelev and Tsybakov [(1993),
pages 182–183].

1.2. Connections with density estimation: our proposal. An explicit connec-
tion between the support problem and the theory of density estimation was
suggested to us by Dobrow (1992) [for related ideas see also Sager (1979)],
who, basically, proposed a plug-in idea to address the estimation of the sup-
port as a by-product of the usual nonparametric kernel estimation. In a way,
the situation would be similar to that arising in the estimation of some func-
tions or quantities of interest (f′,

∫
f2, mode of f; : : :) which are estimated by

replacing the unknown density by an estimator fn in the corresponding func-
tional [for a related approach in the nonparametric regression setting see, e.g.,
Boularan, Ferré and Vieu (1995)].

Dobrow’s proposal was to estimate S by S̃n = �f̂n > 0�, where f̂n is a kernel
density estimator,

f̂n�x� =
1
nhd

n∑
i=1

K

(
x−Xi

h

)
≡ 1
n

n∑
i=1

Kh�x−Xi�;(4)

where h = hn is the sequence of smoothing parameters (bandwidths), K is
the kernel function and Kh�t� = �1/hd�K�t/h�.
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An estimator of type S̃n is a very simple and natural choice but it presents
two appreciable limitations. First, we are restricted to using compact-
supported K in order to avoid the useless estimator S̃n = <d. Second, if
S�K� = �K > 0� is bounded, the estimator S̃n = �f̂n > 0� is again a finite
union of type (1), where the balls B�Xi; h� are replaced by Xi + hS�K�.

We consider here a modified version of the above idea which overcomes
these problems by introducing a new tuning parameter, in addition to the
smoothing parameter of f̂n. To be concrete, our proposal is to estimate S by

Sn = �fn > αn�;(5)

where fn is a nonparametric density estimator (usually, but not necessarily,
of kernel type: in this case we will use the notation f̂n instead of fn) and αn is
a sequence converging to zero. A related idea was also suggested by Dobrow
(1992) under convexity restrictions on S. We assume throughout that fn is a
bona fide estimator (i.e., fn ≥ 0,

∫
fn = 1). As we will show below, asymptotic

results (with respect to both dµ and dH) for the estimator (5) can be obtained
under very general conditions. The additional parameter αn provides more
flexibility in the shape of Sn which typically will have [unlike the estimator
(1)] a differentiable boundary. Hence, (5) can be considered as a smoothed
version of (1) in the same spirit as the kernel density estimator compares
with the simpler (but rougher) histogram.

This paper is organized as follows. Consistency and convergence rates for
Sn with respect to dµ are given in Section 2. Section 3 is devoted to analyzing
the convergence rates with respect to the Hausdorff metric dH. Some final
remarks are given in Section 4.

2. Consistency and dm-convergence rates. Throughout this section we
consider the distance dµ defined in (2) by taking µ = µL, the Lebesgue mea-
sure on <d. Unless otherwise stated, the arrow −→ denotes convergence as n
tends to infinity.

2.1. Universal results. We first prove a theorem which provides three re-
sults on strong consistency and convergence rates (in probability) for the esti-
mator (5) where fn is a general density estimate. These results are universal
in the sense that they impose no restriction on the support S, except a very
mild one [in part (a)] which only excludes pathological cases. As for the den-
sity f, we will impose [in parts (b) and (c)] two conditions related to the way
in which f “decreases to the ground.”

To be concrete, we will use the following assumptions:

(S1) The Lebesgue measure µL�E0� = 0, where E0 = �x ∈ Sx f�x� = 0�.
This condition excludes only those pathological cases where the set �f > 0�

is far away from the support S; for instance, letA ⊂ �0;1� be an open set dense
in �0;1� such that 0 < µL�A� < 1 (A could be, e.g., the complement in �0;1� of
a Cantor-type set of positive measure). Let f be the uniform density constant
on A and null on Ac. The support of f is �0;1� and µL�E0� = 1− µL�A� > 0.
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(R1) α−1
n

∫
�fn − f� −→ 0, a.s. (resp., in probability).

(R2) ρn
∫
�fn − f� −→ 0 in probability, where ρn is a sequence such that

ρn→∞ and ρnαnan→ 0, where an x= µL��f ≤ 2αn� ∩S�.
We will also need the following definition, which has to do with the sharp-

ness in the decrease of f to zero: sharper cases correspond to faster decreases.
Related concepts can be found in Härdle, Park and Tsybakov (1995) and Hall
(1982).

