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PROJECTION ESTIMATION IN MULTIPLE REGRESSION
WITH APPLICATION TO FUNCTIONAL ANOVA MODELS1

BY JIANHUA Z. HUANG

University of California, Berkeley and University of Pennsylvania

A general theory on rates of convergence of the least-squares projec-
tion estimate in multiple regression is developed. The theory is applied to
the functional ANOVA model, where the multivariate regression function

Žis modeled as a specified sum of a constant term, main effects functions of
. Žone variable and selected interaction terms functions of two or more

.variables . The least-squares projection is onto an approximating space
constructed from arbitrary linear spaces of functions and their tensor
products respecting the assumed ANOVA structure of the regression
function. The linear spaces that serve as building blocks can be any of the
ones commonly used in practice: polynomials, trigonometric polynomials,
splines, wavelets and finite elements. The rate of convergence result that
is obtained reinforces the intuition that low-order ANOVA modeling can
achieve dimension reduction and thus overcome the curse of dimensional-
ity. Moreover, the components of the projection estimate in an appropri-
ately defined ANOVA decomposition provide consistent estimates of the
corresponding components of the regression function. When the regression
function does not satisfy the assumed ANOVA form, the projection esti-
mate converges to its best approximation of that form.

1. Introduction. Consider the following regression problem. Let X rep-
resent the predictor variable and Y the real-valued response variable, where
X and Y have a joint distribution. We assume that X ranges over a compact
subset XX of some Euclidean space. In addition, we assume that the distribu-

Ž .tion of X is absolutely continuous and its density function f � is boundedX
Ž . Ž � . 2Ž .away from zero and infinity on XX . Set � x � E Y X � x and � x �

Ž � . Ž . 2 2Ž .var Y X � x , and assume that the functions � � � � and � � � � are
Ž . Ž .bounded on XX . Let X , Y , . . . , X , Y be a random sample of size n from1 1 n n
Ž .the distribution of X, Y . The primary interest is in estimating �.

Ž . Ž . n Ž .For any integrable function f defined on XX , set E f � 1�n Ý f Xn i�1 i
Ž . � Ž .�and E f � E f X . Define the empirical inner product and norm as

² : Ž . � � 2 ² :f , f � E f f and f � f , f for square-integrable functions fn n n1 2 n 1 2 1 1 1 1
and f on XX . The theoretical versions of these quantities are given by2
² : Ž . � � 2 ² :f , f � E f f and f � f , f .1 2 1 2 1 1 1
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Let H be a closed subspace of the space of all square-integrable, real-valued
functions on XX . We model the regression function � as a member of H and
refer to H as the model space. Since X has a density with respect to
Lebesgue measure, H is a Hilbert space equipped with the theoretical inner
product. We employ the least-squares estimate of �, where the minimization
is carried out over a finite-dimensional linear space G � H of bounded
functions. The space G may vary with sample size n, but for notational
convenience, we suppress the possible dependence on n. We require that the
dimension N of G be positive for n � 1. We also require that G be theoreti-n
cally identifiable in that, if g � G equals zero almost everywhere relative to
the measure induced by the distribution of X, then it equals zero everywhere.
Since we hope to choose G such that the functions in H can be well
approximated by functions in G, we refer to G as the approximating space.
For example, if XX � � and the regression function � is smooth, we can choose

Ž .G to be a space of polynomials or smooth piecewise polynomials splines . The
Ž .space G is said to be empirically identifiable relative to X , . . . , X if the1 n

Ž .only function g in the space such that g X � 0 for 1 � i � n is the functioni
that equals zero everywhere. Given a sample X , . . . , X , if G is empirically1 n
identifiable, then it is a Hilbert space equipped with the empirical inner
product.

Consider the least-squares estimate � of � in G, which is the elementˆ
� Ž . �2g � G that minimizes Ý g X 	 Y . Since X has a density with respect toi i i

Lebesgue measure, the design points X , . . . , X are distinct with probability1 n
1 and hence we can find a function defined on XX that interpolates the values

Ž .Y , . . . , Y at these points. With a slight abuse of notation, let Y � Y � denote1 n
any such function. Then � is exactly the empirical orthogonal projection of Yˆ
onto G�that is, the orthogonal projection onto G relative to the empirical
inner product. Hence we also refer to � as a least-squares projection or aˆ
projection estimate.

We expect that if G is chosen appropriately, then � should converge to �ˆ
as n � �. In general, the regression function � need not be an element of H.
In this case, it is reasonable to expect that � should converge to theˆ
theoretical orthogonal projection �* of � onto H�that is, the orthogonal
projection onto H relative to the theoretical inner product. One purpose of
this paper is to determine the condition for which this is the case and to
determine how quickly � converges to �*. In fact, we shall establish aˆ
general theory for the rate of convergence in terms of the integrated squared

� � 2 � � 2error � 	 �* or the averaged squared error � 	 �* .ˆ ˆ n

One interesting application of the general theory is to the functional
Ž .ANOVA model, where the multivariate regression function is modeled as a

Ž .specified sum of a constant term, main effects functions of one variable and
Ž .selected interaction terms functions of two or more variables . For a simple

illustration of a functional ANOVA model, suppose that XX � XX � XX � XX ,1 2 3
where XX � � di with d � 1 for 1 � i � 3. Allowing d � 1 enables us toi i i
include covariates of spatial type. Suppose H consists of all square-integrable



J. Z. HUANG244

functions on XX that can be written in the form

1 � x � � 
 � x 
 � x 
 � x 
 � x , x .Ž . Ž . Ž . Ž . Ž . Ž .� �14 1 �24 2 �34 3 �1 , 24 1 2

We need to impose some identifiability constraints to make the representa-
Ž . Ž .tion in 1 unique. The expression 1 can then be viewed as a functional

Ž .version of analysis of variance ANOVA . Borrowing terminology from
Ž . Ž . Ž .ANOVA, we call � the constant component, � x , � x and � x the� �14 2 �24 2 �34 3

Ž .main effect components and � x , x the two-factor interaction compo-�1, 24 1 2
Ž .nent. The right-hand side of 1 is referred to as the ANOVA decomposition

of �. Removing the interaction component � in the ANOVA decompo-�1, 24
sition of �, we get the additive model. On the other hand, if we add the

Ž . Ž .three missing interaction components � x , x , � x , x and�1, 34 1 3 �2, 34 2 3
Ž . Ž .� x , x , x to the right-hand side of 1 , we get the saturated model, in�1, 2, 34 1 2 3

which there is no restriction on the form of �. It is well known that the
saturated model is subject to the curse of dimensionality due to data sparse-
ness in high dimension, and it is expected that the curse of dimensionality
can be overcome by using low-order functional ANOVA models.

Given a random sample, suppose we have an estimate

2 � x � � 
 � x 
 � x 
 � x 
 � x , xŽ . Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆ� �14 1 �24 2 �34 3 �1 , 24 1 2

Ž .having the form given by 1 . Three fundamental question regarding the
properties of � arise naturally:ˆ
1. Does � converge to � when the sample size tends to infinity? If so, what isˆ

the rate of convergence?
2. How do we define appropriate ANOVA decompositions of � and �, that is,ˆ

Ž .how do we put identifiability constraints on the terms in the expansion 1
Ž .and 2 so that the components of � converge to the corresponding compo-ˆ

nents of �?
3. How does � behave when the model is misspecified, that is, when � doesˆ

not have the assumed ANOVA form?

The convergence property in question 1 is a necessary requirement on an
estimate. Question 2 is based on the expectation that examination of the
components of � should shed light on the shape of �. Question 3 is criticalˆ
because, in practice, the functional ANOVA model is largely only an approxi-
mation.

The major purpose of this paper is to give quite thorough answers to these
questions for an arbitrary functional ANOVA model when � is a projectionˆ
estimate. To this end, a general mathematical framework for functional
ANOVA models in multiple regression is developed. The approximating space
is constructed from virtually arbitrary linear spaces of functions and their
tensor products. The linear spaces that serve as building blocks can be any of
the ones commonly used in practice: polynomials, trigonometric polynomials,
splines, wavelets and finite elements. The ANOVA decomposition of the
unknown regression function is defined in such a way that each nonconstant
component is orthogonal to all possible values of the corresponding lower-order
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components relative to the theoretical inner product. The ANOVA decomposi-
tion of the projection estimate is defined by similar orthogonality require-
ments relative to the empirical inner product.

We shall see that, under mild conditions, the projection estimate is consis-
tent, provided that the approximating space is compatible with the assumed
ANOVA structure on the regression function. Moreover, the components of
the projection estimate in the ANOVA decomposition are consistent in esti-
mating the corresponding components of the regression function. When the
regression function does not satisfy the assumed ANOVA form, the estimate
converges to its best approximation of that form relative to the theoretical
inner product. A rate of convergence result is obtained, which reinforces the
intuition that low-order ANOVA modeling can achieve dimension reduction
and thus overcome the curse of dimensionality.

As an effective way to overcome the curse of dimensionality in multivariate
function estimation, functional ANOVA models have received much atten-
tion, and related literature has been growing steadily in recent years. For

Ž . Ž .example, Stone and Koo 1986 , Friedman and Silverman 1989 and Breiman
Ž .1993 used polynomial splines in additive regression. Hastie and Tishirani
Ž .1990 discussed extensively the methodology in fitting a generalized additive

Ž .model. Friedman 1991 introduced the MARS methodology for regression,
where polynomial splines and their tensor products are used to model the
main effects and interactions, respectively. Recently, Kooperberg, Stone and

Ž .Truong 1995 developed HARE for hazard regression, and Kooperberg, Bose
Ž .and Stone 1997 developed POLYCLASS for polychotomous regression and

multiple classification.
Theoretical investigations of the polynomial spline approach in fitting

functional ANOVA models have also achieved much progress. In particular,
for the regression context, the rate of convergence result for the additive

Ž .model established in Stone 1985 was the pioneering theoretical work in
understanding the functional ANOVA model. Similar results for models

Ž .involving interactions were established in Stone 1994 , where univariate
splines and their tensor products were used as building blocks for the

Ž .approximating spaces. These results were extended by Hansen 1994 to
include multivariate splines. See Stone, Hansen, Kooperberg and Truong
Ž .1997 for a comprehensive review of both the methodological and theoretical
aspects of functional ANOVA modeling.

