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We consider a diffusion model of small variance type with positive
drift density varying in a nonparametric set. We investigate Gaussian and
Poisson approximations to this model in the sense of asymptotic equivalence
of experiments. It is shown that observation of the diffusion process until its
first hitting time of level one is a natural model for the purpose of inference on
the drift density. The diffusion model can be discretized by the collection of
level crossing times for a uniform grid of levels. The random time increments
are asymptotically sufficient and obey a nonparametric regression model
with independent data. This decoupling is then used to establish asymptotic
equivalence to Gaussian signal-in-white-noise and Poisson intensity models
on the unit interval, and also to an i.i.d. model when the diffusion drift
function f is a probability density. As an application, we find the exact
asymptotic minimax constant for estimating the diffusion drift density with
sup-norm loss.

1. Introduction. Diffusion processes defined by stochastic differential equa-
tions have been widely used for modeling purposes. Consider the autonomous dif-
ferential equation

dy(t)

dt
= f (y(t)), t ≥ 0, y(0)= 0(1.1)

where f is some continuous function. When f is positive, the solution y of (1.1)
is monotone increasing and can be used to model growth processes. Assume that
this system is modified by a small random perturbation induced by a Wiener
processWt . This leads to a stochastic differential equation

dYt = f (Yt) dt + ε dWt, t ≥ 0, Y0 = 0(1.2)

where ε is a small parameter. Diffusion processes obtained as small random
perturbations of deterministic dynamical systems have been extensively studied
in probability theory [cf., e.g., Freidlin and Wentsell (1998)]. We are interested in
the statistical model where the process Yt is observed and the positive function f
is unknown.
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Compared with the signal function g in the white-noise model

dZu = g(u) du+ ε dWu, 0 ≤ u≤ 1,Z0 = 0,(1.3)

the drift density f has to fulfill stronger conditions, in order to ensure existence and
uniqueness of nonexploding solutions of (1.2) [cf. Karatzas and Shreve (1991)].
The Lipschitz condition imposed here [see condition (C2) in Section 2.1 below] is
essentially inherited from the ordinary differential equation (1.1). Note that in (1.2)
the function f is a function of the state variable Yt , whereas g in (1.3) is a function
of time. Another feature which distinguishes the diffusion model (1.2) from the
white-noise model (1.3) is that Yt in (1.2) is a continuous strong Markov process.

We are interested here in the statistical theory for Markov and diffusion
processes, specifically in approximation of the respective experiments by simpler
ones like Gaussian and Poisson experiments. For the diffusion model (1.2), two
types of asymptotics have been considered: fixed time interval t ∈ [0, T ] with noise
intensity ε→ 0 [see Kutoyants (1985, 1994)], and fixed noise intensity (ε = 1) for
an expanding time interval T → ∞. In the latter case Yt is commonly assumed
stationary and ergodic [cf. Kutoyants (1997) and references therein]. Note that
the ergodic case requires a different set of conditions on the drift function; in
particular, f cannot be positive as in our model.

For both types of asymptotics, standard local likelihood theory leads to
Gaussian limits of experiments which provide a satisfactory basis for efficient
parametric inference. Our aim however is reduction of nonparametric experiments,
when the drift function f varies in a function class F , within the framework of
asymptotic equivalence [cf. Brown and Low (1996), Nussbaum (1996)]. It turns
out that a straightforward reduction to a Gaussian or Poisson experiment is possible
under a specific assumption: the diffusion model (1.2) with small noise intensity
ε→ 0 is observed until its first hitting time T1(Y ) of level 1. We shall see below
(Remark 1 at the end of Section 2.1) that this model is appropriate when we would
like to estimate f (u), 0 ≤ u≤ 1 and we are not interested in its values beyond the
interval.

This special observation model arises in a rather natural way from the Markov
character of our diffusion process. For any Gaussian approximation of a stochastic
process experiment, a natural first step is to approximate the process by some
collection of independent random variables [“decoupling”; cf. de la Peña and Giné
(1999) for a general theory]. The appropriate method is not discretization of the
process in time which results in a Markov chain; in fact discretization at equidistant
time points ti = i/n was the method applied in Milstein and Nussbaum (1998)
to the case of a fixed observation interval t ∈ [0, T ]. That method led to some
interesting statistical equivalences (see below for a more detailed discussion), but
not to a Gaussian approximation. Time discretization is also applied in the seminal
paper of Brown and Low (1996) to the white-noise model (1.3).

In the Markov diffusion model (1.2) it turns out that space discretization is
more natural and leads to a statistically useful decoupling. Assume that the drift
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density f is nonnegative; in that case the process Yt which starts at Y0 = 0 tends
to increase and will eventually reach value 1 almost surely. Even though the state
space for the process Yt is the real line, consider the interval [0,1] as the area of
interest here and endow it with an equidistant grid of points i/n, i = 1, . . . , n. Let
Ti/n be the first hitting time of level i/n by the process Yt ; then the increments
T(i+1)/n − Ti/n are independent random variables. That fact is an immediate
consequence of the Markov character of the diffusion process: these increments
depend on the past only via the value of Yt at Ti/n, which is i/n by definition.
This value depends on i, but is nonrandom and thus independent of the past; hence
T(i+1)/n−Ti/n does not depend on the past of the process. This idea of using space
rather than time discretization is well known in a probabilistic context; is has been
applied in algorithms of path reconstruction [Kushner and Dupuis (1992), Milstein
(1998) and Milstein and Tretyakov (1999)].

This reduction to independent variables takes place in the sense of the
�-distance for experiments, for small noise asymptotics ε→ 0. In the sequel we
use available theory for nonparametric regression models [Grama and Nussbaum
(1998)] to obtain a Gaussian white noise approximation of type (1.3) for g = f 1/2

where f is the drift function in (1.2). It is obvious that conceptually, the time u in
this latter model stands for the space variable in the original model (1.2); thus our
arguments are related to the well-known technique of time change for stochastic
processes.

The Euler type (time) discretization of Yt in (1.2) on a fixed interval t ∈ [0,1]
has been considered by Milstein and Nussbaum (1998). It was shown that the
statistic (Yt1, . . . , Ytn), where ti = i/n, is asymptotically sufficient for ε→ 0, in the
experiment given by observations Yt , t ∈ [0,1], from (1.2), if n= nε → ∞ in such
a way that εnε → ∞ and f varies in a certain nonparametric set of functions F .
This extended the result obtained in the corresponding parametric problem [see
Laredo (1990) and Genon–Catalot (1990)]. The proof was based on considering
the statistical model associated with the Euler scheme:

yi = yi−1 + n−1f (yi−1)+ εn−1/2ξi, y0 = 0

where (ξi, i = 1, . . . , n) are i.i.d. standard normal variables. It was shown that
Le Cam’s deficiency distance between these experiments tends to 0 as ε→ 0.

