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CUMULATIVE REGRESSION FUNCTION TESTS FOR
REGRESSION MODELS FOR LONGITUDINAL DATA

By Thomas H. Scheike and Mei-Jie Zhang1

University of Copenhagen and Medical College of Wisconsin

The longitudinal regression model Yi�j = m�Vi
τi� j

�+εi� j where Yi�j,
is the jth measurement of the ith subject at random time τi� j, m is the
regression function, Vi

τi� j
is a predictable covariate process observed at

time τi� j and εi� j is noise, often provides an adequate framework for mod-
eling and comparing groups of data. The proposed longitudinal regression
model is based on marked point process theory, and allows a quite general
dependency structure among the observations.

In this paper we find the asymptotic distribution of the cumulative
regression function (CRF), and present a nonparametric test to compare
the regression functions for two groups of longitudinal data. The proposed
test, denoted the CRF test, is based on the cumulative regression function
(CRF) and is the regression equivalent of the log-rank test in survival
analysis. We show as a special case that the CRF test is valid for groups of
independent identically distributed regression data. Apart from the CRF
test, we also consider a maximal deviation statistic that may be used when
the CRF test is inefficient.

1. Introduction. The aim of this paper is to present a nonparametric test
to compare groups of longitudinal regression data obtained over time. The fo-
cus is on some measurement which we model conditionally on the observed
history. We consider a nonparametric transition model [see Diggle, Liang and
Zeger (1994)] that models the conditional mean of the current response given
past outcomes, which in our model amounts to previously obtained measure-
ments, the times for these measurements and outside random variation in
the sense of Kalbfleisch and Prentice [(1980), Chapter 5]. The basis of tran-
sition models is the conditional mean structure, and inference is carried out
by fitting the observations to their conditional means. In contrast to other
approaches, including the generalized estimation equations [Liang and Zeger
(1986)], for longitudinal data the transition model approach accommodates
dynamic modeling of the processes under observation.

One challenging problem in longitudinal data analysis is to test whether
two groups of independent longitudinal regression data have identical con-
ditional mean functions. We introduce an approach to this problem based on
the difference of estimators of the cumulative version of the conditional means
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between two groups. Later we generalize this nonparametric two-sample test
to the k-sample test. To focus ideas, consider two groups of n1 and n2 sub-
jects, each individual giving rise to Nk

i observations, ��Yk� i� j� τk� i� j� �j =
1� � � � �Nk

i � i = 1� � � � � nk�k = 1� 2�. Here Yk� i� j is the jth measurement of
the ith subject from group k at random time τk� i� j ∈ 
0� t�, where 
0� t� is the
time period of observation. We assume that the conditional regression model
is valid for each individual from the two groups such that

Yk� i� j =mk�Vk� i
τk� i� j

�+ εk� i� j for j=1� � � � �Nk
i � i=1� � � � � nk� k=1� 2�(1)

where mk�k = 1� 2 are the regression functions of the two groups, Vk� i
s is the

d-dimensional covariate process of subject i from group k at time s and εk� i� j

is noise. The covariates, Vk� i
s , are allowed to depend on previous observations

and outside random variation, and are thus predictable in the history of the
observations. We return to a complete model specification in Section 2. Note
that the covariates may be time (Vk� i

s = s). Estimation of the regression func-
tion for this longitudinal regression model has been discussed in a parametric
setup in Scheike (1994) and nonparametrically in Scheike (1996). In this pa-
per we construct a statistical procedure to compare the regression functions
of two groups of data. This question arises often in statistical applications, for
example, when the growth of two groups of patients is compared. In Section 4
we apply the procedure to compare the growth of patients with two different
diagnoses of dwarfism (hypochondroplasia and achondroplasia) on the basis of
longitudinal data. The proposed methodology may also be applied to compare
reference charts based on cross-sectional data.

The proposed nonparametric test is the regression equivalent of the log-
rank test of survival analysis; see, for example, Andersen, Borgan, Gill and
Keiding (1993). Our approach is similar to that of McKeague and Zhang (1994)
(MZ), who constructed a nonparametric test for comparing regression func-
tions for stationary time series. The test proposed by MZ is based on com-
paring estimates of the integrals

∫ z
a m1�x�dx and

∫ z
a m2�x�dx, where a and z

are appropriately chosen points in d-dimensional regressor space. We consider
the same test statistics and make inference based on the asymptotic distribu-
tion of

∫ �·�
a m̂k�x�dx− ∫ �·�

a mk�x�dx, k = 1� 2, where m̂k�x� is a nonparametric
estimate of the regression function. The test can be applied to groups of inde-
pendent identically distributed regression data.

The structure of the paper is as follows. Section 2 presents the model con-
struction in a marked point process framework that allows a quite general
dependency structure among the observations and also presents some Mar-
tingale results we later use to establish the asymptotic properties of our esti-
mators. We further show that independent identically distributed regression
data are a special case of our model. Section 3 presents the two-sample test for
regression data and provides the asymptotic distribution of the proposed test
statistic. Section 4 contains an application to data on the growth of two types
of dwarfism and a simulation study to evaluate the power of the proposed test.
In Section 5, some closing remarks are given. Finally, Section 6 contains the
proofs.



1330 T. H. SCHEIKE AND M-J. ZHANG

2. A longitudinal regression model. Consider the regression model

Yk� i� j =mk�Vk� i
τk� i� j

�+ εk� i� j for j=1� � � � �Nk
i � i=1� � � � � nk� k=1� 2�(2)

where Yk� i� j is the jth real-valued measurement of the ith subject from group
k at a random time τk� i� j in the period of observation 
0� t�, mk�k = 1� 2� are
the regression functions of the two groups, Vk� i

s is a d-dimensional covariate
process of subject i from groups k at time s and εk� i� j is noise. Some additional
structure is required to specify the model, so we formulate the model in terms
of marked point processes; see Brèmaud (1981).

Let � denote the Borel σ-field on �. For A ∈ �, define the counting process

Nk�i
s �A� = ∑

j

I�Yk� i� j ∈ A�I�τk� i� j ≤ s� as defined�

that counts the number of observations in the set A for the ith individual of
group k, and the associated marked point process Pk� i�ds × dz�:

Pk� i�
0� s� × A� = Nk�i
s �A� as defined, for s ≥ 0�A ∈ ��

Define further the history of the subjects, that is, the history of the marked
point processes, as

�u = σ
(
Nk�i

s �A�� s ≤ u�A ∈ �� i = 1� � � � � nk� k = 1� 2
) ∨� as defined�

The σ-algebra � is independent of σ�Nk�i
s �A�� s ≤ u, A ∈ �, i = 1� � � � � nk,

k = 1� 2� and represents knowledge prior to time 0. We further need to define
the σ-field �τk� i� j− = σ��Yk� i�m� τk� i�m�� τk� i�m < τk� i� j; τk� i� j�∨� that contains
the information just prior to observation of a jump size.

Define further

Nk�i
s = Nk�i

s ��� as defined,

the counting process associated with the τk� i� j’s, where � = �−∞�∞�. It is
assumed that no two of the counting processes Nk�i

s jump at the same time,
and this is needed in Proposition 1.