The result of this paper provides a clearer picture of the mathematical
structure of the projection estimate in fitting a functional ANOVA model in
regression. By removing the dependence on splines in the theory developed by
Stone and by Hansen, we are able to discern what is essential in getting a
consistent estimate in a functional ANOVA model and in getting consistent
estimates of the ANOVA components of the function of interest. The message
we get here is that the structure of the approximating space is critical:
provided that we construct the approximating space to have the same struc-
ture as the model space, under mild conditions, we can always get consistent
estimates of the regression function and its ANOVA components.
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The deep understanding of the structure of the problem enables us to
adopt a fully geometric approach, which leads to much simpler arguments
than those in the previous works by Stone and by Hansen, even though the
results here are much more general. In particular, a novel decomposition of
the error into three terms yields fresh insight into the problem, especially
when the model is misspecified, which is an important issue for functional

Ž .ANOVA models. In the bulk of this paper Sections 2�5 , we use best L�

approximation to the regression function. This allows us to treat functions
Ž .belonging to various Holder classes as in Stone 1994 . The technique in this¨

paper also enables us to use best L approximation and thereby to treat2
Ž .regression functions belonging to Besov spaces see Section 6 ; in this treat-

ment, however, it is necessary that the ANOVA model should be correctly
specified.

The understanding of the regression problem gained in this paper plays a
crucial role in extending the theory to other more complicated settings,

� Ž .�including generalized regression Huang 1996 , event history analysis
� Ž .� �Huang and Stone 1997 and proportional hazards regression Huang, Stone

Ž .�and Truong 1997 .
The theoretical investigation in this paper reveals that the nice conver-

gence property of the least-squares estimate in fitting a functional ANOVA
model is inherent in its projection property. This naturally suggests an
interesting question: does any estimate not of the projection type share the
same convergence property? Smoothing spline ANOVA is another attractive
approach to fitting functional ANOVA models; see Wahba, Wang, Gu, Klein

Ž .and Klein 1995 and the reference therein. For this penalization approach,
Ž .Chen 1991 gave a positive answer to the question when the data come from

a suitably regular balanced complete factorial design, but the general picture
remains to be clarified. While linear wavelet estimates can be used to fit a
functional ANOVA model, as we show in this paper, the applicability of
nonlinear wavelet methods is still unclear.

This paper is organized as follows. In Section 2, we present a general
result on rates of convergence; in particular, a novel decomposition of the
error helps in understanding the nature of the problem. In Section 3, the
mathematical structure of functional ANOVA models is supplied and the rate
of convergence is studied. The emphasis is on the convergence of the ANOVA
components of the estimate to the corresponding components of the target
function. Some examples are provided where the ANOVA components of the
unknown function belong to Holder classes. The proofs of the theorems in¨
Sections 2 and 3 are provided in Section 4 and 5, respectively. Section 6, as
mentioned above, contains extensions to handle functions in Besov spaces.
Section 7 gives two lemmas that play a crucial role in our arguments and are
also useful in other situations.

� � � Ž . �In what follows, for any function f on XX , set f � sup f x . Given� x � XX

positive numbers a and b for n � 1, let a � b mean that a �b isn n n n n n
bounded and let a � b mean that a � b and b � a . Given randomn n n n n n

Ž . Ž � �variables W for n � 1 let W � O b mean that lim lim sup P W �n n P n c�� n n
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. Ž . Ž � � .cb � 0 and let W � o b mean that lim sup P W � cb � 0 for alln n P n n n n
c � 0.

2. A general theorem on rate of convergence. In this section, we
provide a general result on the rate of convergence of the least-squares
projection onto an arbitrary linear space. First, we give a decomposition of
the error in estimating �* by �. This decomposition helps in understandingˆ
the structure of the problem, and it simplifies the analysis. Next, we define
two important constants related to the approximating spaces that the main
result will involve. We shall discuss how to determine these constants for
various linear spaces used in the approximation theory literature. Then we
give our main result.

2.1. Decomposition of the error. Let Q denote the empirical orthogonal
projection onto G, P the theoretical orthogonal projection onto G and P* the
theoretical orthogonal projection onto H. Recall that Y denotes a function
interpolating the data points. We observe that � � QY and �* � P*�.ˆ

We first decompose the error into two parts that are orthogonal to each
other relative to the theoretical inner product. Let � be the best approxima-
tion in G to � relative to the theoretical norm. Then � � P� � P�*. Consider
the decomposition

3 � 	 �* � � 	 � 
 � 	 �* � QY 	 P� 
 P� 	 P*� .Ž . Ž . Ž . Ž .Ž .ˆ ˆ

Since � is the least-squares estimate in G, it is natural to think of it as anˆ
estimate of �. Hence, the term � 	 � is referred to as the estimation error.ˆ
The term � 	 �* can be viewed as the error in using functions in G to
approximate functions in H, so we refer to it as the approximation error.
Note that

² : ² :� 	 � , � 	 �* � QY 	 P� , P�* 	 �* � 0.ˆ
2 2 2� � � � � �Thus we have the Pythagorean identity � 	 �* � � 	 � 
 � 	 �* .ˆ ˆ

Next, we decompose the estimation error further into two parts that are
orthogonal on the average relative to the empirical inner product, conditioned
on the design points. Let � be the best approximation in G to � relative to˜

² : ² :the empirical norm. Then � � Q� and �, g � �, g for every function˜ ˜ n n

g � G. Consider the decomposition

4 � 	 � � � 	 � 
 � 	 � � QY 	 Q� 
 Q� 	 P� .Ž . Ž . Ž .Ž . Ž .ˆ ˆ ˜ ˜

² : ² :Observe that �, g � Y, g for every function g � G. Taking conditionalˆ n n

expectation given the design points X , . . . , X and noting that1 n
Ž � .Ž . Ž .E Y X , . . . , X X � � X for 1 � i � n, we get that1 n i i

� � ² : ² :² : ² :E � X , . . . , X , g � E Y X , . . . , X , g � � , g � � , g .Ž . Ž .ˆ ˜n n1 n 1 nn n
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Ž � .Now E � X , . . . , X � G, so, if G is empirically identifiable, then � �ˆ ˜1 n
Ž � .E � X , . . . , X . Thus, we refer to � 	 � as the variance component andˆ ˆ ˜1 n

� 	 � as the estimation bias. Since˜

² :E � 	 � , � 	 � X , . . . , X � 0,ˆ ˜ ˜ nž /1 n

we have the Pythagorean identity

2 2 2� � � � � �E � 	 � X , . . . , X � E � 	 � X , . . . , X 
 � 	 � .ˆ ˆ ˜ ˜n n n1 n 1 n

Ž . Ž .Combining 3 and 4 , we obtain the decomposition

5 � 	 �* � � 	 � 
 � 	 � 
 � 	 �* ,Ž . Ž .Ž . Ž .ˆ ˆ ˜ ˜

where � 	 �, � 	 � and � 	 �* are the variance component, the estimationˆ ˜ ˜
bias and the approximation error, respectively. But now we do not have the
nice Pythagorean identity. Instead, by the triangular inequality,

� � � � � � � �� 	 �* � � 	 � 
 � 	 � 
 � 	 �*ˆ ˆ ˜ ˜
and

� � � � � � � �� 	 �* � � 	 � 
 � 	 � 
 � 	 �* .ˆ ˆ ˜ ˜n n n n

Using these facts, we can examine separately the contributions to the inte-
Ž .grated squared error from the three parts in the decomposition 5 .

2.2. Two important constants. The general theorem involves two con-
stants, A and � , that we define in this subsection.n n

�� � � �4Recall that G depends on the sample size n. Set A � sup g � g .�n g � G
The constant A � 1 is a measure of irregularity of the approximating spacen
G. Since we require that G be theoretically identifiable and functions in G be

Ž . � 4Nnbounded see Section 1 , A is finite. Let � be an orthonormal basis of Gn j j�1
relative to the theoretical inner product. Then, by the Cauchy�Schwarz

� Nn � � 241�2inequality, A � Ý � � �.�n j�1 j
Since the density of X is bounded away from zero and infinity, the

theoretical norm is equivalent to the L norm induced by Lebesgue measure.2
Thus the constant A for commonly used approximating spaces is readilyn
obtained by using results in the approximation theory literature. Here are
some examples.

� � Ž .POLYNOMIALS. Let XX � 0, 1 . Let Pol J denote the space of polynomials
� �on 0, 1 of degree J or less; that is,

J
k � �Pol J � a x , x � 0, 1 : a � � .Ž . Ý k k½ 5

k�0

Ž . �If G � Pol J , then A � J see Theorem 4.2.6 of DeVore and Lorentzn n n
Ž . Ž .�1993 or Theorem 3.1 of Schumaker 1981 .
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� � Ž .TRIGONOMETRIC POLYNOMIALS. Let XX � 0, 1 . Let TriPol J denote the
� �space of trigonometric polynomials on 0, 1 of degree J or less; that is,

Ja0
TriPol J � 
 a cos 2k	 xŽ . Ž .Ý k½ 2 k�1

� �
b sin 2k	 x , x � 0, 1 : a , b � � .Ž .k k k 5
Ž . 1�2 �If G � TriPol J , then A � J see Theorem 4.2.6 of DeVore and Lorentzn n n

Ž .�1993 .