In this paper we consider the experiment given by the diffusion process Yt
defined in (1.2) when it is observed until its first hitting time T1(Y ) of level
one. The unknown function f belongs to the set F = FK,m associated with two
positive constantsK andm; see Section 2.1 below for details. This will be our first
experiment E ε0 having parameter set F .

In the model (1.2) let us consider the hitting time process

Ta = Ta(Y )= inf{t ≥ 0 :Yt = a}
defined on an interval of levels a ∈ [0, a1] for some prescribed a1 > 0. This
process has some nice properties. First, it is an increasing Lévy process (a process
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with independent positive increments). Second, its observation is equivalent to the
observation of the record process

Mt = sup
s≤t
Ys, t ∈ [0, Ta1(Y )].

Indeed, the function a 
→ Ta(Y ), a ∈ [0, a1], is the left continuous pseudo-inverse
of t 
→Mt , t ∈ [0, Ta1(Y )]. Records of diffusion processes occur in mathematical
finance [records of stock market indices; cf. Musiela and Rutkowski (1997),
Chapter 9.6].

For the sake of simplicity, we assume from now on a1 = 1. In this paper we
address the problem of inference on the function f defined on [0,1] from discrete
observations of the hitting time process, that is, of times Ti/n(Y ), i = 1, . . . , n.
These random times are almost surely finite under the assumption that f is
positive. We ask how much information about the unknown drift function f is lost
when only discrete observations on the path Yt are available. It turns out that space
discretization based on successive level crossings is feasible in the diffusion model
under the assumption of a positive f , and leads to further interesting statistical
results.

The second experiment is closely related to the increments of the hitting times
(normalized by n), that is, to n(Ti/n(Y )−T(i−1)/n(Y )). Consider a triangular array
of n independent random variables (Xin, i = 1, . . . , n) distributed according to an
inverse Gaussian law IG((f ( i−1

n
))−1, n−1ε−2). Recall that the inverse Gaussian

distribution IG(µ,λ) can be defined as the distribution of the hitting time of
level λ1/2 by the process Xt = λ1/2µ−1t +Wt (µ,λ > 0). It has a density

hµ,λ(t)=
(
λ

2πt3

)1/2

exp
(
−λ(t −µ)

2

2µ2t

)
1t>0(t)(1.4)

[see, e.g., Chhikara and Folks (1989)]. Denote by Gn,ε this experiment indexed
again by f ∈ F .

Our first result (Theorem 1) states that, as ε goes to 0, the deficiency distance
of these two experiments tends to 0 if n = nε goes to infinity in such a way that
εnε → ∞. As an important consequence, we obtain that the statistic consisting of
the hitting times of levels i/n, i = 1, . . . , n, of the diffusion (Yt , t ≥ 0), the statistic
(Ti/n(Y ), i = 1, . . . , n), is asymptotically sufficient (Corollary 1). Here again,
these results extend those obtained in the parametric drift estimation problem for
diffusion hitting times [Genon-Catalot and Laredo (1987) and Laredo (1990)].

The experiment Gn,ε can be seen as a nonparametric regression model with
independent data. Using results of Grama and Nussbaum (1998) for such models,
we arrive at a Gaussian approximation for our diffusion experiment (1.2). Indeed,
consider an experiment given by an observed signal in white noise

dZu = f 1/2(u) du+ ε

2
dWu, 0 ≤ u≤ 1,Z0 = 0,(1.5)
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with ε tending to 0 and f ∈ F . Taking nε = [ε−2] (where [ε−2] denotes the largest
integer ≤ ε−2), we prove that Gnε,ε and the signal-in-white-noise model (1.5) are
asymptotically equivalent (Theorem 2).

Another approximating experiment is given by an observed inhomogeneous
Poisson process on [0,1] with intensity ε−2f (u), u ∈ [0,1] where f ∈ F . For this
step we use the asymptotic equivalence of the Poisson process with (1.5) which is
essentially shown in Grama and Nussbaum (1998). This approximation seems to
be more convenient for some purposes than (1.5), especially when inference on f
rather than on f 1/2 is desired. As an application, we derive the Korostelev constant
(exact asymptotic minimax risk for sup norm loss) for the diffusion drift f ∈ F
from the corresponding result in the Poisson process model.

Consider the special case where the restriction of the drift function f to [0,1] is
not only positive, but is also assumed to have integral one. It has been shown
in Nussbaum (1996) that when ε−2 = n takes integer values then the signal-
in-white-noise model (1.5) is asymptotically equivalent to the experiment given
by n observed i.i.d. variables having density f on the unit interval. We thus
obtain a rather unexpected connection between the i.i.d. model and the diffusion
experiment (1.2), in the sense of asymptotic equivalence (Corollary 2).

Section 2 contains the notation, the statement of the main results and some
recap on the Le Cam deficiency distance �. In Section 3 we introduce an
experiment which is exactly equivalent to the triangular array (Xin, i = 1, . . . , n),
but comparable to the diffusion experiment E ε0 , as in Milstein and Nussbaum
(1998). Using this experiment, in Section 4 we compute a bound for the�-distance
between the diffusion experiment (1.2) and the other ones. In Section 5 we present
the argument leading on to the Gaussian experiment, specializing the exponential
family nonparametric regression model of Grama and Nussbaum (1998) to the
inverse Gaussian case. In Section 6 the Poisson approximation is proved, and in
Section 7 we discuss asymptotic minimax estimation.

2. Notation and main results.

2.1. Definition of the experiments. Let ( ,A, (At )t≥0,P) be a probability
space endowed with a filtration (At ) satisfying the usual conditions, and let
(Wt, t ≥ 0) be an (At )- Brownian motion defined on  . For f : R → R, consider
the process Yt defined by the stochastic differential equation (1.2).

The parameter ε is assumed to be known. The function f varies in a set
F = FK,m associated with two positive constants K , m, defined by the following
conditions:

f (x)≥m ∀x ∈ R,(C1)

f (0)≤K, |f (x)− f (y)| ≤K|x − y| ∀x, y ∈ R.(C2)
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It follows from (C1) and (C2) that any function f ∈ F satisfies the linear growth
condition 0< f (x)≤K(1 + |x|). Hence the stochastic differential equation (1.2)
has a unique strong solution (Yt , t ≥ 0). Let T1(Y ) be the first hitting time of level 1
by the sample path (Yt , t ≥ 0). Condition (C1) implies that T1(Y ) is finite almost
surely. The first experiment considered here is associated with the observation
(Yt , t ∈ [0, T1(Y )]).