We assume that Vk� i
s is predictable with respect to the history �s, that Nk�i

s

has a random intensity λk� i
s ≥ 0 and that all processes are cadlag. The exis-

tence of an intensity implies that measurement times vary continuously and
do not clump at, for example, weekly intervals. Clumping of measurements
due to measurements at regular intervals makes the compensator discontin-
uous. Murphy (1995) dealt with asymptotic analysis of Martingales where
measurement times can vary continuously as well as clump at regular inter-
vals. We return to this issue in the remark after Proposition 2. The intensity
has the following interpretation: λk� i

s ds is the probability of a jump in the
time interval �s� s + ds� given the history of �s. One particular form for the
intensity, λk� i

s , of interest for applications is Aalen’s multiplicative intensity
model

λk� i
s = αk�s�Zk� i�s� as defined,
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where αk�s� is a deterministic function and Zk� i�s� is �s predictable; see Aalen
(1975, 1978).

Finally, it is assumed that the noise terms from (2) have conditional mean
and variance given by

E�εk� i� j � �τk� i� j−� = 0�

E�ε2
k� i� j � �τk� i� j−� = σ2

k�Vk� i
τk� i� j

��
so that

E�Yk� i� j � �τk� i� j−� = mk�Vk� i
τk� i� j

��
E�Y2

k� i� j � �τk� i� j−� = m2
k�Vk� i

τk� i� j
� + σ2

k�Vk� i
τk� i� j

��
(3)

for k = 1� 2� i = 1� � � � � nk� j = 1� � � � �N
k� i
t , where σ2

k�·� is deterministic, con-
tinuous and bounded.

The law of εk� i� j conditional on the past and the time of the jump, τk� i� j, is
denoted

Fk� i
τk� i� j

�z� = P�εk� i� j ≤ z � �τk� i� j−� as defined�

Therefore, the conditional distribution of Yk� i� j is

P�Yk� i� j ≤ z � �τk� i� j−� = Fk� i
τk� i� j

�z − mk�Vk� i
τk� i� j

���
The actual construction of the processes can be carried through by specify-
ing the particular form of λk� i

s and Vk� i
s , and the conditional distribution of

Yk� i� j given the history through the functions Fk� i
s �z� and mk�·�; see Jacobsen

[(1982), Chapter 2].
In this work we aim to estimate the regression function nonparametrically.

We consider the situation where possibly one component of the covariates
may be equal to time and the rest vary continuously. We assume that the
conditional distribution of the d-dimensional covariates Vk� i

s given λk� i
s has

a bounded density fk� i
s �v1� � � � � vd� with respect to Lebesgue measure and de-

note the distribution as fk� i
s �v1� � � � � vd�dld� where ld is the d-dimensional

Lebesgue measure or is a product of the Dirac measure at s, εs and a measure
given by a d − 1-dimensional bounded density fk� i

s �v1� � � � � vd−1� with respect
to Lebesgue measure, that is, εs ⊗ fk� i

s �v1� � � � � vd−1�dld−1. If we do not wish
to specify which one of the two cases we consider, we write Gk� i

s �dv�.
The following Martingale result about marked point processes is the key

to handling the dependencies and is used throughout the rest of the paper.
Define a 0-Martingale to be a Martingale with mean 0.

Proposition 1. Let Pk� i�ds × dz� for i = 1� � � � � nk, k = 1� 2, be marked
point processes defined as above and let Hk�i�s� z� be �s predictable processes
such that

E

(∫ t

0

∫
�
H2

k� i�s� z�λk� i
s dFk� i

s �z − mk�Vk� i
s ��ds

)
< ∞�(4)
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Then

Mk�i�Hk�i�t =
∫ t

0

∫
�
Hk�i�s� z�Pk� i�ds × dz�

−
∫ t

0

∫
�
Hk�i�s� z�λk� i

s dFk� i
s �z − mk�Vk� i

s ��ds as defined

are orthogonal square-integrable 0-Martingales with respect to �t, with vari-
ance processes

�Mk�i�Hk�i��Mk� i�Hk�i��t =
∫ t

0

∫
�
H2

k� i�s� z�λk� i
s dFk� i

s �z − mk�Vk� i
s ��ds

for i = 1� � � � � nk� k = 1� 2.

The proposition follows from Boel, Varaiya and Wong (1975a, b) or Brèmaud
(1981).

To present a Nadaraya–Watson (ND) type estimator, see Nadaraya (1964)
and Watson (1964), of the regression functions, we need some definitions. Let
K�·� be a kernel function with support on 
−1�1�, ∫

K�u�du = 1, and let
b = �b1� � � � � bd� be a d-dimensional bandwidth, �b� = b1 · · · · · bd, b ∈ �0�∞�d.
Define further cK = ∫

K2�u�du as defined, dK = ∫
u2K�u�du as defined and

eK = ∫
uK�u�du as defined. We assume that cK = O�1�, dK = O�1� and eK

is 0 to obtain an asymptotically unbiased result for our estimator. Finally, we
assume that the kernel function satisfies a Lipschitz condition, that is, �K�x�−
K�y�� ≤ C�x − y�. The assumptions on the kernel are denoted K. We abuse
notation by letting K denote a d-dimensional as well as a one-dimensional
kernel through the product kernel, that is, K�y� b� = K�y1/b1� � � � � yd/bd� =∏d

i=1 K�yi/bi� as defined.
The ND estimator, m̂k�y�, of mk�y� is defined by

m̂k�y� =
r̂k�y�
α̂k�y�

as defined,(5)

where

r̂k�y� =
1
nk

nk∑
i=1

N
k� i
t∑

j=1

Yk� i� j

1
�b�K�y − Vk� i

τk� i� j
� b� as defined

and

α̂k�y� =
1
nk

nk∑
i=1

N
k� i
t∑

j=1

1
�b�K�y − Vk� i

τk� i� j
� b� as defined.(6)

The behavior of a similar nonparametric estimator was studied in Scheike
(1993). In this paper, however, the focus is on the test statistics based on
the cumulative version of m̂k� which is established in the next section, and a
detailed study of the ND estimator is therefore omitted.

The term α̂k�y� is an estimator of the density of the covariates. Fusaro,
Nielsen and Scheike (1993) and Nielsen and Linton (1995) used this estimator
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as the occurrence estimator in an occurrence/exposure estimator of a marker
dependent hazard function.

Define

α-
k�y� =

1
nk

nk∑
i=1

∫ t

0

1
�b�K�y − Vk� i

s � b�λk� i
s ds�(7)

Dk�y� =
1
nk

nk∑
i=1

∫ t

0

∫
�
�z − mk�y��

1
�b�K�y − Vk� i

τk� i� j
� b�Pk� i�ds × dz�(8)

and

D-
k�y� =

1
nk

nk∑
i=1

∫ t

0

∫
�
�z − mk�y��

1
�b�K�y − Vk� i

s � b�λk� i
s dFk� i

s

× �z − mk�Vk� i
s �ds

= 1
nk

nk∑
i=1

∫ t

0
�mk�Vk� i

s � − mk�y��
1
�b�K�y − Vk� i

s � b�λk� i
s ds

(9)

and note that m̂k�y� − mk�y� = Dk�y�/α̂k�y�.
The following result regarding the asymptotic distribution of α̂k�y� and

m̂k�y�, can be established.

Proposition 2. Assume the following statements:

(i) mk�·� is twice continuously differentiable, σ2
k�·� is bounded and the ker-

nel satisfies condition K.
(ii) Conditional on the intensity, λk� i

s , the covariates, Vk� i
s , have distribution

fk� i
s �v�dld or εs ⊗ fk� i

s �v1� � � � � vd−1�dld−1, where the densities are bounded.

(iii) E��1/nk�
∑nk

i=1

∫ t
0λ

k� i
s ds� = O�1�.

(iv) b → 0, nk → ∞, such that nk�b� → ∞.
(v) There exists αk�y� > δ > 0 and a compact set in d-dimensional space,

A, such that supy∈A � α-
k�y� − αk�y��→p 0.