� �UNIVARIATE SPLINES. Let XX � 0, 1 . Let J be a positive integer, and let
t ,t , . . . , t , t be real numbers with 0 � t � t � ��� � t � t � 1.0 1 J J
1 0 1 J J
1

� � � .Partition 0, 1 into J 
 1 subintervals I � t , t , j � 0, . . . , J 	 1, andj j j
1
� � � �I � t , t . Let m � 0 be an integer. A function on 0, 1 is a spline ofJ J J
1

Ž .degree m with knots t , . . . , t if the following hold: i it is a polynomial of1 J
Ž . Ž .degree m or less on each interval I , j � 0, . . . , J; and ii for m � 1 it isj

Ž . � �m 	 1 -times continuously differentiable on 0, 1 . Such spline functions
constitute a linear space of dimension K � J 
 m 
 1. For detailed discus-

Ž . Ž .sions of univariate splines, see de Boor 1978 and Schumaker 1981 . For
Ž .fixed m, let Spl J be the space of splines of degree m with J knots. Suppose

that
max t 	 tŽ .0 � j� J j
1 j

6 � 
Ž .
min t 	 tŽ .0 � j� J j
1 j

Ž . 1�2 �for some positive constant 
 . If G � Spl J , then A � J see Theoremn n n
Ž .�5.1.2 of DeVore and Lorentz 1993 .

� �WAVELETS. Let XX � 0, 1 . Let r � 1 be an integer. Then there exists a
compactly supported father wavelet � and mother wavelet � associated with

2Ž . Ž .an r-regular multiresolution analysis of L � ; see Meyer 1992 . For j � 0
j � �and 0 � k � 2 	 1, denote the periodized wavelets on 0, 1 by
p j�2 j j � �� x � 2 � 2 x 
 2 l 	 k , x � 0, 1Ž . Ž .Ýjk

l��

and
p j�2 j j � �� x � 2 � 2 x 
 2 l 	 k , x � 0, 1 .Ž . Ž .Ýjk

l��

� p j0 p j4For j � 0, the collection � , k � 0, . . . , 2 	 1; � , j � j , k � 0, . . . , 2 is0 j k jk 00

� �an orthonormal basis of L 0, 1 . We consider the finite-dimensional linear2
space spanned by this wavelet basis. For an integer J � j , set0

2 j0	1 J	1 2 j	1
p pWav J � � � x 
 
 � x ,Ž . Ž . Ž .Ý Ý Ýj k j k jk jk0 0½

k�0 j�j k�00

� �x � 0, 1 : � , 
 � � ,j k jk0 5
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� Ž .�or, equivalently see Meyer 1992 ,

2 J	1
p � �Wav J � � � x , x � 0, 1 : � � � .Ž . Ž .Ý k J k k½ 5

k�0

Ž . Jn �2 � Ž .�If G � Wav J , then A � 2 see Lemma 2.8 of Meyer 1992 . We cann n
use other wavelet bases on the interval to build the approximating space G

Ž .and obtain similar results. See Daubechies 1994 for discussions of construct-
ing wavelets on the interval.

FINITE ELEMENTS. Suppose XX � � d. Let the diameter of a set � � XX be
� � � 4 � 4defined as diam � � sup x 	 x : x , x � � . Suppose there is a basis B1 2 1 2 i

of G consisting of locally supported functions satisfying the following stability
condition: there are absolute constants 0 � C � C � � such that1 2

d � p d � p� �C h c � g � C h c ,� 4 � 4Ll l1 i i 2 i ipp P

1 � p � � and g � c B � G.Ý i i
i

7Ž .

� � � �Here, h denotes the diameter of the support of B , while � and � areL li i p p

the usual L and l norms for functions and sequences, respectively. Thisp p
�stability condition is satisfied by many finite element spaces see Chapter 2 of

Ž .�Oswald 1994 . By ruling out finite element spaces that are not theoretically
� � � �identifiable, we can assume that g � g for g � G. Suppose max h �L � i i�

� � �� 4� � �min h � a for some positive constant a . Then g � c and g �L l Li i n n i� � 2
d �2 �� 4� �� 4� �� 4� �� � � � 4a c . Since c � c , we obtain that sup g � g �l l l L Ln i i i g � G2 � 2 � 2
d �2 � � 	d �2a . Note that � is equivalent to the L norm. Thus, A � a .n 2 n n

TENSOR PRODUCT SPACES. Let XX , 1 � l � L, be compact sets in Euclideanl
spaces and suppose that XX is the Cartesian product of XX . Suppose G is al l
linear space of functions on XX for 1 � l � L, each of which can be any type ofl
space described above, for example, polynomials, trigonometric polynomials,
splines or wavelets. Let G be the tensor product of G , . . . , G , which is the1 L

L Ž .space of functions on XX spanned by the functions Ł g x , where g � Gl�1 l l l l
for 1 � l � L. The constant A associated with the tensor product space Gn
can be determined from the corresponding constants for its components.

�� � � �4 LLEMMA 1. Set a � sup g � g for 1 � l � L. Then A 
 � a .�nl g � G n l�1 nll

PROOF. This is easily proved by using induction and the tensor product
structure of G. The statement is trivially true for L � 1. Suppose the state-
ment is true for L � k 	 1 with k � 2. For each x � XX � ��� � XX , write1 k

Ž .x � x , x , where x � XX and x � XX � ��� � XX . Let C , . . . , C denote1 2 1 1 2 2 k 1 4
generic constants. Note that the density of X is bounded away from zero and
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infinity. By the induction hypothesis,

� � 2 2g � sup sup g x , xŽ .� 1 2
x x1 2

k
2 2� C sup a g x , x dxŽ .Ł H1 nl 1 2 2ž / XX � ��� �XXl�2x 2 k1

k
2 2� C a sup g x , x dx .Ž .Ł H1 nl 1 2 2ž / XX � ��� �XXl�2 x2 k 1

By another application of the induction hypothesis,

sup g 2 x , x � C a2 g 2 x , x dx , x � XX � ��� � XX .Ž . Ž .H1 2 2 n1 1 2 1 2 2 k
XXx 11

Hence,
k

2 2 2� �g � C a g x , x dx dxŽ .Ł� H3 nl 1 2 1 2ž / XX � ��� �XXl�1 1 k

k
22 � �� C a g . �Ł4 nlž /l�1

� �Recall that G depends on the sample size n. Set � � inf g 	 �* .�n g � G
� �Observe that � is finite if and only if �* is bounded. In this case, � � �* �n n

� �and, by a compactness argument, there is a g* � G such that g* 	 �* ��

� . The constant � characterizes the target function �* and reflects then n
approximation property of the space G. For a specific choice of approximating
space, a condition of the rate of decay of � gives a smoothness assumption onn
�*. On the other hand, given that the target function falls in a specific
function class, the constant � is a measure of the approximation power ofn
the approximating space in the supreme norm.

We introduce a smoothness condition commonly used in the nonparametric
Ž .estimation literature; see, for example, Stone 1982, 1994 . To this end,

assume for the moment that XX is the Cartesian product of compact intervals
XX , . . . , XX . Let 0 � 
 � 1. A function h on XX is said to satisfy a Holder¨1 L

� Ž .condition with exponent 
 if there is a positive number 
 such that h x 	
Ž . � � � 
 � � Ž L 2 .1�2h x � 
 x 	 x for x , x � XX ; here, x � Ý x is the Euclidean0 0 0 l�1 l

Ž . Ž .norm of x � x , . . . , x � XX . Given an L-tuple � � � , . . . , � of nonnega-1 L 1 L
� � �tive integers, set � � � 
 ��� 
� and let D denote the differential1 L

operator defined by

� � � �
�D � .

� �1 L� x ��� � x1 L

Let k be a nonnegative integer and set p � k 
 
. A function on XX is said to
be p-smooth if it is k-times continuously differentiable on XX and D� satisfies

� �a Holder condition with exponent 
 for all � with � � k.¨
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let H be the space of square-integrable functions on XX . Since � is
bounded, � � �* � H. Let G be a linear space of functions on XX forl l
1 � l � L and let G be the tensor product of these spaces. Suppose � is
p-smooth. Then results in approximation theory can be used to bound the

� �constant � from above. In the following examples, XX � 0, 1 for 1 � l � L.n l

Ž . 	p �POLYNOMIALS. If each G � Pol J , then � 
 J see Section 5.3.2 ofl n n n
Ž .�Timan 1963 .

TRIGONOMETRIC POLYNOMIALS. Suppose � can be extended to a periodic
Ž . 	p �function. If each G � TriPol J , then � 
 J see Section 5.3.1 of Timanl n n n

Ž .�1963 .

Ž . Ž .SPLINES. Suppose m � p 	 1. If each G � Spl J and 6 holds, thenl n
	p � Ž . Ž .�� 
 J see 13.69 and Theorem 12.8 of Schumaker 1981 .n n

Ž . 	p Jn �WAVELETS. Suppose r � p. If each G � Wav J , then � 
 2 seel n n
Ž . Ž .�Proposition 2.5 of Meyer 1992 and Donoho and Johnstone 1992 .

2.3. The general result.

THEOREM 1. Suppose �* is bounded and that lim A2 N �n � 0. Then:n n n

Ž . Ž . � � 2 Ž . � � 2i variance component � 	 � � O N �n and � 	 � �ˆ ˜ ˆ ˜ nP n
Ž .O N �n ;P n

2 22Ž . Ž . � � Ž . � �ii estimation bias � 	 � � O N �n 
 � and � 	 � �˜ ˜ nP n n
Ž 2 .O N �n 
 � ;P n n

2 22 2Ž . Ž . � � Ž . � � Ž .iii approximation error � 	 �* � O � and � 	 �* � O � .nn P n

2 22 2� � Ž . � � Ž .Consequently, � 	 �* � O N �n 
 � and � 	 �* � O N �n 
 � .ˆ nP n n P n n

Theorem 1 gives a unified treatment of the rate of convergence for least-
squares projection on a finite-dimensional linear space. When H is a finite-
dimensional linear space of bounded functions, we can choose G � H, which
does not depend on the sample size. Then A is independent of n and � � 0.n n
Consequently, � converges to �* with the parametric rate 1�n. When H isˆ
the space of square-integrable functions on a Cartesian product space XX , we
can choose G as the tensor product of certain linear spaces of functions of one
variable. Since we require � to be bounded, �* � � � H. If we put smooth-
ness conditions on the regression function �, we can get the standard rate of
convergence results.