We are now able to construct the canonical experiment. Let C(R+,R) be the
space of continuous real functions defined on R

+, let (Xt , t ≥ 0) be the canonical
process of C(R+, R), C0

t = σ(Xs, s ≤ t), Ct =⋂
s>t C

0
s and C =∨

t≥0 Ct .
Denote by P εf the distribution of (Yt , t ≥ 0) defined by (1.2) on (C(R+,R),C).

Now, for x ∈ C(R+,R) and a ∈ R, let

Ta(x)= inf{t ≥ 0 :x(t)= a}.(2.1)

Define T = T1(X), the hitting time of level 1 by the canonical process (Xt ,
t ≥ 0), and let

P
T,ε
f = P εf | CT(2.2)

be the restriction of P εf to the σ -algebra CT . The first experiment is now
described by

E ε0 = (
C(R+,R),CT ,

{
P
T,ε
f , f ∈ F

})
.(2.3)

Let us now present the second experiment. For (µ,λ) ∈ (R+)2, we denote by
IG(µ,λ) the inverse Gaussian distribution with density given in (1.4). The mean
of this distribution is µ and the variance is µ3/λ. Consider now a triangular array
of n independent random variables (Xin, i = 1, . . . , n) such that

Xin ∼ IG

((
f

(
i − 1

n

))−1

, n−1ε−2

)
.(2.4)

The realization of such a triangular array can be obtained in the following way. Let
B1, . . . ,Bn be n independent Brownian motions and set

X̃in = inf
{
t ≥ 0 :

i − 1

n
+ f

(
i − 1

n

)
t + εBit = i

n

}

= inf
{
t ≥ 0 :

1

ε
f

(
i − 1

n

)
t +Bit = 1

nε

}
.

(2.5)

Then X̃in ∼ IG(n−1(f ( i−1
n
))−1, n−2ε−2), and from the scaling properties of the

inverse Gaussian distribution [cf. (3.7) below] it follows that for Xin = nX̃in we
have (2.4). Define

P εn,f := L(X1
n, . . . ,X

n
n).(2.6)
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This second experiment is now described by

Gn,ε = (
R
n,B(Rn), {P εn,f , f ∈ F }),(2.7)

where B(Rn) denotes the Borel σ -algebra of R
n.

The third experiment is defined by

E ε1 = (
C([0,1],R),B, {Qεf ,f ∈ F }),(2.8)

where B is the Borel sigma algebra ofC([0,1],R) andQεf denotes the distribution
of the process (Zu, 0 ≤ u≤ 1) given by

dZu = f 1/2(u) du+ ε

2
dWu, 0 ≤ u≤ 1,Z0 = 0.(2.9)

Let Q̃εf be the distribution of an inhomogeneous Poisson process with intensity
ε−2f (u), u ∈ [0,1], on the unit interval. Consider the experiment

E ε2 = (
M,BM, {Q̃εf , f ∈ F }),(2.10)

where (M,BM) is the appropriate measurable space of integer valued measures.
Finally, let F1 = F1,K,m be the subset of those f ∈ F which integrate to one;
these are probability densities. Let E εi,1 be the subexperiments of E εi , i = 0,1,
with parameter space F1 and let En3 be the experiment given by n i.i.d. random
variables with density f ∈ F1 on the unit interval. Our aim is to compare these
experiments which are indexed by the same parameter set F = FK,m (or the set
F1 ⊂ F , respectively), but which are defined on different observation spaces.

REMARK 1. Let us point out that, except for E ε0 , f need not be defined outside
the interval [0,1]. Thus the parameter can be taken to be the restriction of the
function f to the interval [0,1], for the experiments Gn,ε, E ε1 and En2 . In fact,
for E ε0 , our results show that we could have defined f on [0,1] only and taken any
extension of f on R satisfying the conditions of F as, for instance, f (x)= f (0)
for x ≤ 0; f (x) = f (1) for x ≥ 1. Note that in model (1.2), the sample path
(Yt , t ≤ T1(Y )) converges in P εf -probability unformly as ε→ 0 to the solution of
the ordinary differential equation (1.1) (y(t), t ≤ T1(y)). Thus asymptotically the
domain where f is observed collapses to this latter set of values which is exactly
the interval [0,1].

2.2. Statement of results. The notions of deficiency distance of experiments
and asymptotic sufficiency are briefly reviewed in the next subsection.

THEOREM 1. If as ε→ 0, n = nε → ∞ in such a way that εnε → ∞ then
the experiments E ε0 and Gn,ε are asymptotically equivalent, that is, for the Le Cam
deficiency distance � we have

�
(
E ε0 ,G

n,ε)→ 0 as ε→ 0.
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Since the mapping a → Ta(Y ) is increasing from [0,1] to [0, T1(Y )], the
statistic (Ti/n(Y ), i = 1, . . . , n) is well defined. An important consequence of
Theorem 1 is the following.

COROLLARY 1. Under the conditions of Theorem 1, for the diffusion model
(Yt , t ≥ 0) observed up to T1(Y ) the statistic (Ti/n(Y ), i = 1, . . . , n) defined by
the hitting times of levels i/n, i = 1, . . . , n, is asymptotically sufficient as ε→ 0.

The next two results state asymptotic equivalence between the signal-in-white-
noise model E ε1 defined in (2.8), the diffusion experiment E ε0 and the Poisson
experiment En2 .

THEOREM 2. We have

�(E ε0 ,E
ε
1 )→ 0 as ε→ 0.

THEOREM 3. We have

�(E ε0 ,E
ε
2 )→ 0 as ε→ 0.

Theorem 2 also implies an i.i.d. approximation. The function class F1 is
contained in the class for which the signal-in-white-noise model and the i.i.d.
model with n data on the unit interval are asymptotically equivalent if ε = n−1/2,
cf. Nussbaum (1996). It then easily follows that �(E ε1,1,E

n
3 )→ 0 as ε−2 → ∞

along integer values.

COROLLARY 2. Suppose that ε takes values ε = n−1/2 where n is integer.
Then

�(E ε0,1,E
n
3 )→ 0 as n→ ∞.

REMARK 2. The result of Theorem 3 can be confirmed by calculating the
asymptotic Fisher information in both models. Indeed, asymptotic equivalence in
the Le Cam sense for the nonparametric models entails the same for parametric
submodels, and hence equality of asymptotic Fisher information for regular cases.
Consider a parametric submodel of (1.2) where f = fϑ , ϑ ∈ *, * is an open
interval and the process is observed between 0 and T1(Y ). According to Genon-
Catalot and Laredo (1987), if the model is sufficiently regular, then the asymptotic
Fisher information (divided by ε−2) is

I (ϑ)=
∫ 1

0

(
∂

∂ϑ
fϑ(x)

)2

f−1
ϑ (x) dx.