It then follows that

sup
y∈A

∣∣α̂k�y� − αk�y�
∣∣→p 0� sup

y∈A

∣∣m̂k�y� − mk�y�
∣∣→p 0�

Remark. The proof of Proposition 2 is based on the existence of an inten-
sity, thus making the compensator continuous. In applications, however, the
measurement times may be regular (e.g., every week) such that the compen-
sator will have discontinuities. Murphy (1995) discussed this situation and
establishes Martingale asymptotics which may be used to extend Proposition 2
to more regular measurement times.

The variance functions, σ2
k�·�, can be estimated by the squared-residual

kernel estimator

V̂k�y� =
Vk�y�
α̂k�y�

− �m̂k�y��2�(10)
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where

Vk�y� =
1
nk

nk∑
i=1

N
k� i
t∑

j=1

�Yk� i� j�2 1
�b�K�y − Vk� i

τk� i� j
� b� as defined.(11)

It follows from the next proposition that this estimator is consistent.

Proposition 3. Assume that the assumptions of Proposition 2 are satisfied
and, further, that the conditional fourth moment of Yk� i� j is bounded. Then

sup
y∈A

∣∣V̂k�y� − σ2
k�y�

∣∣→p 0�

In the case of the subjects being identically distributed, it follows that con-
dition (iii) reduces to E�∫ t

0λ
k� i
s ds� < C. The existence of αk�y� in condition (v)

makes it equal to

lim
nk→∞E

(
1
nk

nk∑
i=1

∫ t

0

∫
�d

1
�b�K�y − v� b�Gk� i

s �dv�λk� i
s ds

)
�

When subjects are identically distributed this reduces to E�∫ t
0f

k� i
s �y�λk� i�s�ds�

when Gk� i
s �dv� = fk� i

s �v�dld and to E�fk� i
s �y�λk� i�s�� when Gk� i

s �dv� = εs ⊗
fk� i

s �v1� � � � � vd−1�dld−1. When subjects are further independent, the existence
of the αk�y� is implied by the existence of the above mean value.

Example. This example shows that the usual independent identically dis-
tributed regression data are a special case of the proposed model.

Let �Yi�Xi�, i ∈ 1� � � � � n� be independent and identically distributed and
assume that the Xi’s are observed in the time interval 
0� t� unless they are
censored. The functional of interest is m�s� = E�Yi � Xi = s�.

Denote the intensity function of Xi by α�·� and the distribution function
by F�·�. Assume, furthermore, that there are given i.i.d. censoring times
C1� � � � � Cn, which are independent of �Yi�Xi�. Denote the distribution func-
tion of the Ci by H�·�. Consider the counting processes

Ni
t = I�Xi ≤ t�Xi ≤ Ci� as defined

with the intensity process α�s�Zi�s�, where

Zi�s� = I�Xi ≥ s�Ci ≥ s��
so Zi�s� is 1 if subject i is still under risk at time s and 0 otherwise. Now,

E�λi�s�� = α�s�E�Zi�s��
= α�s���1 − F�s���1 − H�s−����

Note that this expectation is strictly positive on 
0� t� if F�t� < 1 and H�t−� <
1� In this situation α-�s� is equal to

α-�s� = 1
n

n∑
i=1

∫ t

0

1
�b�K�y − Vi

s� b�λi
s ds�
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where Vi
s = s. Let ν�s� = α�s��1 − F�s���1 − H�s−�� be twice continuously

differentiable. Then it can be shown that

sup

0� t�

�α-�s� − ν�s�� = Op�b2��

The assumptions of Proposition 2 are therefore valid if the functionals in-
volved have sufficient smoothness.

3. Cumulative regression function tests for regression data. The
aim of this work is to establish a nonparametric test to compare the regression
functions for two independent groups of subjects. In this section, we provide
a description of the asymptotic distribution of a test based on the cumulative
regression function (CRF). Assume we have observed two groups of subjects
over a time period from 
0� t�, and want to compare the regression functions
from the two groups. We consider the process, T�z�, which is defined as

T�z� =
∫ z

a
�m̂1�y� − m̂2�y��dy as defined,(12)

where a is introduced to avoid edge effects of the kernel estimators, and both
a and z are points in d-dimensional Euclidean space, that is, in the space of
the regressors. For given a and z, the statistic T�z� gives the difference in the
CRF’s over the interval 
a� z�.

Based on this quantity, we define the two-sample CRF test statistic of the
hypothesis H� m1�·� = m2�·� on the interval 
a�S−a� as T�S−a�, where S is a
point in d-dimensional Euclidean space and the upper limit of comparison. The
interval of comparison must be chosen as some relevant subset of the regressor
space. Similarly, a maximal deviation test statistic of the same hypothesis may
be defined as

M = sup
z∈
a�S−a�

�T�z�� as defined.(13)

The avoidance of the edge area through narrowing the interval of comparison
by a at both ends is necessary because the ND estimator has a bias of order
O�b� in edge area, in contrast to the bias in nonedge areas, which is of order
O�b2�.

The two-sample CRF test will be sensitive to alternatives where the com-
pared functions bound each other on the interval of interest. This is in analogy
with the properties of the log-rank test of survival analysis and the Wilcoxon
test. If the compared functions are ordered in size, however, one would ex-
pect the two-sample test to have superior power compared to the maximal
deviation test. The asymptotics of the test statistics are obtained through the
following theorem, which gives the asymptotic distribution of the process

Ik�z� =
∫ z

a
�m̂k�y� − mk�y��dy as defined.(14)
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Proposition 4. Assume that the assumptions of Proposition 2 are satisfied
with 
a�S − a� ⊂ A and assume further that

(i)
Hk�z� =

1
nk

nk∑
i=1

∫ t

0
σ2

k�Vk� i
s �

[∫ z

a

1
αk�y�

1
�b�K�y − Vk� i

s � b�dy
]2

λk� i
s ds

→p hk�z��
(ii) with bmin = min�b1� � � � � bd�, supy∈
a�S−a� b

−2
min�α-

k�y� − α�y�� = Op�1�,
and bmax = max�b1� � � � � bd� = o�n−�1/4��.
Then

√
nkIk�z� converges in distribution in C
a�S − a� (with respect to the

Uniform topology) for d ≤ 3, to a Gaussian Martingale with mean zero and
variance function given by hk�z�.

The theorem is valid for three-dimensional covariates and may be extended
to higher dimensions if a bias-corrected estimator replaces the ND estimator
of the previous section. The restriction on the dimensionality of the covariate
process is a consequence of bmax = o�n−�1/4��� which is necessary to make the
bias asymptotically negligible. Note that a one-sample test may be established
based on this theorem, see the discussion of confidence bands below.

The variance function can be estimated through the estimators of the pre-
vious section, namely, define

Ĥk�z� =
1
nk

nk∑
i=1

∫ t

0

∫
�
Hk�i

(
s�w� z� α̂k�·�� m̂k�·�

)
Pk� i�ds × dw��(15)

where

Hk�i�s�w� z� αk�·��mk�·�� =
[∫ z

a

�w − mk�y��
αk�y�

1
�b�K�y − Vk� i

s � b�dy
]2

�

Proposition 5. Ĥk�z� is a consistent estimator of the variance function
hk�z�. In the case of independent identically distributed subjects, the variance
function hk�z� is equal to ∫ z

a

σ2
k�y�

αk�y�
dy�

Note that the variance expression from the i.i.d. situation may be consis-
tently estimated by simply plugging in the estimates of the functionals σ2

k�·�
and αk�·�.