Of great practical interest is putting some structure on H, such as the
functional ANOVA model considered in the next section. The general result
can be applied to get the rate of convergence in such a situation and to deal
effectively with the model misspecification problem. In a functional ANOVA
model, we restrict H to be a subspace of the space of square-integrable
functions and the issue of model misspecification then becomes important.
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For example, when we use the additive model, it is dubious in many applica-
tions to assume that the unknown function has exactly the additive form;
thus, the behavior of an estimate when the model is wrongly specified will be
one of the determining factors in choosing that estimate.

Ž .REMARKS. i For any square-integrable function f , the distance from f to
� measured in the theoretical norm is related to the prediction error:

�Ž Ž ..2 � � 2Ž .� � � 2E y 	 f X � E � X 
 � 	 f .
Ž .ii We measure the error in two natural norms: the empirical norm and

the theoretical norm. Under certain conditions, these two norms are equiva-
Ž .lent over the approximating space G see Lemma 4 , but they need not be

equivalent outside G in general.
Ž .iii Theorem 1 holds true when we use weighted least-squares estimation.

Ž .For a positive, bounded weight function w � , the weighted least-squares
Ž .� Ž .estimate in G is defined as the element g � G that minimizes Ý w X g Xi i i

�2	 Y . Correspondingly, we need to redefine the theoretical inner producti
² : � Ž . Ž . Ž .� � � 2 ² :and norm as f , f � E w X f X f X and f � f , f . The empirical1 2 1 2

inner product and norm are redefined similarly. For example, if the variance
Ž . Ž . 2Ž .function � � is known, then we can take w x � 1�� x .

3. Functional ANOVA models. In this section, we provide the mathe-
matical structure of ANOVA models for functions and establish the rate of
convergence for the projection estimate. We construct the approximating
space appropriately to reflect the assumed ANOVA structure of the unknown
regression function. Moreover, we define identifiable ANOVA decompositions
of the target function and of the estimate. In particular, we show that such
defined ANOVA decomposition guarantee the convergence of the components
of the estimate to the corresponding components of the target function. Our

Ž .terminology and notation follow closely those in Stone 1994 . Here, however,
the approximating space can be built from arbitrary linear spaces.

3.1. Model space. Suppose XX is the Cartesian product of some compact
sets XX , . . . , XX , where XX � � dl with d � 1. Let SS be a fixed hierarchical1 L l l

� 4collection of subsets of 1, . . . , L , where hierarchical means that, if s is a
member of SS and r is a subset of s, then r is a member of SS . Clearly, if SS is
hierarchical, then � � SS . Let H denote the space of constant functions on�

XX . Given a nonempty subset s � SS , let H denote the space of square-integra-s
ble functions on XX that depend only on the variables x , l � s. Let the modell

� 4space be given by H � Ý h : h � H .s� SS s s s
Note that each function in H can have a number of equivalent expansions.

To account for this overspecification, we impose identifiability constraints on
the terms in the expansion. For s � SS , let H 0 denote the space of alls
functions in H that are theoretically orthogonal to each function in H fors r
every proper subset r of s.
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� �Let XX denote the volume of XX , and let M and M be positive numbers1 2
such that

M	1 M1 2� f x � , x � XX .Ž .X� � � �XX XX

Then M , M � 1. The following lemma is essentially Lemma 3.1 in Stone1 2
Ž .1994 .

Ž 	1 	2 .1�2 Ž � � � 2LEMMA 2. Set � � 1 	 1 	 M M � 0, 1 . Then h �1 1 2
�Ž SS .	1 � � 2 0� Ý h for all h � Ý h , where h � H for s � SS .1 s� SS s s s s s

Using this lemma, it is easily shown that H is a complete subspace of the
space of all square-integrable functions on XX equipped with the theoretical
inner product. More importantly, the lemma reveals that every function
h � H can be written in an essentially unique manner as Ý h , wheres� SS s
h � H 0 for s � SS . We refer to Ý h as the theoretical ANOVA decomposi-s s s� SS s
tion of h and h � H 0, s � SS , as the ANOVA components of h. The compo-s s

0 Ž .nent h � H is referred to as the constant component if � s � 0, as a mains s
Ž . Ž .effect component if � s � 1 and as an interaction component if � s � 2;

Ž .here � s is the number of elements of s.
Since each function in the model space H has a unique ANOVA decompo-

sition, we refer to it as a functional ANOVA model. In particular, SS specifies
the main effects and interaction terms that are in the model. As special cases,

Ž .if max � s � L, then all interaction terms are included and we get as� SS

Ž .saturated model; if max � s � 1, we get an additive model.s� SS

3.2. Approximating space. We now construct the appropriate approxi-
mating space G for the functional ANOVA model associated with SS and
define the appropriate ANOVA decomposition for functions in G. Naturally,
we require that G have the same structure as H. Let G denote the space of�

constant functions on XX , which has dimension N � 1. Given 1 � l � L, let�

G � G denote a linear space of bounded, real-valued functions on XX , whichl � l
can vary with sample size and has finite, positive dimension N . Given anyl

� 4 � 4nonempty subset s � s , . . . , s of 1, . . . , L , let G be the tensor product of1 k s
G , . . . , G . Then the dimension of G is given by N � Ł k N . Set G �s s s s i�1 s1 k i
� 4Ý g : g � G . The dimension N of G satisfies max N � N �s� SS s s s n s� SS s n

Ž .Ý N � � SS max N . Hence, N � Ý N .s� SS s s� SS s n s� SS s
Observe that each function in the space G can have a number of equiva-

lent expansions as sums of functions in G for s � SS . To account for thiss
overspecification, we impose identifiability constraints on the terms in the
expansion as we do for the theoretical ANOVA decomposition for a function
in H. Recall that our goal is to obtain a decomposition of the projection
estimate such that the resulting components can provide consistent estimates
of the components of the target regression function. Since such a decomposi-
tion should be totally determined by the data, we impose the identifiability
constraints in terms of the empirical inner product instead of the theoretical
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inner product. For s � SS , let G0 denote the space of all functions in G thats s
are empirically orthogonal to each function in G for every proper subset rr
of s.

LEMMA 3. Suppose G is empirically identifiable. Let g � Ý g , wheres� SS s
g � G0 for s � SS . If g � 0, then g � 0 for s � SS .s s s

�Ž . �The same lemma is given in Stone 1994 , Lemma 3.2 when G is built
from splines and their tensor products, but the argument there is valid in
general for the spaces G considered in this section. This result tells us that if
the space G is empirically identifiable, then each function g � G can be
written uniquely in the form Ý g , where g � G0 for s � SS . Hence, wes� SS s s s
refer to Ý g as the empirical ANOVA decomposition of g and g � G0,s� SS s s s
s � SS , as the ANOVA components of g.

3.3. Rates of convergence. The general result in Section 2 can be applied
to get the rate of convergence of the projection estimate � in G for theˆ
functional ANOVA model. First, we define some constants that are analogs of
the constants A and � in Section 2. These constants are more straightfor-n n
ward to determine than the constants A and � themselves. Setn n

� �g �
A � A G � sup , s � SS .Ž .s sn s � �gg�Gs

Since G is a tensor product space, we can determine A by using thes s
corresponding constants for its components; see Lemma 1. Recall that �* is
the theoretical orthogonal projection of � onto H and that its ANOVA
decomposition has the form �* � Ý ��, where �� � H 0 for s � SS . Sets� SS s s s

� � � �� � � � , G � inf g 	 � , s � SS .Ž . �s sn s s s
g�Gs

THEOREM 2. Suppose �� is bounded and that lim A2 N �n � 0 for s � SS .s n s s
Then the results of Theorem 1 hold with N and � replaced by Ý N andn n s� SS s
Ý � .s� SS s

PROOF. We need only check the conditions of Theorem 1. Let � be1
� 1	�Ž SS . 2 �1�2defined as in Lemma 2. Then A � � Ý A . In fact, for eachn 1 s� SS s

g � G, write g � Ý g , where g � G and g � G for all proper subsetss� SS s s s s r
� � 2r of s. By the same argument as in Lemma 2, we see that Ý g �s� SS s

1	�Ž SS . � � 2� g . By the definition of A and the Cauchy�Schwarz inequality, we1 s
get that

1�21�2
22� � � � � � � �g � g � A g � A g .Ý Ý Ý Ý� �s s s s sž / ž /

s�SS s�SS s�SS s�SS
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Hence

1�2 1�222 1	�Ž SS .� � � �g � A � g ,Ý� s 1ž /
s�SS

� 1	�Ž SS . 2 �1�2and thus, A � � Ý A . On the other hand, N � Ý N andn 1 s� SS s n s� SS s
� � Ý � . The conditions of Theorem 1 now follow from the conditions ofn s� SS s
this theorem. �

Let � � Ý � , with � � G0 for s � SS , be the empirical ANOVA de-ˆ ˆ ˆs� SS s s s
composition of �. We expect that � should converge to �� and hence provideˆ ˆ s s
a good estimate of �� for s � SS . This is justified in the next result.s

Recall that � � Q� and � � P� are, respectively, the best approximations˜
to � in G relative to the empirical and theoretical inner products. The
ANOVA decompositions of � and � are given by � � Ý � and � �˜ ˜ ˜s� SS s

0 Ž .Ý � , respectively, where � , � � G for s � SS . As in 5 , we have an˜s� SS s s s s
� Ž . Ž .identity involving the various components: � 	 � � � 	 � 
 � 	 �ˆ ˆ ˜ ˜s s s s s s