This coincides with the Fisher information (divided by n) in a Poisson process
model with intensity nfϑ , ϑ ∈ *, or for a model of n i.i.d. observations with
density fϑ on [0,1] if all fϑ integrate to one.
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REMARK 3. Kutoyants [(1985) and (1994), Chapter 4.1] considers nonpara-
metric estimation of the drift function f for model (1.2), when it is continuously
observed on a fixed time interval [0, T ], under the assumption that f is bounded
away from 0. Using kernel type estimates, he proves that the rates of convergence
are identical to those of density estimation for i.i.d. variables, for a given smooth-
ness condition on f. The equivalences stated in Theorem 2 and Corollary 2 imply
such a result for our model with random stopping time Ta(Y ), but have much more
implications (cf. Section 7). In the model with fixed T , special conditions have to
be imposed to ensure that the drift function f (x) can be estimated on a given inter-
val x ∈ [0, a], in view of the fact that the solution y(t) of the underlying differential
equation (1.1) depends on the unknown f . Thus if f is to be estimated on a given
interval [0, a], it appears more natural to observe the process until Ta(Y ) as in
our model. Comparing the diffusion experiments with fixed and random stopping
times is of interest, but is beyond the scope of this paper.

2.3. The Le Cam deficiency distance. This pseudo distance is generally
denoted �. In what follows, all measurable spaces (called sample spaces) are
supposed to be Polish metric spaces equipped with their Borel σ -algebras.

Consider two experiments with the same parameter space F , say E = (X,A,
{Pf ,f ∈ F }) and G = (Y,B, {Qf ,f ∈ F }), but with possibly different sample
spaces. Assume that the two families {Pf ,f ∈ F } and {Qf ,f ∈ F } are
dominated.

Consider now a Markov kernelM(x,dy) from (X,A) to (Y,B), that is, for all
B ∈ B the mapping x→M(x,B) is A-measurable and for all x ∈ X,M(x,dy) is
a probability measure on (Y,B). Denote by MPf the image probability measure
of Pf under the kernelM , that is,

MPf (B)=
∫
X
M(x,B)Pf (dx) for B ∈ B.

The experiment ME = (Y,B, {MPf , f ∈ F }) is called a randomization of E by
the kernel M . It has the same sample space as G. Let M denote the set of Markov
kernels from (X,A) to (Y,B).

DEFINITION 1. The deficiency of E with respect to G is given by

δ(E ,G)= inf
M∈M

sup
f∈F

‖MPf −Qf ‖TV,

where ‖ · ‖TV denotes the total variation norm for measures.

DEFINITION 2. The deficiency distance � is given by

�(E ,G)= max{δ(E ,G), δ(G,E)}.
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In fact, � is a pseudo-distance. Two experiments are said to be equivalent
whenever�(E ,G)= 0. In the sequel we shall use two basic properties of �.

PROPERTY 1. Let T : (X,A)→ (Y,B) be a measurable mapping and let T E
the image experiment of E by the (deterministic) kernel T . Then,�(E , T E)= 0 if
and only if T is a sufficient statistic for the experiment E .

PROPERTY 2. Let the experiments E and G have the same sample space
((X,A)= (Y,B)) and define

�0(E ,G)= sup
f∈F

‖Pf −Qf ‖TV.

Then

�(E ,G)≤�0(E ,G).(2.11)

Consider now sequences Eε,Gε for ε→ 0; here everything except the parameter
space F may depend on ε.

DEFINITION 3. (i) The sequences Eε,Gε are called asymptotically equivalent
(or accompanying experiments) if �(Eε,Gε)→ 0.

(ii) Let Gε, Eε be two experiments having the same sample space, and let Tε be
a sufficient statistic in Gε with values in an arbitrary measurable space (possibly
depending on ε). The statistic Tε is called asymptotically sufficient for Eε if
�0(Eε,Gε)→ 0.

3. An accompanying diffusion experiment. It is well known and clear from
its definition that it is difficult to compute the�-distance between two experiments
when they are not defined on the same measurable space. So, following Brown
and Low (1996) and Milstein and Nussbaum (1998), we define another expe-
riment G

n,ε
which has the same observation space as E ε0 .

Let (t, z) ∈ R
+ × C(R+,R). Consider, for i = 1, . . . , n the times Ti/n(z) =

inf{t ≥ 0, z(t)= i/n}, T0(z)= 0, and the function

fn(t, z)=
n∑
i=1

f

(
i − 1

n

)
1(T(i−1)/n(z),Ti/n(z)](t).(3.1)

Define the diffusion type process (Y t , t ≥ 0) on ( ,A, (At )t≥0,P) as the solution
of the stochastic differential equation{

dY t = fn(t, Y ) dt + ε dWt,
Y 0 = 0.

(3.2)

Let T1(Y ) be the first hitting time of level 1 by the path Y t . Again, by
condition (C1), T1(Y ) is finite almost surely, and we can describe the experiment
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associated with the observation (Y t , t ∈ [0, T1(Y )]). Denote by P̄ εn,f the distribu-

tion of (Y t , t ≥ 0) on (C(R+,R),C) and set

P̄
T ,ε
n,f = P̄ εn,f | CT .

Here T is the first hitting time of level 1 by the canonical process of C(R+,R).
The accompanying experiment is defined as

G
n,ε = (

C(R+,R),CT ,
{
P̄
T ,ε
n,f , f ∈ F

})
.

LEMMA 1. (i) The statistic z 
→ (Ti/n(z), i = 1, . . . , n) is sufficient for the
experiment G

n,ε
.

(ii) The experiments Gn,ε and G
n,ε

are exactly equivalent, that is,

�(Gn,ε,G
n,ε
)= 0 for all n≥ 1, ε > 0.

The proof of Lemma 1 is based upon a precise description of the process Y t .
Let us define by induction a sequence of processes and stopping times as follows.
Let

X0(t)= f (0)t + εWt
and

τ1/n = T1/n(X0)= inf
{
t ≥ 0 :X0(t)= n−1}.

Then, by induction, for i = 1, . . . , n and τ0 = 0,

Xi−1(t)= f
(
i − 1

n

)
t + ε(Wt+τ(i−1)/n −Wτ(i−1)/n

)
,(3.3)

τi/n = τ(i−1)/n + T1/n(Xi−1).(3.4)

LEMMA 2. The hitting times of levels i/n by the process Y t are given by

Ti/n(Y )= τi/n, i = 1, . . . , n.