Confidence bands. For the one-sample case, it follows from Propositions 4
and 5 that an asymptotic 100�1 − α�% confidence band for

∫ z
a mk�y�dy is

given by∫ z

a
m̂k�y�dy ± cαn

−1/2
k Ĥk�S − a�1/2

(
1 + Ĥk�z�

Ĥk�S − a�

)
� z ∈ 
a�S − a��
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where cα is the upper α quantile of the distribution of supt∈
0� 1/2� �B0�t�� and
B0 is a Brownian bridge. Hall and Wellner (1980) gave the table for cα.

Now, considering two groups of data, the test statistics T can be written as

T�z� = I1�z� − I2�z��
The following lemma that follows from Proposition 4 provides the asymptotic
distribution of the test statistic.

Lemma 1. If nj/�n1 + n2� → pj for j = 1� 2, it follows that
√

n1 + n2T�z�
converges toward a Gaussian Martingale with mean zero (under the null hy-
pothesis) and variance function

p−1
1 h1�z� + p−1

2 h2�z�
that can be estimated consistently by the above estimators of h1�·� and h2�·�.

Remark. The lemma is valid for three-dimensional covariates only, since
it is based on Proposition 4. When the underlying intensities αk�y�, k = 1� 2,
are equal, however, the result of Lemma 1 will be valid in higher dimensions
because the bias terms will cancel out.

By Lemma 1, a two-sample test can be carried out using the test statis-

tics T�S−a�/
√

V̂ar�T�S − a��� which has an asymptotically standard normal
distribution under the null hypothesis of m1�z� = m2�z� on 
a�S−a�. Also si-
multaneous confidence bands for

∫ z
a m1�y�dy− ∫ z

a m2�y�dy can be constructed
as above in the one-sample case. Some plots of such confidence bands are given
in Section 4.

The above analysis of the regression functions can also be carried out for
the variance functions. Then one would study the integrated variance function
and show that

Sk�z� =
∫ z

a
�V̂k�y� − σ2

k�y��dy as defined(16)

converge toward a Gaussian Martingale under appropriate conditions.
The comparison of two groups of data is particularly simple. One may, how-

ever, need to compare K regression functions. Following the analogy of the
K-sample test in survival analysis, a test may be based on the asymptotic
distribution of estimators of

∫ S−a
a mk dz − ∫ S−a

a mtot dz for k = 1� � � � �K − 1.
Here mtot�·� is the common regression function, that is, the true regression
function under the null hypothesis. Various estimators of the true common
regression function may be used, leading to slightly different tests.

4. Numerical results and example.

4.1. Numerical results. We have carried out three limited simulation stud-
ies to study the finite sample properties of our estimators and test statistics.
Some dependency structure among the observations has been introduced in
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these simulation studies. In the first simulation study, the covariate is the
random observation time, which depends on the previous measurement. In
the second simulation study, we let the regression function be a function of
the previous measurement and let the observation time depend on the pre-
vious measurement as well. Finally, a two-dimensional regression function
was considered. This example indicates that for the multidimensional case a
much larger sample size is needed in order to obtain a reasonable power of
our test compared to the one-dimensional case. In these simulation studies,
εk� i� j is Gaussian white noise with mean zero and standard deviation 0.1,
and a uniform kernel is used in all simulation studies. In the first simula-
tion study, we also generate noise with a standard deviation of 0.5. A much
larger variation among the measurements is introduced here and the simu-
lation results showed that the test reached reasonable power slowly under
the alternative case as the sample size increased. The two-dimensional case
showed that that the CRF test is more sensitive to the choice of bandwidth
than the one-dimensional case. To obtain a reasonable performance of our
test statistic we therefore chose different bandwidths depending on the sam-
ple sizes in the third simulation study (see Table 3). Based on our limited
simulation studies, we find that the choice of bandwidth is important to ob-
tain a good performance of the test statistic; this is particularly important in
the multidimensional case. Therefore, in practice, some care needs to be taken
in choosing the bandwidth to ensure that the regression function estimates
are not too unstable and at the same time do not introduce too much bias.

Simulation Study 1. Let the covariate Vk� i
τk� i� j

= τk� i� j be the random ob-
servation time. The two regression functions used here are:

Model 1. m�τ� = 0�1 + 0�9τ.
Model 2. m�τ� = 0�1 + 0�9τ + 5τ1�5e−8τ.
For each individual the observation times were generated from the Poisson

process over the unit time period of 
0� 1� with parameter λ, where λ = 20
if the previous response value Yk� i� j−1 ≤ 0�6 and λ = 10 otherwise, that is,
a short follow-up time will occur when Yk� i� j−1 ≤ 0�6, so that the random
observation time depends on the value of the previous measurement.

First, we generate two independent samples, both from model 1 for the
null case and from models 1 and 2, respectively, under the alternative case,
to evaluate the confidence bands for our cumulative regression function es-
timates and our CRF test. Figure 1a and e show the plots of the raw data.
There are 30 individuals in each sample. On the average there are about 15
observations for each individual. The exact average and range of observations
are given in the plots. Examining these raw data plots, it is quite difficult to
determine whether two samples have the same regression function. Figure 1b,
c, f, and g. shows the plots of the estimated and true cumulative regression
functions with 95% confidence bands. The bandwidth was taken as 0.075. In-
specting these plots, we find that all true cumulative regression functions are
contained within the 95% confidence bands, which indicates that the estimates
are consistent. In the two-sample problem, we plot the differences between
the estimates of the cumulative function along with its 95% confidence bands
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(Figure 1d and h). Again the bandwidth was taken as 0.075 here. As we men-
tioned early, it is difficult to see the difference of two regression functions by
examining the plots of the raw data (see Figure 1a and 1e). Also, in Figure
1d, the zero function is contained within the 95% confidence band, and our
CRF test gives a p-value of 0.64, so our CRF test would correctly conclude
that two regression functions are identical. In Figure 1h, the zero function
is well outside the 95% confidence band with p < 0�0001 for the CRF test;
thus the two-sample test correctly concludes that two regression functions are
different.

We generated 5000 samples in each run to study the performance of our
two-sample test (Table 1.1). Under the null case, for the small sample sizes
(N ≤ 10) the observed test sizes do not reach their nominal 5% values, so
the test is not valid for these small sample size cases. Starting from sample
size 15, the observed test sizes are close to their nominal 5% values and the
powers are close to 100% under the alternative case.

Next, we considered the same models and generated εk� i� j with a stan-
dard deviation of 0.5. A much larger variation among the measurements is
introduced here. The bandwidth was taken as 0.05 to be comparable with the
sample sizes. The number of samples in each run was 5000. The numerical
results are given in Table 1.2. Under the null case, the observed test sizes
are close to their nominal 5% values for a relatively small sample size, but
the power increases slowly under the alternative case as the sample size in-
creases. For sample size 120 the test only has power of 0.55. This numerical
example indicates that a much larger sample size is needed in order to obtain
a reasonable power for the test when the variation among the measurements
increases.

In practice, we suggest plotting the raw data, estimated cumulative re-
gression function with its confidence band and estimated (cumulative) vari-

Table 1.1

Observed test sizes and powers of CRF test at nominal level of 5%� bandwidth b = 0�075. The data
were generated with εk� i� j ∼ N�0� 0�1�. The number of samples in each run was 5000

Sample 1 Sample 2

N1 Ave # obs (range) N2 Ave # obs (range) P (95% C.I.)