Definition 1. Let f be a density on <d with compact support S; define
f∗�t� = µL��f < t� ∩ S�. We will say that γ > 0 is the sharpness order of f if
f∗�t� has the same order (when t→ 0+) as tγ, that is,

0 < lim inf
t→0+

f∗�t�
tγ
≤ lim sup

t→0+

f∗�t�
tγ
= c

for some finite constant c.
We will denote by Sγ�S� the space of densities with support S and sharp-

ness order γ. Finally, denote

S∞�S� = �fx f∗�t� = o�tγ� when t→ 0+; for all γ > 0�:

Let us observe that some densities do not belong to any space Sγ; this
is the case of f�x� = c1 exp�−1/x�, x ∈ �0;1�. However, a density of type
f�x� = c2 x

1/p, x ∈ �0;1�, p > 0, satisfies f ∈ Sp��0;1��. If f is bounded away
from zero on S, then f ∈ S∞�S�.

Theorem 1. Let f be a density on <d with a compact support S. Given a
sequence �fn�n≥1 of density estimators, define an associated sequence of support
estimators Sn = �fn > αn�, where αn ↓ 0.

(a) If (S1) and (R1) hold, then dµ�Sn; S� −→ 0, a.s. (resp., in probability).
(b) If (R2) holds then βndµ�Sn; S� −→ 0, in probability, where

βn =
1

an + �ρnαn�−1
:(6)

(c) Let us suppose that f ∈ Sγ�S�. Assume that (R2) holds with ρn = nρ (ρ >
0) and take αn = n−α, where 0 < α < ρ and ρ−α < αγ. Then nρ−αdµ�Sn; S� −→
0, in probability. If f ∈ S∞�S�, the estimation of S can be performed at any
convergence rate of type nβ with β < ρ.

Proof. Define An = �xx �fn�x� − f�x�� ≥ αn�. By considering a suitable
partition of Sn 1S and taking into account µL�Sn ∩Sc ∩Ac

n� = 0 and Scn ∩S∩
Ac
n ⊂ �f ≤ 2αn� ∩S, we get

dµ�Sn; S� ≤ µL�An� + µL�Scn ∩S ∩Ac
n� ≤ µL�An� + an:
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From (S1) an ↓ 0, since �f ≤ 2αn� ∩ S ↓ E0. We also have µL�An� → 0, a.s.:
this follows directly from (R1) since

α−1
n

∫
�fn − f� ≥ µL�An� + α−1

n

∫
Ac
n

�fn − f�:

This concludes the proof of part (a). To prove (b) take βn as given in (6). Then,
for any δ > 0 and n large enough,

P
{
βndµ�Sn; S� > δ

}
≤ P

{
µL�An� + an >

δ

βn

}

≤ P
{

1
αn�δ/βn − an�

∫
�fn − f� > 1

}
;

where we have used that δ/βn− an is eventually positive (which follows from
the assumption ρnanαn → 0). Now, from (R2) we conclude the convergence to
zero of the right-hand side of the last inequality.

Finally, (c) follows directly from expression (6): since αn = n−α, the assump-
tion f ∈ Sγ�S� implies that the sequence an is of (exact) order n−αγ and,
therefore, βn is of exact order nρ−α. 2

Remarks. (a) In the case where �fn� is a sequence of d-variate kernel
estimators, assumption (R1) would be typically fulfilled (in probability) by a
sequence �αn� of type α−1

n = o�n2/�d+4�� [see Holmströn and Klemelä (1992)].
(b) According to (6), we need ρnαn→∞ in order to ensure βn→∞. So αn

must go to zero slowly enough, depending on the convergence rate ρn of the
density estimator.

(c) The sequence an in (R2) depends directly on the way in which f “de-
creases to the ground.” In the sharp cases where f is bounded away from zero
we have an = 0 eventually. This is the most favorable situation. In general,
the slower the decreasing to zero of an, the worse the convergence rate βn one
can get in (6). This is fairly intuitive, since a slow decrease of an is associated
with the existence of wide “empty” areas of low probability (where f is very
small) which will be underrepresented in the sample.