Moreover, if

Xin = n(Ti/n(Y )− T(i−1)/n(Y )
)
, i = 1, . . . , n,(3.5)

then the triangular array (X1
n, . . . ,X

n
n) has the distribution P εn,f described in (2.4)

and (2.6).

PROOF. For t ∈ [0, τ1/n] we have Y t = X0(t) and T1/n(Y ) = τ1/n. Consider
now t ∈ (τ1/n, τ2/n]; then

Y t = 1

n
+ f

(
1

n

)
(t − τ1/n)+ ε(Wt −Wτ1/n).
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Thus Yτ1/n+u = n−1 +X1(u) for u ∈ [0, τ2/n− τ1/n], and T2/n(Y )= τ2/n since by
construction τ2/n − τ1/n = T1/n(X1). By induction, if t ∈ (τ(i−1)/n, τi/n] then

Y t = i − 1

n
+ f

(
i − 1

n

)
(t − τ(i−1)/n)+ ε(Wt −Wτ(i−1)/n

)
(3.6)

and Ti/n(Y ) = τ(i−1)/n + T1/n(Xi−1) = τi/n. This holds for i = 1, . . . , n. Now
the random variables τi/n are stopping times of (At )t≥0. Thus (Wu+τ(i−1)/n −
Wτ(i−1)/n )u≥0 is a Brownian motion independent of Aτ(i−1)/n

for all i = 1, . . . , n.
Hence the random variables (τi/n − τ(i−1)/n), i = 1, . . . , n, are independent, and
by construction τi/n − τ(i−1)/n has the inverse Gaussian distribution

IG

(
n−1

(
f

(
i − 1

n

))−1

, n−2ε−2

)
,

that is, the distribution of the random variables X̃in defined in (2.5). The following
scaling property of the inverse Gaussian can easily be verified using the density
formula (1.4): for a > 0,

Z ∼ IG(µ,λ) implies aZ ∼ IG(aµ,aλ).(3.7)

Consequently Xin = nX̃in has distribution IG((f ( i−1
n
))−1, n−1ε−2). �

PROOF OF LEMMA 1. Let P ε denote the distribution of (εWt, t ≥ 0) on
(C(R+,R),C), and P εT the restriction of P ε to CT . Then by the Girsanov formula

log
dP̄

T,ε
n,f

dP εT
(Y )= 1

ε2

∫ T
0
fn(t, Y ) dY t − 1

2ε2

∫ T
0
f 2
n (t, Y ) dt

= 1

ε2

n∑
i=1

f

(
i − 1

n

)
1

n

− 1

2ε2

n∑
i=1

f 2
(
i − 1

n

)(
Ti/n(Y )− T(i−1)/n(Y )

)
.

Hence, S = (Ti/n(Y ) − T(i−1)/n(Y ), i = 1, . . . , n) is a sufficient statistic for the
experiment G

n,ε
defined by (Y t , t ≤ T1(Y )). This gives (i). Since by Lemma 2,

SG
n,ε = Gn,ε, we obtain that the two experiments are equivalent by Property 1.

�

4. A bound for the �-distance. In this section, we prove a proposition from
which Theorem 1 can be derived. It follows from the results of Section 3 and the
triangle inequality that

�
(
E ε0 ,G

n, ε
)=�(E ε0 ,Gn,ε).
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Now E ε0 and G
n,ε

have the same sample space (C(R+,R),CT ). So applying
Property 2 [see (2.11)] we get the bound

�
(
E ε0 ,G

n,ε
)≤�0

(
E ε0 ,G

n,ε
)= sup

f∈F

∥∥P T,εf − P̄ T ,εn,f

∥∥
TV.

LEMMA 3. We have∥∥P T,εf − P̄ T ,εn,f

∥∥
TV ≤KC(m)((nε)−2 + n−1 + ε2)1/2

uniformly over f ∈ F , whereK is the constant defining F and C(m) is a constant
which depends only on m.

PROOF. We use here an upper bound given in Jacod and Shiryaev [(1987),
Section 4b, Theorem 4.21, page 279] for the total variation norm between the
distributions of two diffusion type processes having the same constant diffusion
coefficient. Let hf be the Hellinger process of order 1/2 between P εf and P

ε

n,f .
For z ∈C(R+,R) it is given by

hfu (z)=
1

8ε2

∫ u
0

(
f (z(t))− fn(t, z))2 dt for u > 0.

Since the two processes (Yt ) and (Y t ) have the same initial distribution (Y0 =
Y 0 = 0), the inequality for the total variation distance is

∥∥P T,εf − P̄ T ,εn,f

∥∥
TV ≤ 4

√
EP̄εn,f

(h
f
T ),(4.1)

with T = T1(X). It is worth noting that this inequality is not symmetric: for the
right-hand side of (4.1), we may choose to take the expectation either with respect
to P̄ εn,f , or with respect to P εf . The choice P̄ εn, f makes the computation easier here.

Let us set EP̄εn,f (h
f
T )=E(n, ε). We have

E(n, ε)= 1

8ε2
E

∫ T
0

(
f (Y t)− fn(t, Y t ))2 dt

= 1

8ε2

n∑
i=1

E

∫ Ti/n(Y )
T(i−1)/n(Y )

(
f (Y t )− f

(
i − 1

n

))2

dt.

Now, using Lemma 2 and (3.3)–(3.6),

E

∫ Ti/n(Y )
T(i−1)/n(Y )

(
f (Y t )− f

(
i − 1

n

))2

dt

=E
∫ τi/n
τ(i−1)/n

(
f (Y t )− f

(
i − 1

n

))2

dt
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=E
∫ τi/n−τ(i−1)/n

0

(
f (Yu+τ(i−1)/n )− f

(
i − 1

n

))2

du

=E
∫ T1/n(Xi−1)

0

(
f

(
i − 1

n
+Xi−1(u)

)
− f

(
i − 1

n

))2

du

≤K2E

∫ T1/n(Xi−1)

0
X2
i−1(u) du,

where K is the Lipschitz constant of f and Xi−1 is a Brownian motion starting
from 0 with drift coefficient f ((i − 1)/n) and diffusion coefficient ε [see (3.3)
and (3.4)].

It is well known that this last expectation can be computed explicitly.

LEMMA 4. Let X(u) = θu + εWu, u ≥ 0, be a Brownian motion with drift
θ > 0. Let Ta = Ta(X) be the first hitting time of level a. Then for a > 0

E

∫ Ta
0
X2(u) du= a3

3θ
− a2ε2

2θ2 + aε4

2θ3 .