Null case 5 15.78(3, 35) 5 15.79(4, 35) 0.106(0.097, 0.115)
10 15.78(3, 33) 10 15.80(2, 36) 0.072(0.065, 0.079)
15 15.79(2, 35) 15 15.75(3, 35) 0.054(0.048, 0.061)
20 15.78(2, 36) 20 15.77(3, 36) 0.060(0.053, 0.066)
25 15.80(2, 36) 25 15.77(2, 36) 0.048(0.042, 0.054)
30 15.79(2, 35) 30 15.79(2, 36) 0.046(0.040, 0.052)

Alternative case 5 15.78(3, 36) 5 15.35(2, 32) 0.506(0.492, 0.520)
10 15.77(2, 36) 10 15.33(3, 34) 0.762(0.751, 0.774)
15 15.79(2, 36) 15 15.32(2, 35) 0.902(0.894, 0.911)
20 15.80(3, 33) 20 15.34(2, 36) 0.961(0.955, 0.966)
25 15.79(2, 35) 25 15.34(3, 34) 0.978(0.974, 0.982)
30 15.80(2, 37) 30 15.33(1, 35) 0.990(0.987, 0.992)
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Table 1.2

Observed test sizes and powers of CRF test at nominal level of 5%; bandwidth b = 0�05. The data
were generated with εk� i� j ∼ N�0� 0�5�. The number of samples in each run was 5000

Sample 1 Sample 2

N1 Ave # obs (range) N2 Ave # obs (range) P (95% C.I.)

Null case 20 14.52(1, 36) 20 14.52(1, 33) 0.069(0.062, 0.076)
40 14.51(1, 34) 40 14.51(1, 35) 0.055(0.048, 0.061)
60 14.52(1, 36) 60 14.53(1, 37) 0.056(0.050, 0.062)
80 14.51(1, 39) 80 14.53(1, 37) 0.055(0.049, 0.062)

100 14.52(1, 36) 100 14.52(1, 36) 0.050(0.044, 0.056)
120 14.53(1, 35) 120 14.52(1, 38) 0.044(0.038, 0.049)

Alternative case 20 14.54(1, 36) 20 14.24(1, 35) 0.142(0.133, 0.152)
40 14.54(1, 40) 40 14.23(1, 35) 0.232(0.221, 0.244)
60 14.52(1, 34) 60 14.24(1, 37) 0.316(0.303, 0.329)
80 14.53(1, 37) 80 14.24(1, 35) 0.411(0.397, 0.425)

100 14.53(1, 36) 100 14.23(1, 37) 0.478(0.464, 0.492)
120 14.52(1, 36) 120 14.24(1, 36) 0.548(0.534, 0.562)

ance function. Then we would examine these plots carefully to determine the
smoothness of the regression function and whether a large variation is in-
volved among the observations. Clearly, more research into this area is needed.

Simulation Study 2. Here the covariate is the previous response value,
that is, Vk� i

τk� i� j
= Yk� i� j−1. The data were generated from the following two

regression functions:
Model 1. Linear autoregressive model, m�Vk� i

τk� i� j
� = 0�8Yk� i� j−1.

Model 2. Threshold autoregressive model,

m�Vk� i
τk� i� j

� =
{
−0�3Yk� i� j−1� if Yk� i�j−1 ≤ 0�

0�8Yk� i� j−1� if Yk� i� j−1 > 0�

The observation times were generated from the Poisson process over the
unit time period of 
0� 1� with parameter λ, where λ = 20 if the previous
response value Yk� i� j−1 > 0�15 or Yk� i� j−1 < −0�15, and λ = 10 otherwise.
The simulation results are given in Figure 2 and Table 2. Examining the
plots and the table, a similar conclusion is obtained. Furthermore, inspecting
Figure 2f and g, we find that these two models have distinct shapes of the
cumulative regression functions, and they are easily distinguishable.

Simulation Study 3 (Two-dimensional case). In this study, the covariate
Vk� i

τk� i� j
= �Xk� i� τk� i� j�, where Xk� i is an additional covariate for each indi-

vidual and τk� i� j is the random observation times. The models used in this
simulation study are:

Model 1. m�Vk� i
τk� i� j

� = 0�3Xk� i + �0�1 + 0�9τk� i� j�.
Model 2. m�Vk� i

τk� i� j
� = 0�3Xk� i + �0�1 + 0�9τk� i� j� + 5τ1�5

k� i� j exp�−8τk�i�j�.
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Table 2

Observed test sizes and powers of CRF test at nominal level of 5%; bandwidth b = 0�05. The data
were generated with εk� i� j ∼ N�0� 0�1�. The number of samples in each run was 5000

Sample 1 Sample 2

N1 Ave # obs (range) N2 Ave # obs (range) P (95% C.I.)

Null case 5 12.07(2, 31) 5 12.08(2, 30) 0.109(0.100, 0.117)
10 12.11(2, 32) 10 12.11(2, 32) 0.064(0.057, 0.071)
15 12.10(2, 33) 15 12.08(2, 33) 0.059(0.052, 0.066)
20 12.12(2, 30) 20 12.10(2, 31) 0.052(0.046, 0.058)
25 12.10(2, 34) 25 12.10(2, 35) 0.056(0.049, 0.062)
30 12.10(2, 35) 30 12.10(2, 32) 0.050(0.044, 0.056)

Alternative case 5 12.09(2, 31) 5 11.80(2, 30) 0.677(0.664, 0.690)
10 12.10(2, 31) 10 11.84(2, 30) 0.905(0.896, 0.913)
15 12.11(2, 32) 15 11.83(2, 33) 0.980(0.976, 0.984)
20 12.10(2, 31) 20 11.81(2, 32) 0.997(0.996, 0.999)
25 12.11(2, 35) 25 11.80(2, 32) 1.000(0.999, 1.00)
30 12.08(2, 32) 30 11.81(2, 33) 1.000(1.00, 1.00)

The observation times τk� i� j were generated from a Poisson process with the
same parameter given in Simulation Study 1, and the covariate processes Xk� i

were generated from the random variables with density functions f1�x� =
3/4 + x/2 and f2�x� = 5/4 − x/2 for x ∈ 
0� 1�, respectively. Here, in the
alternative case, m1 < m2 for the same given covariate values of X and τ,
and E�X1� i� = 0�54 > E�X2� i� = 0�46; therefore it would be difficult to detect
the difference without adjusting the covariate of Xk� i.

Table 3 gives the observed test sizes and powers of our two-sample test.
The observed test sizes are close to their nominal 5% values starting from

Table 3

Observed test sizes and powers of CRF test at nominal level of 5%. The data were generated with
εk� i� j ∼ N�0� 0�1�. The number of samples in each run was 5000

Sample 1 Sample 2

N1 b1 � b2 Ave # obs (range) N2 b1 � b2 Ave # obs (range) P (95% C.I.)

Null case
25 0.10 14.00(2, 34) 25 0.10 14.27(2, 33) 0.177(0.167, 0.188)
50 0.08 14.00(1, 35) 50 0.08 14.26(1, 34) 0.058(0.052, 0.065)
75 0.07 13.99(1, 34) 75 0.07 14.26(1, 34) 0.041(0.036, 0.047)

100 0.06 13.99(1, 33) 100 0.06 14.26(1, 35) 0.045(0.040, 0.051)
125 0.05 13.99(1, 36) 125 0.05 14.28(1, 36) 0.056(0.050, 0.063)

Alternative case
25 0.10 13.99(2, 33) 25 0.10 13.54(2, 33) 0.864(0.855, 0.874)
50 0.08 13.99(1, 37) 50 0.08 13.57(1, 34) 0.993(0.990, 0.995)
75 0.07 13.99(1, 33) 75 0.07 13.56(1, 34) 1.000(0.999, 1.00)

100 0.06 13.99(1, 34) 100 0.06 13.57(1, 35) 1.000(1.00, 1.00)
125 0.05 13.98(1, 36) 125 0.05 13.57(1, 35) 1.000(0.999, 1.00)



1344 T. H. SCHEIKE AND M-J. ZHANG

sample size 50 (P = 0�058 for N1 = N2 = 50) under the null case. Therefore,
relatively large sample sizes are required in the higher dimensional cases.
The powers for the alternative case are very close to 100% for sample sizes
≥ 50� where the observed test sizes are close to their nominal 5% values.