�Ž .
 � 	 � .s s

THEOREM 3. Suppose �� is bounded and that lim A2 N �n � 0 for s � SS .s n s s
Then, for each s � SS :

Ž . Ž . � � 2 Ž . � � 2i variance component � 	 � � O Ý N �n and � 	 � �ˆ ˜ ˆ ˜ ns s P s� SS s s
Ž .O Ý N �n ;P s� SS s

2 2Ž . Ž . � � Ž Ž .. �ii estimation bias � 	 � � O Ý N �n 
 � and � 	˜ ˜s s P s� SS s s s
2 2� Ž Ž ..� � O Ý N �n 
 � ;ns P s� SS s s

2� 2Ž . Ž . � � Ž Ž .. �iii approximation error � 	� �O Ý N �n
� and � 	s s P s� SS s s s
� � 2 Ž Ž 2 ..� � O Ý N �n 
 � .ns P s� SS s s

� � � 2 Ž Ž 2 .. �Consequently, for each s�SS , � 	� �O Ý N �n
� and � 	ˆ ˆs s P s� SS s s s
� � 2 Ž Ž 2 ..� � O Ý N �n 
 � .ns P s� SS s s

COROLLARY 1. Suppose lim A2 N �n � 0 and that lim � � 0 for s � SS .n s s n s
� � Ž . � � � Ž .Then � 	 �* � o 1 and � 	 � � o 1 .ˆ ˆ ˆP s s P

Ž .REMARK. Suppose the weight function w � is bounded away from zero
and infinity. The results in this section still hold when we use weighted
least-squares estimation. We need to redefine the inner products and norms

Ž .as in Remark iii following Theorem 1 and correspondingly redefine the
ANOVA decompositions.

3.4. Univariate function spaces as building blocks. We now give some
examples illustrating the rate of convergence for a functional ANOVA model
when different types of approximating spaces are used. We first consider
linear spaces of univariate functions and their tensor products as building
blocks for the approximating space. Four basic classes of univariate approxi-
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mating functions are considered: polynomials, trigonometric polynomials,
splines and wavelets. The results will explain, in terms of the rate of
convergence, why low-order ANOVA models can overcome the curse of dimen-
sionality.

In this section, we assume that XX is the Cartesian product of compact
intervals XX , . . . , XX . Without loss of generality, it is assumed that each of1 L

� � � � L Ž .these intervals equals 0, 1 and hence that XX � 0, 1 . Set d � max � s .s� SS

COROLLARY 2. Suppose �� is p-smooth for s � SS . Suppose also that:s

Ž . Ž . 3d Ž .i G � Pol J , 1 � l � L, J � o n ; orl n n
Ž . Ž . 2 d Ž . �ii G � TriPol J , 1 � l � L, J � o n and that � can be extended tol n n s

a function defined on � d s and of period 1 in each of its arguments; or
Ž . Ž . 2 d Ž .iii G � Spl J , 1 � l � L, m � p 	 1, J � o n .l n n

� � � 2 Ž d 	2 p. � � 2 Ž dThen � 	� �O J �n
J for s�SS and �	�* �O J �n
ˆ ˆs s P n n P n
	2 p. Ž . Ž . Ž .J . Consequently, if p � d for case i and p � d�2 for cases ii and iii ,n

1�Ž2 p
d . � � � 2 Ž 	2 p�Ž2 p
d ..then, for J � n , we have that � 	 � � O n forˆn s s P
� � 2 Ž 	2 p�Ž2 p
d ..s � SS and � 	 �* � O n .ˆ P

PROOF. Use the facts in the previous section and Lemma 1 to get the
Ž . Ž . �Ž s. �Ž s.following results. i If G � Pol J for 1 � l � L, then A � J , N � Jl n s n s n

	p Ž . Ž . �Ž s.�2and � � J for s � SS . ii If G � TriPol J for 1 � l � L, then A � Js n l n s n
and N � J �Ž s.. If �� can be extended to a function defined on � d s and ofs n s

	p Ž . Ž .period 1 in each of its arguments, then � � J . iii If G � Spl J fors n l n
1 � l � L, then A � J �Ž s.�2 and N � J �Ž s.. If m � p 	 1, then � � J	p.s n s n s n
The conclusions follow from Theorems 2 and 3. �

COROLLARY 3. Suppose �� is p-smooth for s � SS . Let r � p and G �s l
Ž . 2 d Jn Ž . � � � 2 Ž d JnWav J for 1 � l � L. If 2 � o n , then � 	 � � O 2 �n 
ˆn s s P

	2 p Jn. � � 2 Ž d Jn 	2 p Jn.2 for s � SS and � 	 �* � O 2 �n 
 2 . Consequently, ifˆ P
Ž . Ž . Ž . �also p � d�2, then, for J � log n � 2 p 
 d 
 O 1 , we have that � 	ˆn s

� � 2 Ž 	2 p�Ž2 p
d .. � � 2 Ž 	2 p�Ž2 p
d ..� � O n for s � SS and � 	 �* � O n .ˆs P P

PROOF. Use the facts in the previous section and Lemma 1 to get that
A � 2�Ž s.Jn �2 , N � 2�Ž s.Jn and � � 2	p Jn for s � SS . The desired resultss s s
follow from Theorems 2 and 3. �

According to the above results, when the highest order of interactions
included in a functional ANOVA model is d and the ANOVA components of
�* are p-smooth, we can achieve the rate of convergence n	p �Ž2 p
d ., which is

�the optimal rate for estimating a p-smooth, d-dimensional function see
Ž .� ŽStone 1982 . Hence, by using models with only low-order interactions d �

.L , we can ameliorate the curse of dimensionality that the saturated model
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Ž .d � L suffers. For example, if L � 2, then, by considering additive models
Ž . Ž .d � 1 or by allowing interactions involving only two factors d � 2 , we can
get faster rates of convergence than by using the saturated model.

Ž .REMARKS. i The projection nature of the least-squares estimate and the
structure of the approximating space, rather than the special properties of
the constituent univariate approximating spaces, are fundamental in getting
a consistent estimate in a functional ANOVA model. We can achieve the same
optimal rate of convergence by using polynomials, trigonometric polynomials,
splines or wavelets.

Ž .ii To achieve the optimal rate of convergence, the required assumption
p � d on the smoothness of the theoretical components �� for using polyno-s
mials is stronger than the corresponding assumption p � d�2 for using
trigonometric polynomials, spines or wavelets.

Ž .iii Corollary 3 involves the applicability of wavelet bases in a functional
ANOVA model. The method here is linear and thus is different from the
thresholding method studied in the large body of wavelet literature, which is
usually on univariate function estimation. See Donoho, Johnstone, Kerky-

Ž .acharian and Picard 1995 for a nice review of the wavelet-based method.
How to adapt the nonlinear wavelet thresholding method to fitting a func-
tional ANOVA model is an interesting open problem.

3.5. Multivariate splines as building blocks. Using univariate functions
and their tensor products to model �* restricts the domain of �* to be a
hyperrectangle. By allowing bivariate or multivariate functions and their
tensor products to model �*, we gain flexibility, especially when some ex-
planatory variables are of spatial type. We now show the applicability of
multivariate splines and their tensor products in a functional ANOVA model.
Throughout this subsection, we assume that XX is the Cartesian product of
compact sets XX , . . . , XX , where XX � � dl with d � 1 for 1 � l � L.1 L l l

Loosely speaking, a spline is a smooth, piecewise polynomial function. To
Ž .be specific, let � be a partition of XX into disjoint measurable sets and, forl l

simplicity, assume that these sets have common diameter a . By a splinen
function on XX , we mean a function g on XX such that the restriction of g tol l
each set in � is a polynomial in x � XX and g satisfies certain smoothnessl l l
conditions across the boundaries. With d � 1, d � 2 or d � 3, the resultingl l l
spline is a univariate, bivariate or multivariate spline, respectively.

Let G be a space of splines defined as in the previous paragraph forl
l � 1, . . . , L. We allow G to vary with the sample size. Then, under somel
regularity conditions on the partition � , G can be chosen to satisfy thel l

Ž . � � � �stability condition 7 . Therefore, g � A g for all g � G with A �� l l l
	d l �2 Ž . 	d s �2a , 1 � l � L see Section 2.2 . By Lemma 1, we see that A 
 a ,n s n

where d � Ý d for s � SS . Note that N � a	d l and N � a	d s, so N �s l � s l l n s n n
max N � a	d, where d � max d . We assume that the functions ��,s� SS s n s� SS s s
s � SS , are p-smooth and that the spaces G are chosen such that � �s s

� � � Ž p.inf g 	 � � O a for s � SS . To simplify our presentation, we avoid�g � G s ns
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writing the exact conditions on �� and G . For clear statements of theses s
Ž . Ž . Ž .conditions, see Chui 1988 , Schumaker 1991 or Oswald 1994 and the

references therein.
If na2 d � �, then the conditions in Theorems 2 and 3 are satisfied. Thus,n

� � � 2 Ž 	d 2 p. � � 2we have that � 	 � � O a �n 
 a for s � SS and � 	 �* �ˆ ˆs s p n n
Ž 	d 2 p. 	1�Ž2 p
d . �O a �n 
 a . If p � d�2, by taking a � n , we get that � 	ˆp n n n s

� � 2 Ž 	2 p�Ž2 p
d .. � � 2 Ž 	2 p�Ž2 p
d ..� � O n for s � SS and � 	 �* � O n . Whenˆs P P
Ž .d � 1 for 1 � l � L, this reduces to case iii of Corollary 2. The result herel

can be generalized to allow the various components �* to satisfy different
smoothness conditions and the sets in the triangulations � to have differentl
diameters. To obtain such a result, we need only find upper bounds for the
constants A and � by employing results from approximation theory ands s

Ž .then apply the theorems in this section. See Hansen 1994 for similar
results.