PROOF. We shall use classical properties of diffusion exit times from
a bounded interval [cf. Karlin and Taylor (1981), Chapter 15, problem C, pages
193–198]. Let s(u)= exp(−2θu/ε2) and

S(x)=
∫ x

0
s(u) du= ε2

2θ

(
1 − exp

(
−2θx

ε2

))
be the scale density and the scale function of the diffusion X(u), respectively. For
b < 0< a, the first exit time of the interval (b, a) is τ = Ta ∧ Tb. It is well known
[see, e.g., Karlin and Taylor (1981), Chapter 15] that

E

∫ τ
0
X2(u) du= ϕb,a(0)

where ϕb,a = ϕ is the solution of the ordinary differential equation

ε2

2
ϕ′′(x)+ θϕ′(x)= −x2, b≤ x ≤ a,

ϕ(b)= ϕ(a)= 0.

The solution is found to be

ϕb,a(x)=
∫ a
b
G(x, ξ)ξ2 dξ

where G(x, ξ) is the Green function

G(x, ξ)=




2
(S(x)− S(b))(S(a)− S(ξ))

S(a)− S(b)
1

ε2s(ξ)
, for b≤ x ≤ ξ ≤ a,

2
(S(a)− S(x))(S(ξ)− S(b))

S(a)− S(b)
1

ε2s(ξ)
, for b≤ ξ ≤ x ≤ a.
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Therefore ϕb,a(0) can be split into two terms:

ϕb,a(0)= 2(S(0)− S(b))
ε2(S(a)− S(b))

∫ a
0
(S(a)− S(ξ)) ξ

2

s(ξ)
dξ

+ 2(S(a)− S(0))
ε2(S(a)− S(b))

∫ 0

b
(S(ξ)− S(b)) ξ

2

s(ξ)
dξ.

By continuity of sample paths, as b↘ −∞, Tb ↗ ∞ and τ ↗ Ta almost surely.
Thus

E

∫ Ta
0
X2(u) du= lim

b→−∞ϕb,a(0).

Furthermore, for all ξ ∈ (b,0] we have

0 ≤ S(ξ)− S(b)
S(a)− S(b) ≤ 1.

Therefore, by letting b→ −∞ and noting S(b)→ −∞, we get

E

∫ Ta
0
X2(u) du= 2

ε2

{∫ a
0
(S(a)− S(u)) u

2

s(u)
du+ (S(a)− S(0))

∫ 0

−∞
u2 du

s(u)

}
.

A somewhat lengthy but straightforward computation of the above integrals
completes the proof. �

Coming back to the proof of Lemma 3, we get

E(n, ε)≤ 1

8ε2
K2

{
n∑
i=1

1

3n3

1

f ((i − 1)/n)

− ε2

2n2

n∑
i=1

1

f 2((i − 1)/n)
+ ε4

2n

n∑
i=1

1

f 3((i − 1)/n)

}

≤ K2

8

{
1

3(nε)2
1

m
− 1

2n

1

m2
+ ε2

2m3

}
.

This completes the proof of Lemma 3. �

PROOF OF THEOREM 1. We have

�
(
E ε0 ,G

n,ε
)≤KC(m)( 1

(nε)2
+ 1

n
+ ε2

)1/2

(4.2)

which tends to 0 as ε→ 0 if n= nε → ∞ such that εnε → ∞. �

REMARK 4. If n is chosen such that εn1/2 = 1 + o(1) then the three terms in
the upper bound of (4.2) are of order ε2. This implies a rate of convergence n−1/2

for the �-distance.
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PROOF OF COROLLARY 1. By Lemma 1, the statistic z 
→ (Ti/n(z), i =
1, . . . , n) is sufficient for the experiment G

n,ε
. In Lemma 3 it is shown that

�0(E
ε
0 ,G

n,ε
) tends to zero. The statistic is thus asymptotically sufficient in E ε0

according to Definition 3(ii). �

5. Exponential family regression and white noise. Theorem 2 will be
proved via the asymptotic equivalence of observed hitting time increments Xin,
i = 1, . . . , n [the inverse Gaussian array (3.5)], and the Gaussian white noise (2.9),
formally

�
(
Gn,ε,E ε1

)→ 0.(5.1)

The heuristic background of this result is as follows. Assume first that

ε−2 takes integer values, n= nε = ε−2,(5.2)

and consider the subset of our parameter space FK,m consisting of constant
functions f (t) = ϑ , t ∈ R (for ϑ ∈ * = [m,K]). In this case, the Xin in (2.4)
are i.i.d. inverse Gaussian IG(ϑ−1,1). For these, it is well known that the sample
mean X̄n = n−1∑n

i=1X
i
n is a sufficient statistic and is asymptotically normal,

n1/2(X̄n − ϑ−1)
L⇒N(0, ϑ−3).(5.3)

This suggests an approximation of the experiment by the Gaussian family{
N(ϑ−1, n−1ϑ−3),ϑ ∈*}(5.4)

[cf. Le Cam (1986), Chapter 11 on global asymptotic normality]. Let now g be
a smooth one-to-one function on (0,∞); then g(X̄n) is asymptotically normal
with centering g(ϑ−1). In particular if g fulfills(

g′(ϑ−1)
)2
ϑ−3 = 1, ϑ ∈*,

that is, g is a variance stabilizing transformation for X̄n, then (5.3) implies

n1/2(g(X̄n)− g(ϑ−1)
) L⇒N(0,1).(5.5)

In the present case, g(x) = 2x−1/2 is variance stabilizing. Note that g(X̄n) is
a sufficient statistic along with X̄n; then (5.5) suggests another approximation to
the experiment of i.i.d. inverse Gaussian data Xin:{

N(2ϑ1/2, n−1),ϑ ∈*},(5.6)

valid simultaneously with (5.4).
Suppose now that f (t) is not constant but smooth, more precisely f ∈ FK,m.

Then the above argument should be applicable, heuristically, locally around a given
argument t . Since ϑ in (5.6) then stands for f (t), we are led to the signal-in-
white-noise model (1.5) as an asymptotically equivalent experiment. Below we
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make this argument precise, on the basis of an exponential family representation
of the inverse Gaussian law and the results of Grama and Nussbaum (1998) for
nonparametric regression models.