The simulations indicate that our two-sample CRF test is consistent and
has sufficient power to detect the difference between the regression functions
in our simulations. The simulations further reveal that some caution has to
be taken in choosing the smoothing parameters appropriately, and this is an
area for further research.

4.2. Example. Finally, we applied the regression two-sample test to com-
pare the growth for two diagnoses of dwarfism, namely, hypochondroplasia
(Hypo) and achondroplasia (Acho). Our data were provided by the Depart-
ment of Growth and Reproduction at the University Hospital in Copenhagen
and consist of longitudinal measurements of height and weight for 36 pa-
tients with hypochondroplasia and 42 patients with achondroplasia. The data
on height versus age for the two groups are displayed in Figure 3a and b, and
it appears that the Hypo diagnosis results in a somewhat better growth. Fig-
ure 3c and 3d shows the similar weight versus age plots for the two groups.
The weight versus age charts suggest that the differences between the two
groups are much less pronounced than for height. This is consistent with the
general impression of Acho patients being somewhat stockier. Due to the lon-
gitudinal nature of the data, a comparison of the growth of the two groups
cannot be based on a simple height/weight for age reference chart. We there-
fore consider the longitudinal regression model where the regression function
is a function of the previous measurement and the time since the previous
measurement, that is,

Yk� i� j = mk�Yk�i�j−1� τk� i� j − τk�i�j−1� + εk� i� j�(17)

for j = 2� � � � �Nk
i � i = 1� � � � � nk� k = 1� 2�

A biologically more satisfactory model would be to include the current age
in the above model, but age did not contribute much additional information in
terms of predicting the growth of Hypo or Acho patients; this is partly due to
the design of the regressors. Therefore, when the objective is solely to compare
the growth patterns, the above simpler submodel may be used to provide a
good approximation. When a difference is found, it can be concluded that the
longitudinal growth is different for the two diagnoses. In contrast, however,
equivalent behavior for two groups based on the limited model will only make
this conclusion valid for the observed age span. The residuals in the model rep-
resent further biological variation and measurement error and were expected
to be right-skewed and biased for small values of time increments. Residual
plots, however, revealed that this was not a serious problem for our data.

Note that we consider only individuals with more than one measurement
and analyze the data conditional on the first measurement for each individual.
First considering height, it appears that patients with hypochondroplasia grow
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Fig. 3.

faster than patients with achondroplasia, and if we apply our two-sample
test to the the following region of previous height and time since previous
measurement, 
50� 120� × 
0�2� 1�9�� our test statistic can be calculated for a
choice of the two-dimensional bandwidth. Figure 4a shows the difference in the
CRF’s normalized with its variance for b1 = 5�0 and b2 = 0�2. For this choice of
bandwidths we get a two-sample test statistic at 94 with variance 586, and this
results in a test statistic that is asymptotically normal at 3�8� which results in
a p-value at 0�0001. Further smoothing of the regression functions results in
the same conclusion although the test statistic decreases some. Note that one
would expect the test statistic to have good power in this application since the
Hypo diagnosis appears to result in a better growth than the Acho diagnosis
all at ages. Comparing the two conditional regression functions at fixed points,
the conclusion is less clear. For example, considering previous height 90 cm
and time since previous measurement 0�2 years, the standardized difference is
1�08� which is asymptotically standard normal (since the bias becomes asymp-
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(a)

(b)

Fig. 4. Normalized difference in cumulative regression function of �Hypo–Acho� with band-
width = 5�0� 0�2� and CRF test of (a) p = 0�0001 and (b) p = 0�48.
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totically negligible) and thus results in a p-value at 0�2762. There are actually
no single point where a comparison would result in a statistically significant
difference.

A similar comparison of the increase of weight did not result in a significant
difference between the two groups, with a p-value at 0�48 for the bandwidths
chosen as for height. Figure 4b shows the difference in the CRF’s normalized
with its variance for b1 = 5�0 and b2 = 0�2. It appears that Hypo results in a
slightly higher weight that, however, is not statistically different.

5. Discussion. We have in this work presented a nonparametric two-
sample test for comparison of regression data. We believe that the test statis-
tic, which is based on the cumulative regression function (CRF), often provides
a reasonable nonparametric two-sample test. An asymptotic result is estab-
lished for the CRF in low dimensions (d ≤ 3). This result may be utilized
in many directions. One may, for example, construct a test for additivity as
in McKeague and Utikal (1990b), see also McKeague and Utikal (1990a), or
establish a goodness-of-fit test along the lines of McKeague and Zhang (1994).
The methodology may be used to compare longitudinal data through compar-
ison of the conditional regression functions, and we showed as a special case
that usual independent identically distributed regression data may be com-
pared by the proposed methodology.

The power and applicability of the CRF test as well as the maximal devi-
ation test depend on the size of the asymptotically negligible bias. The bias
depends on the smoothness of the regression functions and may be a serious
problem when the regression functions are varying rapidly. However, when the
underlying intensities αk�y�, k = 1� 2, are equal, the bias terms will cancel
out and the result may be extended beyond three dimensions.

The CRF test may be extended slightly by introducing a weight function.
This may be a relevant area for further research.

A small difficulty arises from estimating the regression function by a
Nadaraya–Watson estimator: for this estimator, the bias is more severe at the
edges of the data and therefore one must limit the results to nonedge areas.
One may in practice use an estimator without edge effects, for example, the
local linear smoother (LLS) [see Fan (1992)], and thereby avoid the narrowing
of the interval of comparison. The proof presented in this work, however, is
based on the Nadaraya–Watson (ND) estimator. The ND estimator has a bias
of O�b� in the edge area, whereas the LLS smoother has a bias of O�b2� every-
where. The asymptotic variance is the same for both estimators 
O�1/�nb���
and therefore the results of this work also should carry through for edge areas
when the LLS estimator is used, although some corrections in the variance
formulas still are needed at the edges. The LLS estimator is more difficult to
analyze since the design is used more actively, and a particular complication
is that things no longer can be written as integrals of predictable functions.