4. Proof of Theorem 1. We handle the three terms in the decomposition
of the error separately. The rates for the variance component and the
estimation bias are more convenient to get in empirical norm, while that for
the approximation error is easier to obtain in theoretical norm.

The following lemma plays a crucial role in relating the result in theoreti-
cal norm to the result in empirical norm. It reveals that the empirical inner
product is uniformly close to the theoretical inner product on the approximat-
ing space G. As a consequence, the empirical and theoretical norms are
equivalent over G. This lemma is proved in Section 7 in a more general form.

LEMMA 4. Suppose that lim A2 N �n � 0 and let t � 0. Then, except onn n n
an event whose probability tends to zero as n � �,

² : ² : � � � �f , g 	 f , g � t f g , f , g � G.n

Consequently, except on an event whose probability tends to zero as n � �,

1 2 2 2� � � � � �8 g � g � 2 g , g � G.Ž . n2

The previous lemma also leads to a sufficient condition for the empirical
identifiability of G.

COROLLARY 4. Suppose that lim A2 N �n � 0. Then, except on an eventn n n
whose probability tends to zero as n � �, G is empirically identifiable.

Ž . Ž .PROOF. Suppose 8 holds, and let g � G be such that g X � 0 fori
� � 2 � � 21 � i � n. Then g � 0 and thus g � 0. Since we require G to ben
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theoretically identifiable, this implies that g is identically zero. Therefore, if
Ž .8 holds, then G is empirically identifiable. The desired result follows from
Lemma 4. �

ŽVARIANCE COMPONENT. Assume that G is empirically identifiable. By
Corollary 4, this holds except on an event whose probability tends to zero as

. � 4n � �. Let � , 1 � j � N be an orthonormal basis of G relative to thej n
empirical inner product. Recall that � � QY and � � Q�. Thus, � 	 � �ˆ ˜ ˆ ˜

² : ² : � � 2 ² :2Ý � 	 �, � � � Ý Y 	 �, � � and � 	 � � Ý Y 	 �, � . Ob-ˆ ˜ ˆ ˜n n n nj j j j j j j j
�² : � �serve that E Y 	 �, � X , . . . , X � 0 andnj 1 n

2E Y 	 � X Y 	 � X X , . . . , X � � � X ,Ž . Ž .Ž . Ž .Ž .i i j j 1 2 i j i

where � is the Kronecker delta. Moreover, by the assumptions on the model,i j
2Ž .there is a positive constant M such that � x � M for x � XX . Thus,

n1 M M2 22 2² : � �E Y 	 � , � X , . . . , X � � X � X � � � .Ž . Ž .Ýn nj 1 n j i i j2 n nn i�1

� � � 2 � � Ž . � � 2Hence, E � 	 � X , . . . , X � M N �n and therefore, � 	 � �ˆ ˜ ˆ ˜n n1 n n
Ž . � � 2 Ž .O N �n . By Lemma 4, we have that � 	 � � O N �n .ˆ ˜P n P n
The following lemma is an important tool in handling the estimation bias.

It is proved in Section 7 in a more general form.

� 4LEMMA 5. Let M be a positive constant. Let h be a sequence of functionsn
� �on XX such that h � M for n � 1. Then,�n

1�2² : ² :h , g 	 h , g Nnn n n
sup � O .P ž /ž /� �g ng�G

ESTIMATION BIAS. Note that � 	 � � Q� 	 P�. Moreover,˜

² :Q� 	 P� , g n
� �9 Q� 	 P� � supŽ . n � �g ng�G

² : ² :� 	 P� , g 	 � 	 P� , gn
� sup .

� �g ng�G

² :Here, the second equality uses the fact that � 	 P�, g � 0. Let g* � G be
� �such that g* 	 �* � � . We have that, for g � G,� n

² : ² : ² : ² :� 	 P� , g 	 � 	 P� , g � � 	 g*, g 	 � 	 g*, gŽ .n n

² : ² :
 g* 	 P� , g 	 g* 	 P� , g .n
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Thus,
² : ² : ² :� 	 g*, g 	 � 	 g*, g g* 	 P� , gn n

� �� 	 � � sup 
 sup˜ n � � � �g gn ng�G g�G

² :g* 	 P� , g

 sup

� �g ng�G

� I 
 II 
 III.
To get an upper bound for I, note that � is bounded and that

� � � � � �sup g* � �* 
 sup g* 	 �* � �;� � �
n n

Ž .1�2hence, I � O N �n by Lemma 5. Using Lemma 4 to relate the empiricalP n
norm and the theoretical norm, we get that

� � � � � �II � g* 	 P�* � 2 g* 	 P�* � 2 P g* 	 �* � 2 �Ž .n n

and that
� �g

� �III � g* 	 P�* sup � 2 � ,n� �g ng�G

except on an event whose probability tends to zero as n � �. Consequently,
2 22 2� � Ž . � � Ž .� 	 � � O N �n 
 � ; thus, � 	 � � O N �n 
 � by Lemma 4.˜ ˜n P n n P n n

Ž . Ž� � � � .REMARKS. i If sup P� � � � �, then the argument can be simpli-� �n
Ž .fied considerably. In fact, it follows directly from 9 and Lemmas 4 and 5 that

� � ŽŽ .1�2 . Ž� � � � .Q� 	 P� � O N �n . The condition sup P� � � � � holds forn � �P n n
some approximating spaces G. For example, it is satisfied when G is a tensor

Ž .product spline space; see de Boor 1976 . But it is not clear whether this
condition holds for general approximating spaces, especially when G is an
approximation space for an unsaturated functional ANOVA model.

Ž .ii When the model is correctly specified, that is, when �* � �, the
argument can be simplified. In fact, except on an event whose probability
tends to zero as n � �,

� � � � � �Q� 	 P� � Q� 	 g* 
 P� 	 g*n n n

� � � �� Q�* 	 g* 
 2 P�* 	 g*n

� � � �� �* 	 g* 
 2 �* 	 g* � 3� .n n

However, this argument does not go through when the model is misspecified,
since Q� � Q�* is not generally true.

� �APPROXIMATION ERROR. Let g* � G be such that �* 	 g* � � and� n
� � � �thus, �* 	 g � � and �* 	 g � � . Since P is the theoretical orthogo-nn n

nal projection onto G,
22 2 2� � � � � �10 � 	 g* � P� 	 g* � P �* 	 g* � �* 	 g* .Ž . Ž .

Hence, by the triangle inequality,
2 2 2 2 2� � � � � � � �� 	 �* � 2 � 	 g* 
 2 �* 	 g* � 4 �* 	 g* � O � .Ž .n
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Ž .To prove the result for the empirical norm, using Lemma 4 and 10 , we
obtain that, except on an event whose probability tends to zero as n � �,

2 2 2� � � � � �� 	 g* � 2 � 	 g* � 2 �* 	 g* .n

Hence, by the triangle inequality,

2 2 2 2� � � � � �� 	 �* � 2 � 	 g* 
 2 �* 	 g* � O � .Ž .n n n P n

5. Proof of Theorem 3.

VARIANCE COMPONENT AND ESTIMATION BIAS. We first establish the rates of
convergence of the various components of the variance component � 	 � andˆ ˜
the estimation bias � 	 �. Write � � Ý � , � � Ý � and � �˜ ˆ ˆ ˜ ˜s� SS s s� SS s

0Ý � , where � , � , � � G . Then we have the ANOVA decompositionsˆ ˜s� SS s s s s s
Ž . Ž .� 	 � � Ý � 	 � and � 	 � � Ý � 	 � .ˆ ˜ ˆ ˜ ˜ ˜s� SS s s s� SS s s

We need the following result, which says that the components in the
empirical ANOVA decompositions of functions in G are not too confounded,
either in empirical norm or in theoretical norm.

LEMMA 6. Suppose lim A2 N �n � 0 for s � SS . Let � be defined as inn s s 1
Lemma 2 and let 0 � � � � . Then, except on an event whose probability2 1

� � 2 � ŽS .	 1 � � 2 � � 2tends to zero as n � �, g � � Ý g and g �n2 s � SS s
�Ž SS .	1 � � 2 0� Ý g for all g � Ý g , where g � G for s � SS .n2 s� SS s s� SS s s s

This lemma can be proved by using Lemma 4 and the same argument as in
Ž .the proof of Lemma 3.1 of Stone 1994 .

The conclusions about the variance component and the estimation bias in
Theorem 3 follow from Theorem 2 and Lemma 6. �

APPROXIMATION ERROR. Recall that � 	 �* is the approximation error.
� �0 0Write � � Ý � and �* � Ý � , where � � G and � � H fors� SS s s� SS s s s s s

�s � SS . We want to get rates of convergence of � 	 � to zero for s � SS . Tos s
this end, we need the following lemma, which tells us how well �� can bes
approximated by functions in G0. The proof of the lemma is given at the ends
of this section.