In the latter paper the following model is considered. Let P be an exponential
family on the real line in canonical form given by measures

µθ(dt)= exp(θU(t)− V (θ))ν(dt)(5.7)

with real parameter θ ∈ *, where * is an open (possibly infinite) interval in R,
ν is sigma-finite measure, U(t) is a measurable function and V (θ) is given by
exp(V (θ)) = ∫

exp(θU(t))ν(dt). Let g : [0,1] 
→ * be an unknown regression
function, assumed to be in a nonparametric set ;, and suppose independent
observations Zin, i = 1, . . . , n, such that L(Zin) = µg(i/n), i = 1, . . . , n. Under
smoothness assumptions on the functions g ∈ ; it is shown that this regression
experiment can be approximated, in the sense of�-distance, by a Gaussian white-
noise model

dZt = <(g(t)) dt + n−1/2 dWt, t ∈ [0,1],(5.8)

where the function <(θ) :*→ R is determined by the parametric family P . If
I (θ) is the Fisher information in P then

<(θ)=
∫ θ

0
I (u)1/2 du.(5.9)

The heuristics of this result are similar to (5.3)–(5.6).
To put the present experiment Gn,ε into this framework, note that for the choice

of n according to (5.2) the conditions of Theorem 1 are fulfilled (i.e., nε → +∞
and εnε = ε−1 → ∞ as ε→ 0). The distribution of Xin is now IG((f ( i−1

n
))−1,1)

which can be written [cf. (1.4)]

L(Xin)(dt)= exp
(
− t

2
f 2
(
i − 1

n

)
+ f

(
i − 1

n

))
ν(dt)

with

ν(dt)= 1√
2πt3

exp
(
− 1

2t

)
1t>0(t) dt.

In (5.7) consider the case where ν is defined as above and

U(t)= −t, V (θ)= −(2θ)1/2.(5.10)

Note that µθ = IG((2θ)−1/2,1) for θ ∈ (0,∞), so that µθ is defined for all
θ ∈ (0,∞). We thus have L(Xin) = µθ for θ = f 2((i − 1)/n)/2. Setting now
g(x) = f 2(x)/2, we arrive at the framework of Grama and Nussbaum (1998).
Note that the �-distance between two experiments is not changed under one-
to-one reparametrization, and the mapping from f to g is one-to-one under
our assumptions. Thus we can invoke the Gaussian approximation (5.8) for the
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regression experiment indexed by g, and obtain a result for the present experiments
E ε1 , Gn,ε indexed by f .

PROOF OF THEOREM 2. We argue first under assumption (5.2). The condi-
tions on f guarantee that m ≤ f (x) ≤ 2K for x ∈ [0,1], with m > 0. Evidently,
g satisfies a uniform Lipschitz condition:

|g(x)− g(y)| = 1
2 |f 2(x)− f 2(y)| = 1

2 |f (x)+ f (y)||f (x)− f (y)|
≤ 1

2 4K|f (x)− f (y)| ≤ 2K2|x − y|, x, y ∈ [0,1],(5.11)

and moreover, for x ∈ [0,1],
g(x) ∈ [m2/2,2K2].(5.12)

Let; =;(m,K) be the set of all functions g satisfying (5.11) and (5.12). Thus all
conditions assumed in Grama and Nussbaum (1998) are satisfied. By Theorem 12
in this paper we obtain a Gaussian white-noise approximation in the �-sense, as
an experiment (5.8) with g ∈;. The function < is determined by the exponential
family (µθ , θ ∈ (0,∞)) as an appropriate variance stabilizing transform according
to (5.9). Let us determine <.

It is well known that in the exponential family (5.7) the Fisher information I (θ)
is given by I (θ)= V ′′(θ). In the inverse Gaussian case we obtain from (5.10)

V ′′(θ)= − d2

dθ2
(2θ)1/2 = (2θ)−3/2,

<(θ)=
∫ θ

0
(2u)−3/4 du= 2(2θ)1/4,

so that (5.8) becomes (up to an equivalence, given by multiplication with 1/2)

dZt = (2g(t))1/4 dt + 1
2n

−1/2 dWt, t ∈ [0,1].
Substituting g(t)= f 2(t)/2 we get

dZt = f 1/2(t) dt + 1
2n

−1/2 dWt, t ∈ [0,1].
We have shown (5.1); invoking Theorem 1 completes the proof under assump-
tion (5.2).

For general values of ε, set n = nε = [ε−2] and sε = n−1
ε ε

−2. Define X̂in =
s−1
ε X

i
n, i = 1, . . . , n; the X̂in represent an equivalent experiment. According

to (3.7) we have X̂in ∼ IG((sεf (
i−1
n
))−1,1). Since sε → 1, the functions sεf ,

f ∈ FK,m, are elements of a slightly enlarged function class FK ′,m′ (for K ′ >K ,
0 < m′ < m and sufficiently small ε). The previous argument applied to FK ′,m′
now establishes asymptotic equivalence to

dZt = s1/2
ε f 1/2(t) dt + 1

2n
−1/2 dWt, t ∈ [0,1],

and with multiplication by s−1/2
ε this is exactly equivalent to (1.5). �
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6. Poisson approximation. The heuristics for the Poisson approximation are
as follows. Suppose that g in (5.5) is not chosen as variance stabilizing but simply
as g(x)= x−1, that is, we are interested in the parameter ϑ . We obtain asymptotic
normality of the sufficient statistic X̄−1

n : (5.5) becomes

n1/2(X̄−1
n − ϑ) L⇒N(0, ϑ),

which coincides with the asymptotic distribution of the sample mean of n inde-
pendent Poisson variables with parameter ϑ . This suggests that for general smooth
f ∈ FK,m, for the experiment Gn,ε we might also have a Poisson process approxi-
mation with intensity nf (t), or when f has integral one, one of empirical process
type with i.i.d. data having density f . In this section we discuss only the Poisson
approximation; it was already argued in connection with Corollary 2 that the i.i.d.
approximation is an immediate consequence of Nussbaum (1996) and Theorem 2.

Recall that the experiment E ε2 was defined by an observed inhomogeneous
Poisson process = on [0,1] with intensity ε−2f (u), u ∈ [0,1], where f ∈ F ;
the respective laws were Q̃εf . More precisely, for nonintersecting measurable sets
A1, A2 in [0,1] the random variables =(Ai), i = 1,2, are independent with Pois-
son distribution Po(ε−2 ∫

A f ). Define also a discretized Poisson experiment E ε2,d
as follows: for n= nε = [ε−2] and sε = n−1

ε ε
−2, observations are n independent

r.v.’s=i with Poisson distribution Po(sεf ((i−1)/n)), i = 1, . . . , n, where f ∈ F .
The following result is a Poisson analog of Brown and Low (1996).

LEMMA 5.

�(E ε2 ,E
ε
2,d)→ 0 as ε→ 0.(6.1)

PROOF. Consider a step function approximation of f

f̄n(u)=
n∑
i=1

f

(
i − 1

n

)
1((i−1)/n,i/n](u).