APPENDIX

This Appendix contains the proofs of Propositions 2–5. Convergence of pro-
cesses are with respect to the uniform topology.
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Proof of Proposition 2. Note that α̂k�y�−α-
k�y� and Dk�y�−D-

k�y� [see
(6)–(9)] are square-integrable 0-Martingales if (4) is satisfied with Hk�i�s� z� =
�1/�b��K�y−Vk� i

s � b� and Hk�i�s� z� = �z−mk�y���1/�b��K�y−Vk� i
s � b�, respec-

tively.
In order to show the proposition, it suffices to show that (a) supy∈A �α̂k�y�−

α-
k�y��→p 0, (b) supy∈A �Dk�y� − D-

k�y��→p 0 and (c) supy∈A �D-
k�y��→p 0. We

start with (a) and prove that �α̂k�y� − α-
k�y��→p 0 for all y and that �α̂k�y� −

α-
k�y�� is tight. Tightness is proved by a slight extension of the multiparameter-

processes result of Bickel and Wichura (1971).
Here we consider only the case where the conditional density of Vk� i

s given
λk� i

s is fk� i
s �v�, since the other case, where Vk� i

s given λk� i
s is a product of

the Dirac measure at s, εs and a bounded density fk� i
s �v1� � � � � vd−1�, follows

similarly.
Let �1/�b��K̃�s� = �1/�b��K�y − Vk� i

s � b�. Note that

E�α̂k�y� − α-
k�y��2 = E

(
1

n2
k

nk∑
i=1

∫ t

0

1
�b�2 K̃2�s�λk� i

s ds

)

= 1

n2
k�b�2

E

( nk∑
i=1

∫ t

0

∫
�d

K2�y − v� b�fk� i
s �v�dvλk� i

s ds

)

= 1

n2
k�b�

E

( nk∑
i=1

∫ t

0

∫ 1

−1
K2�u�fk� i

s �y − bu�duλk� i
s ds

)

≤ C
1

n2
k�b�

E

( nk∑
i=1

∫ t

0
λk� i

s ds

)
�

Here we have used boundedness of the conditional density. If Vk� i
s is time, the

proof follows similarly. This proves that �α̂k�y�−α-
k�y��→p 0 for all y, because

of (iii) and (iv).
We now prove tightness. Following Bickel and Wichura (1971), a block B

in 
0� 1�d is a subset of the form �y1� y2� =
∏d

p=1�y1� p� y2� p�. For a block we
define

X�B� = ∑
ε1=0� 1

· · · ∑
εd=0� 1

�−1��d−
∑

εp�X
(
y1� 1 + ε1�y2� 1 − y1� 1�� � � � � y1� d

+ εd�y2� d −y1� d�
)
�

According to Bickel and Wichura, tightness follows if we can show that
E��X�B���X�C��� ≤ µ�B�µ�C� for all neighboring blocks B and C� where µ is
some measure. Using Cauchy–Schwarz, it suffices to show that E��X�B��2� ≤
µ�B�2. We prove that E��X�B��2� ≤ µ�B�2 + o�1�� where o�1� is independent
of B and thus we use a slight extension of the result of Bickel and Wichura;
see McKeague and Zhang [(1994), page 507].

For a d-dimensional block �y1� y2� =
∏d

p=1�y1� p� y2� p�� we consider

E
(
α̂k�B� − α-

k�B�)2
�
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Let Vk� i
s �p� denotes the pth component of Vk� i

s . Due to the choice of product
kernels we can write α̂k�B� − α-

k�B� as an integral of

Hk�i�s� z� =
1
�b�

d∏
p=1

[
K�y2� p − Vk� i

s �p�� bp� − K�y1� p − Vk� i
s �p�� bp�

]
with respect to the marked point process Martingale, and can thus utilize
Proposition 1 when calculating the above second moment.

We consider the one-dimensional case, since the multidimensional case fol-
lows similarly, and thus we need to show that

E
([

α̂k�y� − α-
k�y�

]− [
α̂�u� − α-

k�u�
])2 ≤ C�y − u�2 + o�1�

for all y�u.
The difference on the left-hand side of the inequality is

E

(
1

n2
k

nk∑
i=1

∫ t

0

[
1
�b�K�y − Vk� i

s � b� − 1
�b�K�u − Vk� i

s � b�
]2

λk� i
s ds

)
�

The integral over t can be bounded as

1

n2
kb

2
1

nk∑
i=1

∫ t

0

∫ 1

−1

[
K�y − v� b1� − K�u − v� b1�

]2
fk� i

s �v�λk� i
s dvds

= 1

n2
kb1

nk∑
i=1

∫ t

0

[∫ 1

−1
K2�v�fk� i

s �y− b1v�dv+
∫ 1

−1
K2�v�fk� i

s �u− b1v�dv

−2
∫ 1

−1
K�v�K

(
v− y−u

b1

)
fk� i

s �y− b1v�dv

]
λk� i

s ds

≤ C

nkb1

(
1
nk

nk∑
i=1

∫ t

0
λk� i

s ds

)
�

Note that the cross term above vanishes if �y − u� > 2b1. Now, using
(iii) and (iv) it follows that E�
α̂k�y� − α-

k�y�� − 
α̂�u� − α-
k�u���2 = o�1�,

since nkb1 → ∞. The tightness condition is therefore satisfied if nkb1 →
∞. The argument further implies that for any an → 0,

√
nk�b�an�α̂k�y� −

α-
k�y��→p 0 uniformly. If further the bias of α̂k�y� is uniformly small, and sat-

isfies min�b1� � � � � bd�−2 supy∈A �α-
k�y� − αk�y�� = Op�1�� we can obtain a rate

of convergence for α̂k�y�. Considering the d-dimensional case, if
√

nk�b� ∼
min�b1� � � � � bd�−2 and bj ∼ b, j = 1� � � � � d, it follows that b ∼ n

−1/�d+4�
k . Now,

nν
k sup �α̂k�y� − αk�y��→p 0� where ν ≤ 2/�d + 4� for d ≤ 3.
Similarly one gets

E
∣∣Dk�y� − D-

k�y�
∣∣2

= E

(
1

n2
k

nk∑
i=1

∫ t

0

[
σ2

k�Vk� i
s � + �mk�Vk� i

s � − mk�y��2] 1
�b�2 K̃2�s�λk� i

s ds

)
≤ E

(
1

n2
k

nk∑
i=1

∫ t

0

1
�b�2 K̃2�s�λk� i

s ds

)
�
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where the boundedness of the expression inside the square brackets was used.
Tightness follows by arguments similar to those above, that also show that
for any an → 0,

√
nk�b�an�Dk�y� − D-

k�y��→p 0 uniformly.
Now,

E
(
D-

k�y�
) = E

(
1
nk

nk∑
i=1

∫ t

0

(
mk�Vk� i

s � − mk�y�
) 1
�b�K�y − Vk� i

s � b�λk� i
s ds

)

= E

(
1
nk

nk∑
i=1

∫ t

0

∫
�d

(
mk�v�−mk�y�

) 1
�b�K�y − v� b�fk� i

s �v�dvλk� i
s ds

)

≤ C�b2
1 + · · · + b2

d�E
(

1
nk

nk∑
i=1

∫ t

0
λk� i

s ds

)
+ o�b2

1 + · · · + b2
d��

where the compact support, eK = 0, of the kernel was used and the regression
function has a bounded second derivative. Next we verify that D-

k�y� can be
approximated by its expected value. It follows that

1

n2
k

nk∑
i=1

E

(∫ t

0

(
mk�Vk� i

s � − mk�y�
) 1
�b�K�y − Vk� i

s � b�λk� i
s ds

)2

= o�1��

since nk�b� → ∞. Tightness follows similarly. ✷

Proof of Proposition 3. Defining

V-
k�y� =

1
nk

nk∑
i=1

∫ t

0

[
σ2

k�Vk� i
s � + (

mk�Vk� i
s � − mk�y�

)2] 1
�b�K̃�s�λk� i

s ds�

it follows that Vk�y� −V-
k�y� is a square-integrable 0-Martingale (because of

the assumption). The proof now follows along the lines of Proposition 2, using
the bound on the conditional fourth moments. ✷

Proof of Proposition 4. Recall that m̂k�y� − mk�y� = Dk�y�/α̂k�y�� see
(5) and (6).