LEMMA 7. Suppose �� is bounded and that lim A2 N �n � 0 for s � SS .s n s s
Then, for each s � SS , there are functions g � G0 such thats s

Nr2� 2� �11 � 	 g � O 
 �Ž . Ýs s P snž /r�s
r�s
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and

Nr2� 2� �12 � 	 g � O 
 � .Ž . Ýns s P snž /r�s
r�s

By Lemma 7, for each s � SS , there are functions g � G0 such thats s
Ž . Ž . � � 2 Ž11 and 12 hold. Write g � Ý g . Then g 	 �* � O Ý N �n 
s� SS s P s� SS s

2 .Ý � , sos� SS s

Ns22 2 2� � � �g 	 � � P g 	 �* � g 	 �* � O 
 � .Ž . Ý ÝP sž /ns�SS s�SS

Therefore, by Lemma 6, except on an event whose probability tends to zero as
n � �,

Ns2 21	�Ž s. 2� � � �13 g 	 � � � g 	 � � O 
 � .Ž . Ý Ýs s 2 P sž /ns�SS s�SS

Ž .Hence, it follows from 11 and the triangle inequality that, for each s � SS ,

Ns2� 2� �� 	 � � O 
 � .Ý Ýs s P sž /ns�SS s�SS

Ž . Ž .The result in empirical norm follows from Lemma 4, 13 , 12 and the
triangle inequality. �

The proof of Lemma 7 needs the following lemma. For s � SS , let Q0 ands
Q denote the empirical orthogonal projections onto G0 and G , respectively.s s s

LEMMA 8. Suppose lim A2 N �n � 0 for s � SS . For g � G, set g 0 � Q0 gn s s s s
and g � Q g. Then, except on an event whose probability tends to zero ass s
n � �,

� � 2 1	�Ž SS . � 0 � 2 1	�Ž SS . � � 2g � � g � � g , g � G.Ý Ýn n n2 s 2 s
s�SS s�SS

ŽPROOF. Assume that G is empirically identifiable. By Corollary 4, this
.holds except on an event whose probability tends to zero as n � �. Then, by

Lemma 3, we can write g uniquely as g � Ý f , where f � G0 for s � SS .s� SS s s s
Observe that

� � 2 ² : ² 0: � � � 0 �g � f , g � f , g � f g .Ý Ý Ýn n n n ns s s s s
s�SS s�SS s�SS

By the Cauchy�Schwarz inequality and Lemma 6, the last right-hand side is
bounded above by

1�2 1�2 1�2
1�22 2 2 20 1	�Ž SS . 0� � � � � � � �f g � � g g .Ž .Ý Ý Ýn n n ns s 2 sž / ž / ž /

s�SS s�SS s�SS

Thus the first inequality follows. The second inequality is obvious. �
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� � � � �PROOF OF LEMMA 7. Let g � G be such that � 	 g � � . Write�s s s s s
� Ž � . 0 �g � g 
 g 	 g , where g � G and g 	 g � Ý G . We now ver-s s s s s s s s r � s, r � s r

ify that g has the desired property.s
Recall that G0 and Q are, respectively, the empirical orthogonal pro-r r

0 0Ž � .jections onto G and G . Since Q g 	 g � 0 and Q g � 0 for r � s,r r s s s r s
� � � 2r � s, it follows from Lemma 8 applied to G � G that g 	 g �ns s s

1	�Ž s. � � � 2� Ý Q g . Moreover,n2 r � s, r � s r s

�² :g , g ns r�� �Q g � supnr s � �g ng �G rr r

� � � �² : ² : ² :g 	 � , g � , g 	 � , gn ns s r s r s r� sup 
 .½ 5� � � �g gn ng �G r rr r

² � :The last inequality uses the triangle inequality and the fact that � , g � 0s r
for r � s, r � s. Note that �� is bounded. By Lemmas 4 and 5,s

1�2 1�2� � �� � � �Q g � g 	 � 
 O N �n � O � 
 O N �n .Ž . Ž . Ž .Ž . Ž .n nr s s s P r s P r

The desired results now follow. �

6. Correctly specified model. In this section, we assume that the
model is correctly specified. Under this assumption, we can use L approxi-2
mation to the target function rather than L approximation, as in the�

previous sections. As a consequence, the results of this section can be applied
Žto the case that the regression function or each ANOVA component of the

. Ž .regression function belongs to a Besov space defined below �a function
class that is broader than the Holder class.¨

� �Throughout this section, assume that � � H. Set � � inf g 	 � . Then g � G
constant � describes the best approximation to � by functions in G, mea-n
sured in the theoretical norm. Note that the function � � P� is the specified
best approximation.

THEOREM 4. Suppose that lim A2 N �n � 0. Then:n n n

Ž . Ž . � � 2 Ž . � � 2i variance component � 	 � � O N �n and � 	 � �ˆ ˜ ˆ ˜ nP n
Ž .O N �n ;P n

2 22 'Ž . Ž . � � Ž . � �ii estimation bias � 	 � � O � 
 A � � n and � 	 � �˜ ˜ nP n n n
2 'Ž .O � 
 A � � n ;P n n n

2 22 2Ž . Ž . � � Ž . � � Žiii approximation error � 	 � � O � and � 	 � � O � 
nn P n' .A � � n .n n

2 22 '� � Ž . � �Consequently, � 	 � � O N �n 
 � 
 A � � n and � 	 � �ˆ ˆ nP n n n n
2 'Ž .O N �n 
 � 
 A � � n .P n n n n
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PROOF OF THEOREM 4. We need the following lemma.

� �LEMMA 9. Suppose � is bounded. Let g � g � G with sup g 	 � � �.n n
Then

An2 2� � � � � �� 	 g � � 	 g 
 O � 	 g .n P ž /'n

PROOF. Now

12 22 2� � � �E � 	 g 	 � 	 g � var � X 	 g XŽ . Ž .Ž .Ž .n n
1 4� E � X 	 g XŽ . Ž .Ž .
n
1 2 2� � � �� � 	 g � 	 g .�n

� � � � � � � � � � Ž� � � �.Note that � 	 g � � 
 g and g � A g � A g 	 � 
 � .� � � � n n
Thus,

� � � � � �� 	 g � 1 
 A � 
 A � 	 g .Ž .� �n n

Hence,

22 22 2 2 2 22� � � � � � � � � �E � 	 g 	 � 	 g � 1 
 A � 
 A � 	 g � 	 gŽ .Ž . Ž .n �n nn

A2
n 2� �� O � 	 g .ž /n

Consequently,

An2 2� � � � � �� 	 g 	 � 	 g � O � 	 g .n P ž /'n

Ž Ž� � 2 . � � .Here, we use the fact that P � 	 g � 0 � 0 when � 	 g � 0. Then

conclusion follows. �

VARIANCE COMPONENT. Argue as in Theorem 1.

ESTIMATION BIAS. Note that

2 2 2� � � � � �� 	 � � Q� 	 P� � � 	 P� .˜ n n n

By Lemma 9, the above right-hand side is bounded above by

A An n2 2� � � �� 	 P� 
 O � 	 P� � � 
 O � .P n P nž / ž /' 'n n

The result for the theoretical norm follows from Lemma 4.
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� �APPROXIMATION ERROR. According to the definition of � , P� 	 � � � . Itn n
2 2 '� � Ž .follows from Lemma 9 that P� 	 � � � 
 O A � � n . �n n P n n

Consider the functional ANOVA model in Section 3 with �* � �. Suppose
the target regression function � has the ANOVA decomposition � � Ý � ,s� SS s
where � � H 0 for s � SS . Sets s

� �� � � G � inf g 	 � , s � SS .Ž .s sn s s
g�Gs

THEOREM 5. Suppose � is bounded and that lim A2 N �n � 0 for s � SS .s n s s
2 22 '� � Ž Ž .. � �Then � 	 � � O Ý N �n 
 � 
 A � � n and � 	 � �ˆ ˆ nP s� SS s s s s

22 'Ž Ž .. � �O Ý N �n 
 � 
 A � � n . Moreover, for each s � SS , � 	 � �ˆP s� SS s s s s s s
22 'Ž Ž .. � � Ž ŽO Ý N �n 
 � 
 A � � n and � 	 � � O Ý N �n 
ˆ nP s� SS s s s s s s P s� SS s

2 ' ..� 
 A � � n .s s s

Employing Lemma 8 and Theorem 4, the proof of this theorem is similar to
those of Theorems 2 and 3. We omit the details here.

Assume from now to the end of this section that XX is the Cartesian product
of compact intervals XX , . . . , XX . For simplicity, it is assumed that each of1 L

� � � � L Ž .these intervals equals 0, 1 and hence that XX � 0, 1 . Set d � max � s .s� SS

Ž .We define the Besov space as in DeVore and Popov 1988 . Let 1 � p � �
and let r be a positive integer. Let

� r �� f , t � sup � f , � , t � 0,Ž . Ž .p pr h
� �h �t

Ž . � �denote the modulus of smoothness of order r of f � L XX ; here h is thep
Euclidean length of the vector h, �r is the r th-order difference with steph

L � � Ž . � 4h � � and � is the L norm on the set XX rh � x: x, x 
 rh � XX . Letp p
� � 0 and 1 � q � �. We say that f is in the Besov space B � wheneverp, q

Ž .f � L XX andp

1�q
� dtq	�t � f , t � �Ž .Ž .pH r½ 5t0

Žfor any integer r � � . When q � �, the usual change from integral to sup is
.made.

COROLLARY 5. Let p � 2. Suppose �� � B � for s � SS . Let r � � ands p, �

Ž . 2 d Jn Ž . � � � 2 Ž d JnG � Wav J for 1 � l � L. If 2 � o n , then � 	 � � O 2 �nˆl n s s P
	2 � Jn. � � 2 Ž d Jn 	2 � Jn.
 2 for s � SS and � 	 �* � O 2 �n 
 2 . Consequently,ˆ P

Ž . Ž . Ž .if also � � d�2, then, for J � log n � 2� 
 d 
 O 1 , we have thatn
� � � 2 Ž 	2 � �Ž2 �
d .. � � 2 Ž 	2 � �Ž2 �
d ..� 	 � � O n for s � SS and � 	 �* � O n .ˆ ˆs s P P

PROOF. As in Corollary 3, A � 2�Ž s.Jn �2 and N � 2�Ž s.Jn. In addition,s s
	� Jn � Ž .� � 2 for s � SS see Proposition 2.4 of Meyer 1992 and Donoho ands

Ž .�Johnstone 1992 . The desired results follow from Theorem 5. �
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Ž . �REMARKS. i If f is �-smooth as defined in Section 2, then f � B ,�, �

where B � is the usual Holder�Zygmund class used in approximation the-¨�, �

Žory. Here we use � instead of p to denote the smoothness parameter, since
.p is used for another purpose to be consistent with the above cited literature.

Also, B � � B � for 1 � p � �.�, � p, �

Ž .ii We restrict our attention to p � 2. If p � 2, no linear estimate can
Ž .achieve the optimal rate; see Donoho and Johnstone 1992 .