The purpose of Theorem 1(c) is to quantify these ideas in terms of the value
of three real parameters ρ, α and γ associated, respectively, with the conver-
gence rate of fn, the tuning parameter αn and the sharpness in the decay to
zero of f. The inequality ρ−α < αγ can be seen as the “support version” of the
typical trade-off arising in all problems of nonparametric smoothing: whereas
the expression of the convergence rate βn = nρ−α suggests that α should be
chosen as small as possible, the bound αγ goes in the opposite sense. Observe
that this bound is not operative when the association between f and S is
sharp (γ = ∞). In this case we can estimate the support with a convergence
rate arbitrarily close to nρ by taking α small enough.

2.2. Convergence rates under shape restrictions. We will establish here a
result about rates for dµ-convergence in mean for the support estimator (5).
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It holds in the case where the auxiliary density estimate fn is of kernel type,
under some shape restrictions on the support S.

In particular, we will need the following notion of standardness, which has
been considered by Cuevas (1990) in the support estimation setting. The in-
tuitive idea is to exclude some pathological sets (for instance, those having
infinitely many sharper and sharper peaks). This notion is related to the cone
condition and the GN classes introduced in Korostelev and Tsybakov [(1993),
page 137].

Definition 2. A bounded set S ⊂ <d is said to be standard if for every
λ > 0 there exists δ ∈ �0;1� such that

µL�B�x; ε� ∩S� ≥ δµL�B�x; ε�� ∀ x ∈ S; 0 < ε ≤ λ:

Another geometrical condition which will appear in a natural way has to
do with the volume increase from S to Sh, as measured by the blowing-up
function 1�Syh� x= µL�Sh�−µL�S�. Clearly, this function provides some infor-
mation about the complexity of S: the simpler the structure of S, the smaller
1�S;h�. A typical behavior is 1�Syh� = O�h�; this is the case when S is a
finite union of convex sets: this follows from the isoperimetric inequality [see,
e.g., Bhattacharya and Ranga Rao (1976), Theorem 3.1, page 24].

The following condition on the kernel K also will be used.

(K1) c1IB�0; r1��t� ≤ K�t� ≤ c2IB�0; r2��t�, for some constants c1, c2 > 0 and
0 < r1 < r2, where IA denotes the indicator function of the set A.

Finally, for every ε > 0 let us denote by R�Sy ε� the minimum number of
balls, centered at points of S with radius ε, required to cover S. We have the
following result:

Theorem 2. Let Sn = �f̂n > αn�, where f̂n is a kernel density estimator
whose kernel K fulfils (K1).

Assume that the density f is bounded away from zero on its support S which
is supposed to be standard. Then

Edµ�Sn; S� ≤ c3h
d
nR�Sy r1hn/2� exp�−c4nh

d
n� + 1�Sy r2hn�;(7)

for n large enough, where c3 and c4 are positive constants. As a direct con-
sequence, if we assume in addition 1�Syhn� = O�hn� as hn tends to zero, we
have

Edµ�Sn; S� = O
(
exp�−c4nh

d
n� + hn

)
:(8)

Hence, by taking a suitable sequence hn, one can obtain any rate of type
Edµ�Sn; S� = O�n−s� with 0 < s < 1/d.

Proof. We have

µL�Sn1S� = µL�f̂n > αn; f = 0� + µL�f > 0; f̂n ≤ αn�:(9)
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From assumption (K1), x ∈ �Sr2h�c implies f̂n�x� = 0 (a.s.). Therefore the first
term in the right-hand side of (9) is easily bounded,

µL�f̂n > αn; f = 0� ≤ µL�Sr2hn� − µL�S� = 1�Sy r2hn� a.s.(10)

To handle the second term of (9) let us consider a minimal covering of S
with balls B�Zj; r1hn/2�, Zj ∈ S, j = 1; : : : ;R�Sy r1hn/2�. Write Bj x=
B�Zj; r1hn/2� and R x= R�Sy r1hn/2�. Then

µL�S ∩Scn� ≤ µL
{( R⋃

j=1

Bj

)
∩Scn

}
≤

R∑
j=1

µL�Bj ∩Scn�:(11)

Let

An;j =
{

1
nhdn

n∑
i=1

IBj�Xi� >
αn
c1

}
:

Observe that if ω ∈ An;j, then Bj ∩Scn�ω� = \; to see this take t ∈ Bj. Then

1
nhdn

n∑
i=1

K

(
t−Xi

hn

)
≥ 1
nhdn

n∑
i=1

c1IB�t; r1hn��Xi�

= c1

nhdn
#
{
ix Xi ∈ B�t; r1hn�

}

≥ c1

nhdn
#
{
ix Xi ∈ Bj

}
> αn:

(12)

Hence, denoting λ1 = µL�B�0;1��, we have

E

( R∑
j=1

µL�Bj ∩Scn�
)
≤ E

( R∑
j=1

IAc
n; j
λ1

(
r1hn

2

)d)

=
R∑
j=1

hdnλ1

(
r1

2

)d
P�Ac

n; j�:
(13)

We next find an upper bound for P�Ac
n; j�. If δ is the standardness constant of

S (for a given λ ≥ supn r1hn/2; see Definition 2) and f > a > 0 on S, we have

pj;n x= pj = E
(
IBj�Xi�

)
= P

(
Xi ∈ Bj

)
> aδ

(
r1hn

2

)d
λ1 x= a1h

d
n;(14)

which entails pj/2 − αnhdn/c1 > a1h
d
n/2 − αnhdn/c1; thus, since αn → 0 and

a1 > 0, there exists n0 such that pj/2− αnhdn/c1 > 0, for all n ≥ n0 and

P�Ac
n; j� = P

{ n∑
i=1

�pj − IBj�Xi�� ≥ npj −
nhdnαn
c1

}

≤ P
{ n∑
i=1

�pj − IBj�Xi�� ≥
npj

2

}
for n large enough:
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Now, using Bernstein’s inequality [see, e.g. Shorack and Wellner (1986),
page 855], we get

P�Ac
n; j� ≤ 2 exp

(
−3npj

28

)
:(15)

Then, since pj > a1h
d, from (15) and (10), denoting c3 = 2λ1r

d
1 2−d, c4 =

3a1/28, we get (7) and (8). 2

Inequality (7) has a direct intuitive interpretation: the simpler the set S,
the faster it can be estimated. The covering function R (which, of course,
is essentially the classical entropy) and the blowing-up function 1 are the
relevant features in order to quantify the complexity of S.

A related result, with a different approach, has been established by Ko-
rostelev and Tsybakov [(1993), Theorem 7.2.2, page 184]: these authors ob-
tain a result of type supS∈G Edµ�Ŝn; S� = O��log n/n�1/d� for the classical
estimator Ŝn, defined in (1), in the uniform case (f ≡ c), where G is a class
of domains having piecewise Lipschitz boundaries with the number of pieces
and the Lipschitz constants uniformly bounded.

3. Convergence rates with respect to dH. In this section we obtain
results of type

βndH�Sn; S� −→ 0 a.s.;(16)

where βn ↑ ∞. The auxiliary density estimator is assumed to be of kernel type
throughout.

Again the results here are very general: only mild assumptions (concerning
boundedness and standardness) will be imposed on f and S.

We will also use the following assumptions on the kernel K and the band-
widths hn of the kernel estimator f̂n:

(K2) The kernel K is a bounded density, uniformly Lipschitz on <d, such
that �t�dK�t� is bounded and there exist positive constants c1, r1 satisfying

c1IB�0; r1��u� ≤K�u�;(17)

where IA stands for the indicator function of the set A.
(K3) K�u� is a decreasing function of �u� such that �u�d+1K�u� → 0 as

�u� → ∞.
(H1) hn −→ 0 and nhdn/ logn −→∞, as n→∞.

We will also use the assumption that K is compact-supported, which must
be understood in the “functional” sense that K is zero outside a compact set.

Theorem 3. Let us assume that the support S is a compact standard set
and that f is bounded and there exists a > 0 such that f > a on S.

(a) If (K2), (K3) and (H1) hold, then

βndH�Sn; S� −→ 0 a.s.,(18)

for every sequence βn ↑ ∞ such that βnhn→ 0 and �βd+1
n hn/αn� is bounded.
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This conclusion also holds if (K3) is replaced by the assumption that K is
compact-supported. In this case the boundedness of the sequence �βd+1

n hn/αn�
is no longer required and one can achieve any rate βn of type o��n/ log n�1/d�
by taking a suitable sequence hn.

(b) This result cannot be improved by using the classical estimator (1). More
generally, if we consider the estimator Sn with αn = 0 and a compact-supported
K, then any sequence βn such that �n/ log n�1/d = O�βn� does not satisfy (16),
not even in probability.