Let Q̄εf be the law of the Poisson process with intensity ε−2 f̄n, and H(·, ·) be
Hellinger distance for measures. According to a well-known estimate for laws of
Poisson processes [cf. Reiss (1993), Theorem 3.2.1] we have

H 2(Q̃εf , Q̄εf )≤ ε−2
∫
[0,1]

(
f 1/2(u)− f̄ 1/2

n (u)
)2
du.

For f ∈ F , the function f 1/2 satisfies a uniform Lipschitz condition for some
constant K ′, and hence the right-hand side above is

ε−2
n∑
i=1

∫ i/n
(i−1)/n

(
f 1/2(u)− f 1/2((i − 1)/n)

)2
du
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≤ ε−2
n∑
i=1

(K ′)2
∫ i/n
(i−1)/n

(
u− ((i − 1)/n)

)2
du

≤ ε−2n−2(K ′)2 =O(ε2).

Now, if Gε2 is the experiment {Q̄εf , f ∈ F } then

�(E ε2 ,G
ε
2)≤ sup

f∈F
H 2(Q̃εf , Q̄εf )→ 0.(6.2)

Define intervals Ji = ((i − 1)/n, i/n]. For an observed Poisson process =,
consider the statistic Un(=) = (=(Ji), i = 1, . . . , n). By the Neyman criterion
applied to the density of Q̄εf [cf. Reiss (1993), Theorem 3.1.1], it is easy to

see that Un is a sufficient statistic in Gε2. Let Q̃εf,d = L(Un) under Q̄εf ; then

E ε2,d = {Q̃εf,d, f ∈ F } and hence �(Gε2,E
ε
2,d) = 0. In conjunction with (6.2) this

proves the lemma. �

PROOF OF THEOREM 3. Assume (5.2); the proof for general values of ε
requires a slight modification, similar to the last paragraph of the proof of
Theorem 2. The discretized Poisson experiment E ε2,d where

L(=i)= Po
(
f ((i − 1)/n)

)
, i = 1, . . . , n, f ∈ F ,

is a special case of the nonparametric regression model of Grama and Nussbaum
(1998); cf. Example [1] there. As noted already in the proof of Theorem 2,
0 < m ≤ f (x) ≤ 2K for f ∈ F , x ∈ [0,1], so that all required conditions on f
are satisfied. As shown in Grama and Nussbaum (1998), the discretized Poisson
process E ε2,d is asymptotically equivalent to the white-noise model (2.9), that is,
�(E ε2,d ,E

ε
1 )→ 0 for n = nε = ε−2, so that Lemma 5 and Theorem 2 yield the

result. �

7. Asymptotic minimax risk for sup-norm loss. As an application of as-
ymptotic equivalence, we derive the exact asymptotic minimax risk for nonpara-
metric estimation of f in the sup-norm for the diffusion experiment E ε0 . Such an
exact asymptotic minimax risk (also called an “optimal constant” for an optimal
rate of convergence) has been found by Korostelev (1993) in a Gaussian nonpara-
metric regression model. Donoho (1994) and Leonov (1997) established a con-
nection to optimal recovery; Korostelev and Nussbaum (1999) derived an analog
for nonparametric density estimation. It should be mentioned that Korostelev’s re-
sult represents a sup-norm loss analog of the Pinsker constant, which pertains to
L2-loss [Pinsker (1980)].

For the continuous Poisson process model E ε2 with intensity ε−2f, the
Korostelev constant for estimating f ∈ F can easily be found, based on the
analogy with density estimation for i.i.d. data. We first state this result, and then use
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asymptotic equivalence to the diffusion model (1.2) in a straightforward manner to
carry over the risk asymptotics.

Define ψε = (ε2 log ε−2)1/3, let ‖·‖∞ be the sup-norm for bounded functions
on [0,1] and let W be the set of continuous nondecreasing functions w(u), u≥ 0,
such that w(0) = 0. In the Poisson process experiment E ε2 consider the minimax
risk

rε(E
ε
2 ,w)= inf

f̂

sup
f∈FK,m

Eεfw
(
ψ−1
ε ‖f̂ − f ‖∞

)
(7.1)

where the expectation Eεf is with respect to the law Q̃εf and the infimum is taken

over all estimators f̂ of f .

THEOREM 4. For any m, K such that 0 < m < K and for any bounded
function w ∈ W we have

lim
ε→0

rε(E
ε
2 ,w)=w(K2/321/3).

PROOF. For a model of n i.i.d. observations with density f on the unit interval
and ε = n1/2, Korostelev and Nussbaum (1999) established the limit of rε(·,w)
when the function class F is given by all densities which fulfill a Lipschitz
condition |f (x)− f (y)| ≤K|x − y|. Set

B∗ = sup
f∈F

‖f ‖∞(7.2)

and

A1 = max
{
g(0) :‖g‖2 ≤ 1, g ∈ F0

}
where F0 is the class of functions on R satisfying |f (x) − f (y)| ≤ |x − y| and
‖·‖2 is the norm in L2(R). The limit of rε(·,w) for the density case is w(C) where

C =C(K,B∗)=A1

(
2B∗K

3

)1/3

.(7.3)

For the Poisson process case with intensity ε−2f , the proof needs only minor
modifications. Moreover, the restriction that f integrates to one can be dropped
in the Poisson case; one needs only to find the appropriate constant B∗. It is
easy to see that if F = FK,m in (7.2) then B∗ = 2K , and this value is attained
by the function f (x) = K + Kx at x = 1. Another look at the proof in the
density case reveals that the result remains true under the additional restriction
f (x)≥m≥ 0 for some m<K . Donoho [(1994), Section 2.2] gives A1 = ((2β +
1)(β + 1)/4β2)β/(2β+1) for β = 1, that is, A1 = (3/2)1/3, and thus from (7.3),

C = (3/2)1/3
(

4K2

3

)1/3

= (2K2)1/3. �
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To obtain the analog in the diffusion model, let rε(E ε0 ,w) be the sup-norm
risk corresponding to (7.1) in the diffusion experiment E ε0 for the same norming

sequence ψε , that is, expectation Eεf is taken with respect to the law P
T,ε
f given

by (2.2). As a consequence of asymptotic equivalence (Theorem 3), we obtain
rε(E

ε
0 ,w)− rε(E ε2 ,w)→ 0 as ε→ 0 [cf. Brown and Low (1996) for details on the

decision theoretic meaning of the �-distance]. An immediate consequence is the
following.

COROLLARY 3. For any m,K such that 0 < m < K and for any bounded
function w ∈ W we have

lim
ε→0

rε(E
ε
0 ,w)=w(K2/321/3).
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