Ž .iii Similar results can be obtained when the approximating spaces are
constructed from splines. To apply Theorem 5, we need only find an appropri-

Ž .ate upper bound for each � by using Theorem 12.8 of Schumaker 1981 .s

7. Two useful lemmas. In this section, we state and prove two lemmas
that are analogs of Lemmas 4 and 5 for more generally defined theoretical
and empirical inner products and norms. These more general results are

Ž .needed in Huang and Stone 1997 .
Consider a WW-valued random variable W, where WW is an arbitrary set. Let

W , . . . , W be a random sample of size n from the distribution of W. For any1 n
Ž . � Ž .� Ž . Ž . n Ž .function f on WW , set E f � E f W and E f � 1�n Ý f W . Let UU ben i�1 i

Ž .another arbitrary set. We consider a real-valued functional � f , f ; w de-1 2
fined on w � WW and functions f , f on UU. For fixed functions f and f on UU,1 2 1 2
Ž . Ž .� f , f ; w is a function on WW . For notational simplicity, write � f , f �1 2 1 2
Ž .� f , f ; w . We assume that � is symmetric and bilinear in its first two1 2

Ž . Ž .arguments: given functions f , f and f on UU, � f , f � � f , f and1 2 1 2 2 1
Ž . Ž . Ž .� af 
 bf , f � a� f , f 
 b� f , f for a, b � �.1 2 1 2
Throughout this section, let the empirical inner product and norm be

defined by
2² : � � ² :f , f � E � f , f and f � f , f ,Ž .n n n1 2 n 1 2 1 1 1

and let the theoretical versions of these quantities be defined by
2² : � � ² :f , f � E � f , f and f � f , f .Ž .1 2 1 2 1 1 1

In particular, this more general definition of the theoretical norm is now used
in the definition of the constant A . We assume that there are constants Mn 3
and M such that4

� � � �� f , f � M f fŽ . � �1 2 3 1 2�

and
2 2� � � �var � f , f � M f f .Ž . �1 2 4 1 2

Ž .Taking WW � UU � XX and � f , f � f f , we get the inner products and1 2 1 2
norms used in the previous sections. In this case, the assumptions on � are
satisfied with M � M � 1. Lemmas 4 and 5 then follow from Lemmas 103 4
and 11, respectively.

LEMMA 10. Lemma 4 holds for the inner products and norms defined in
this section.



J. Z. HUANG268

PROOF. We use a chaining argument that is well known in the empirical
�Ž .process theory literature; for a detailed discussion, see Pollard 1990 , Sec-

� � � � 4tion 3 . Let G � g � G: g � 1 denote the unit ball in G relative to theUB
theoretical norm.

� � � �Let f , f , g , g � G , where f 	 f � � and g 	 g � � for some1 2 1 2 UB 1 2 1 1 2 2
positive numbers � and � . Then, by the bilinearity and symmetry of �, the1 2
triangle inequality and the assumptions on �,

� f , g 	 � f , g � � f 	 f , g 
 � f , g 	 gŽ . Ž . Ž . Ž .1 1 2 2 1 2 1 2 1 2� � �

� � � � � � � �� M f 	 f g 
 M f g 	 g� � � �3 1 2 1 3 2 1 2

2 � � � � 2 � � � �� M A f 	 f g 
 M A f g 	 g3 n 1 2 1 3 n 2 1 2

� M A2 � 
 �Ž .3 n 1 2

and

var � f , g 	 � f , gŽ . Ž .1 1 2 2

� 2 var � f 	 f , g 
 2 var � f , g 	 gŽ . Ž .1 2 1 2 1 2

� � 2 � � 2 � � 2 � � 2� 2 M g f 	 f 
 2 M f g 	 g� �4 1 1 2 4 2 1 2

2 � � 2 � � 2 � � 2 � � 2� 2 M A g f 	 f 
 f g 	 gŽ .4 n 1 1 2 2 1 2

� 2 M A2 � 2 
 � 2 .Ž .4 n 1 2

� Ž . Ž .�Applying the Bernstein inequality see 2.13 of Hoeffding 1963 , we get that

P E 	 E � f , g 	 � f , g � tsŽ . Ž . Ž .Ž .Ž .n 1 1 2 2

n2 t 2s2�2
� 2 exp 	 .2 2 2 2½ 52 M nA � 
 � 
 2 M A � 
 � nts�3Ž .Ž .4 n 1 2 3 n 1 2

Therefore,

P E 	 E � f , g 	 � f , g � tsŽ . Ž . Ž .Ž .Ž .n 1 1 2 2

t 2 n s2

� 2 exp 	 2 2 2ž /½ 5ž /8 M A � 
 �4 n 1 214Ž .
3t n s


 2 exp 	 .2½ 5ž /ž /8 M � 
 �A3 1 2n

We will use this inequality in the following chaining argument.
k � 4Let � � 1�3 for k � 0, and let g � 0 � GG � GG � ��� be a sequence ofk 0 1

� �subsets of G with the property that min g 	 g* � � for g � G .UB g*� GG k UBk

Such sets can be obtained inductively by choosing GG as a maximal supersetk
of GG such that each pair of functions in GG is at least � apart. Thek	1 k k

Ž . ŽŽ . .Nn Žk
1.Nn Žcardinality of GG satisfies � GG � 2 
 � �� � 3 . Observe thatk k k k
Ž .there are � GG disjoint balls each with radius � �2, which together can bek k

.covered by a ball with radius 1 
 � �2.k
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Ž .K Ž 2 .Let K be an nonnegative integer such that 2�3 � t� 4M A . For each3 n
� � � � Kg � G , let g be an element in GG such that g 	 g � 1�3 . Fix aUB K K K

positive integer k � K. For each g � GG , let g� denote an element in GGk k k	1 k	1
� � � �such that g 	 g � � . Define f for k � K in a similar manner. Byk k	1 k	1 k

the triangle inequality,

sup E 	 E � f , gŽ . Ž .Ž .n
f , g�GUB

� �� sup E 	 E � f , g 	 � f , gŽ . Ž . Ž .Ž .n K K
f , g�GUB

K
� �
 sup E 	 E � f , g 	 � f , g .Ž . Ž . Ž .Ž .Ý n k k k	1 k	1

f , g �GGk�1 k k k

Observe that

� � � �E 	 E � f , g 	 � f , g � 2 � f , g 	 � f , gŽ . Ž . Ž . Ž . Ž .Ž .n K K K K �

� 4M A2 �3K � t�2 K .3 n

Hence,

P sup E 	 E � f , g � tŽ . Ž .Ž .nž /
f , g�GUB

1
� �� P sup E 	 E � f , g 	 � f , g � t � 0Ž . Ž . Ž . Ž .Ž .n K K Kž /2f , g�GUB

K 1
� �
 P sup E 	 E � f , g 	 � f , g � tŽ . Ž . Ž .Ž .Ý n k k k	1 k	1 kž /2f , g �GGk�1 k k k

�
2 �� � GG sup P E 	 EŽ . Ž .Ý k nž

f , g �GGk�1 k k k

1
� � �� � f , g 	 � f , g � t .Ž . Ž .Ž .k k k	1 k	1 k /2

Ž .Thus, by 14 ,

P sup E 	 E � f , g � tŽ . Ž .Ž .nž /
f , g�GUB

22 k� t n 1�2Ž .
� 2 exp 2 k 
 1 log 3 N 	Ž .Ž .Ý n 2 2 2ž / k	1 k	1½ 58 M A4 n 1�3 
 1�3k�1 Ž . Ž .

� k3t n 1�2

 2 exp 2 k 
 1 log 3 N 	 .Ž .Ž .Ý n 2 k	1 k	1½ 5ž /8 M A 1�3 
 1�33 nk�1
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Since lim A2 N �n � 0, the right-hand side of the above inequality isn n n
bounded above by

2 k k2� t n 1 3 3t n 1 3
2 exp 	 
 exp 	Ý 2 2ž / ž / ž / ž /ž / ž /½ 5 ½ 516M 18 2 16M 6 2A A4 3n nk�1

Ž . 	1for n sufficiently large. By the inequality exp 	x � e �x for x � 0, this is
bounded above by

2 k k2 2� 288M A 2 32 M A 24 n 3 n	12 e 
 ,Ý 2 ž / ž /n 3 t n 3tk�1

which tends to zero as n � �.
Consequently, except on an event whose probability tends to zero as

n � �,

² : ² :f , g 	 f , gn
sup � sup E 	 E � f , g � t .Ž . Ž .Ž .n� � � �f gf , g�G f , g�GUB

The second result follows from the first one by taking t � 1�2. �

LEMMA 11. Lemma 5 holds for the inner products and norms defined in
this section.

� 4PROOF. Let � be an orthonormal basis of G relative to the theoreticalj
inner product. For each function g � G, we have the expansion g � Ý b �j j j

� � 2 2and g � Ý b . Thus,j j

² : ² : ² : ² :h , g 	 h , g � b h , � 	 h , �Ž .Ýn nn n j n j n j
j

1�21�2
22 ² : ² :� b h , � 	 h , � .Ž .Ý Ý nj n j n j½ 5 ½ 5

j j

This leads to

1�2² : ² :h , g 	 h , gn 2n n ² : ² :sup � h , � 	 h , � .Ž .Ý nn j n j½ 5� �gg�G j

² : ² :Since E h , � � h , � ,nn j n j

12² : ² : ² :E h , � 	 h , � � var h , � � var � h , � .Ž .Ž . Ž .n nn j n j n j n jn

By the conditions on �,

� � 2 � � 2 2var � h , � � M h � � M M .Ž .Ž . �n j 4 n j 4
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Hence,

N2 n2² : ² :E h , � 	 h , � � M M .Ž .Ý nn j n j 4ž / nj

The conclusion follows from the Markov inequality. �
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