Proof. (a) Assume (K2), (K3) and (H1). Let us first prove that

there exists a0 such that inf
x∈S

f̂n�x� > a0 eventually, a.s.(19)

By using the standardness of S, the fact that f is bounded away from zero on
S and inequality (17), we have, for all x ∈ S and hn < r1,

E
(
f̂n�x�

)
=
∫
Kh�x− t�f�t�dt ≥ a

∫
S
Kh�x− t�dt

≥ c1a
∫
S

1
hdn
IB�0; r1�

(
x− t
hn

)
dt ≥ c1a

hdn
δµL�B�x; r1hn��

= c1a

hdn
δµL�B�0;1��rd1hdn x= 2a0 > 0:

The proof of (19) will be complete if

sup
x
�f̂n�x� −E�f̂n�x��� −→ 0 a.s., as n→∞;

holds. A proof of this result [under hypothesis (H1) and the boundedness and
Lipschitz conditions established in (K2)] can be found, for example, in Prakasa
Rao [(1983), pages 185–187].

Now, in order to prove (18), let us take ε > 0; we will show that Sn ⊂ Sε/βn
a.s. eventually. To see this note that, for all x 6= 0;

1
hdn
K

(
x

�x�
ε

βnhn

)
= β

d+1
n hn
εd+1

K

(
x

�x�
ε

βnhn

)(
ε

βnhn

)d+1

:

Since βnhn→ 0, (K3) and the boundedness of �βd+1
n hn/αn� imply

∀ ε > 0 ∃ n1x Kh

(
x

�x�
ε

βn

)
< αn ∀ n > n1; ∀ x 6= 0:(20)

Note also that, if K is compact-supported, (20) follows without assuming
the boundedness of �βd+1

n hn/αn�.
If x ∈ Sn for n > n1, then (20) and the assumption thatK�x� is a decreasing

function of �x� imply that there exists Xj (∈ S a.s.) such that

Kh�x−Xj� > αn and �x−Xj� <
ε

βn
;

which implies Sn ⊂ Sε/βn a.s. for n > n1.
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On the other hand, since αn ↓ 0, (19) implies that S ⊂ Sn, and, of course,
S ⊂ Sε/βnn eventually, a.s.

We have thus obtained

S ⊂ Sε/βnn and Sn ⊂ Sε/βn eventually, a.s., for any ε > 0;

which is equivalent to (18).
Note that any rate βn of type o�n/ log n�1/d can be achieved by using any

hn with hn = o�β−1
n � and �log n/n�1/d = o�hn�; for instance, we could take

hn = β−1
n / log�β−1

n �n/ log n�1/d�.
(b) It suffices to consider the case where f is uniform on �0;1�d and the

set �K > 0� is �−1/2;1/2�d. Let us first prove that the condition βnhn → 0
is necessary as well; that is, if βnhn 6→ 0, then βn cannot be a convergence
rate in probability. Suppose that there is some subsequence (denoted also by
βnhn) and some b0 > 0 such that βnhn > b0 eventually. Take 0 < b < b0/2 and
define yn = �b/βn� + 1 and γn = hn/2− b/βn (thus γn > 0 eventually). Denote
1 = �1; : : : ;1�t ∈ <d and Yn = yn1.

We have, for n large enough,

P
{
βndH�S;Sn� > b/2

}
≥ P

{
f̂n�Yn� > 0

}

= 1−P
{ n⋂
i=1

{
I�Yn−1hn/2;Yn+1hn/2��Xi� = 0

}}

= 1−
(
1− γdn

)n

≥ 1− exp
(
−nγdn

)

= 1− exp
(
−nhdn��βnhn − 2b�/2βnhn�d

)

≥ 1− exp
(
−nhdn�1/2− b/b0�d

)
:

(21)

Then, if nhdn 6→ 0 on the same subsequence for which βnhn > b0, we conclude
from (21) that P�βndH�S;Sn� > b/2� 6→ 0, and so βn cannot be a conver-
gence rate. There remains only the case where nhdn → 0 and βnhn > b0;
then hn = o�n−1/d�, βn > b0n

1/d (for large n), and it suffices to show that
P�n1/ddH�S;Sn� ≥ 1� 6→ 0, which follows from

P�n1/ddH�S;Sn� ≥ 1� ≥ P
{
f̂n�x� = 0; for all x ∈ �0;1/n1/d�d

}

≥ P
( n⋂
i=1

�Xi /∈ �0;2/n1/d�d�
)

=
(
1− 2d/n

)n→ exp�−2d�:

We have thus proved that if βn satisfies (16), then we must have βnhn → 0.
Thus, to prove part (b) of the theorem take βn satisfying �n/ log n�1/d = O�βn�
and hn = o��log n/n�1/d�. Then �n/ log n�1/d ≤ cβn for some constant c > 0.
We may assume c = 1 since β∗n = cβn is a convergence rate if and only if βn
also is one.
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Now the result will follow as a consequence of a theorem [due to Janson
(1987)] on the asymptotic distribution of the maximal uniform spacing in the
multivariate case. This theorem is a multivariate extension of the classical
Lévy results on univariate spacings [see, e.g., Shorack and Wellner (1986),
Chapter 21]. In precise terms, let X1; : : : ;Xn be a uniform sample on S =
�0;1�d. Define

1n = sup
{
rx ∃ x; with x+ rA ⊂ S \ �X1; : : :Xn�

}
;

where A = �−1/2;1/2�d. Deheuvels (1983) defined the maximal spacing by
Vn = 1dn, which is the volume of the largest cubical gap (parallel to the unit
cube). Janson (1987) proved the weak convergence

nVn − log n− �d− 1� log log n→w U;

where U has the extreme value distribution P�U ≤ u� = exp �−e−u�.
Coming back to our proof, we have, for n large enough,

P

{
βndH�S;Sn� ≥

1
4

}

≥ P
{(

n

log n

)1/d

dH�S;Sn� ≥
1
4

}

≥ P
{
f̂n�x� = 0 on some cube of side length

1
2

(
log n
n

)1/d

in �0;1�d
}

≥ 1−P
{
1dn ≤

log n
n

}

= 1−P
{
nVn − log n− �d− 1� log log n ≤ −�d− 1� log log n

}

≥ 1−P
{
nVn − log n− �d− 1� log log n ≤ 0

}
→ 1− exp�−1�;

which proves that βn is not a convergence rate. 2

Comments. (a) It is worth noting that, under the conditions of Theo-
rem 3(a), the estimator Sn is “shape-preserving” in the sense that if S is a
connected set, then Sn is also connected (eventually, a.s.). This follows easily
from the fact that S ⊂ Sn eventually a.s.

(b) A sharp result on optimal (in the minimax sense) dH-rates for conver-
gence in mean has been given by Korostelev, Simar and Tsybakov (1995). They
provide not only the optimal estimator but also the exact asymptotic bound for
the minimax risk. Further convergence rates (in mean) and optimality results
can be found in Korostelev and Tsybakov [(1993), Chapter 7].

4. Final remarks.

4.1. On the tuning parameter αn. Theorem 1 provides some guide about
the appropriate asymptotic order for αn. Also, Theorems 2 and 3 show that, in
many cases of practical interest, this parameter is asymptotically irrelevant.
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As for the choice of αn for a given sample, let us note that this parameter is
more tractable than the bandwidth hn in (4), in the sense that every choice of
αn is directly interpretable in population terms: Sn = �fn > α� can be seen
as an estimator of the α-support �f > α� which plays an important role in
cluster theory [see, e.g., Hartigan (1975)]. A reasonable approach would be to
determine αn, for a given sample, in an indirect way by specifying the “outside
probability” pn = P�fn ≤ αn�which has a more direct intuitive interpretation.

Note also that the estimator Sn = �fn > αn� can be considered as a robust
alternative to the estimator (1) suitable for rejecting isolated outliers. Such a
property could be particularly useful when Sn is used in a detection problem
[as outlined in Devroye and Wise (1980)].

4.2. A smoothness property. Whereas the border of the rough estimator (1)
is not smooth, that of Sn, ∂Sn (which, for most usual choices of K, coincides
a.s. with �fn = αn�), will be typically a differentiable manifold of dimension
d − 1. It is known that a sufficient condition for this is ∇fn�x� 6= 0 for all
x such that fn�x� = αn (∇f denotes the gradient of f). In turn, this can be
guaranteed by imposing a suitable condition of boundedness away from zero
for �∇f� on sets �f > a� together with the uniform a.s. convergences fn→ f
and ∇fn→ ∇f [see Sarda and Vieu (1988)].
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