As in Proposition 4, we consider only the case where the conditional density
of Vk� i

s given λk� i
s is fk� i

s �v�; the other case follows similarly.
Define the square-integrable Martingale Xk�y� = Dk�y� − D-

k�y�� see (7)
and (8). Then

Ik�z� =
∫ z

a

Dk�y�
α̂k�y�

dy

=
∫ z

a

Xk�y�
αk�y�

dy −
∫ z

a

�α̂k�y� − αk�y��
α̂k�y�

Xk�y�
αk�y�

dy

+
∫ z

a

D-
k�y�

αk�y�
dy −

∫ z

a

�α̂k�y� − αk�y��
α̂k�y�

D-
k�y�

αk�y�
dy�
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We will show that

�a� Ĩk�z� =
√

nk

∫ z

a

Xk�y�
αk�y�

dy→� Gauss − hk�z� as defined;

�b� √
nk

∫ z

a

�α̂k�y� − αk�y��
α̂k�y�

Xk�y�
αk�y�

dy→p 0 uniformly in z;

�c� √
nk

∫ z

a

D-
k�y�

αk�y�
dy→p 0 uniformly in z;

�d� √
nk

∫ z

a

�α̂k�y� − αk�y��
α̂k�y�

D-
k�y�

αk�y�
dy→p 0 uniformly in z,

where Gauss − hk�z� is a Gaussian Martingale with mean zero and variance
function hk�z�.

(b) follows from (a), Proposition 2 and that αk�·� is bounded away from zero,
from the continuous mapping theorem.

Namely, define

Z1�y� =
α̂k�y� − αk�y�

α̂k�y�
and

Z2�y� =
∫ y

a

Xk�v�
αk�v�

dv

and consider the mapping φ�x�y��·� = ∫ �·�
a xdy, see Andersen, Borgan, Gill

and Keiding [(1993), page 113] for details (the mapping is continuous on the
space of continuous functions). It now follows that

φ�Z1�
√

nkZ2��z� =
√

nk

∫ z

a
Z1�y�dZ2�y�

= √
nk

∫ z

a
Z1�y�

Xk�y�
αk�y�

dy→� 0

uniformly in z. Similarly, (d) follows from (c) and Proposition 2.
We, thus, need to show (a) and (c). We start with (c) and prove that

√
nk

∫ z

a

D-
k�y�

αk�y�
dy→p 0�

From the proof of Proposition 2 it follows that (c) is satisfied. This term’s
numerical value can be bounded by∣∣∣∣√nk

∫ z

a

D-
k�y�

αk�y�
dy

∣∣∣∣
≤

∣∣∣∣ 1√
nk

nk∑
i=1

∫ z

a

∫ t

0

mk�Vk� i
s � − mk�y�
αk�y�

1
�b�K�y − Vk� i

s � b�λk� i
s dyds

∣∣∣∣
≤ dK

C√
nk

nk∑
i=1

∫ t

0

(
b2

1 + · · · + b2
d

)
λk� i

s ds�
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since eK = 0. This last term converges to 0 if max �b1� � � � � bd�2√nk = o�1�, that
is, max �b1� � � � � bd� = o�n−1/4

k �. Note that this rate may be improved by bias
correction; this will, however, complicate the proof quite a bit. This condition
interplays with the obtained rate of convergence for α̂k�y� and limits the proof
to covariates with dimension less than or equal to 3.

To show (a) we prove that the finite-dimensional distribution of Ĩk�z� con-
verges to the appropriate Gaussian distribution using the results of Rebolledo
(1980) and that it is tight. We start by considering the finite-dimensional dis-
tributions

Ĩk�z� =
√

nk

∫ z

a

X�y�
αk�y�

dy�

Defining

gk� i�s�w� z� =
∫ z

a

Hk� i�s�w�y�
αk�y�

dy�

where

Hk�i�s�w�y� = �w − mk�y��
1
�b�K

(
y − Vk� i

s � b
)
�

We have that Ĩk�z� is a square-integrable Martingale (in t) from Proposition 1.
The predictable variation is thus

�Ĩk�z��t = 1
nk

nk∑
i=1

∫ t

0

∫
�d

g2
k� i�s�w� z�λk� i

s dFk� i
s �w − mk�Vk� i

s ��ds

= 1
nk

nk∑
i=1

∫ t

0
σ2

k�Vk� i
s �

[∫ z

a

1
αk�y�

1
�b�K�y − Vk� i

s � b�dy
]2

λk� i
s ds

+ 1
nk

nk∑
i=1

∫ t

0

[∫ z

a

mk�Vk� i
s � − mk�y�
αk�y�

1
�b�K�y − Vk� i

s � b�du

]2

λk� i
s ds

→p hk�z��
The second term converges to 0 in probability uniformly since the regression
function mk has bounded second derivative, dK = O�1� and eK = 0� and from
assumption (i),

hk�z�= lim
nk→∞

1
nk

nk∑
i=1

∫ t

0
σ2

k�Vk� i
s �

[∫ z

a

1
αk�y�

1
�b�K�y − Vk� i

s � b�dy
]2

λk� i
s ds�

Next, we check the Lindeberg condition,

Ln�z� =
1
nk

nk∑
i=1

∫ t

0

∫
�d

g2
k� i�s�w� z�I(�gk� i�s�w� z�� > √

nkε
)

× λk� i
s dFk� i

s �w − mk�Vk� i
s ��ds as defined

≤ 1
nk

nk∑
i=1

∫ t

0

∫
�d

(
w − mk�Vk� i

s �)2
I
(�w − mk�Vk� i

s �� > √
nkcε

)
× λk� i

s dFk� i
s �w − mk�Vk� i

s ��ds + op�1��
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This follows by the simple inequality

�a − b�2I(�a − b� > ε
) ≤ 4�a�2I

{
�a� > ε

2

}
+ 4�b�2I

{
�b� > ε

2

}
�

The first term converges to 0 since the variance function σ2
k�·� is bounded.

This shows that the finite-dimensional distribution of Ĩk�z� converge toward
the Gaussian distribution that was claimed. We complete the proof by showing
that Ĩk�z� is tight.

We show that

E
(
Ĩk�z1� − Ĩk�z2�

)2 ≤ C � z1 − z2 �2 +o�1��
where � · � is the product norm. First, note that

Dt = Ĩk�z1� − Ĩk�z2� as defined

is a square-integrable Martingale according to Proposition 1. It follows that

E
(
Ĩk�z1�− Ĩk�z2�

)2

= E

{
1
nk

nk∑
i=1

∫ t

0
σ2

k�Vk� i
s �[Jk� i�s� z1� − Jk� i�s� z2�

]2
λk� i

s ds

}
+ op�1��

where

Jk� i�s� z� =
∫ z

a

1
αk�y�

1
�b�K�y − Vk� i

s � b�dy�

Now, using that αk�y� is bounded below yields the desired result. This com-
pletes the proof of Proposition 4.

Proof of Proposition 5. It suffices to show that

H-
k�z� =

1
nk

nk∑
i=1

∫ t

0

∫
�
Hk�i

(
s�w� z� αk�·��mk�·�

)
Pk� i�ds × dw�

and Ĥk�z� are asymptotically equivalent. It follows from Proposition 2 since
α̂k�·� and m̂k�·� are uniformly consistent, and αk is bounded away from zero.

In the i.i.d. case when Gk� i
s �dv� = fk� i

s �v�dld�

E�α-
k�y�� = E

(∫ t

0

1
�b�K�y − Vk� i

s � b�λk� i
s ds

)
→ E

(∫ t

0
fk� i

s �y�λk� i
s ds

)
= αk�y��

and it follows that

E�H-
k�z�� = E

(∫ t

0

∫ z+b

a−b
σ2

k�v�
[∫ z

a

1
αk�y�

1
�b�K�y − v� b�dy

]2

fk� i
s �v�dvλk� i

s ds

)

→
∫ z

a

σ2
k�y�

αk�y�
dy�
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When Gk� i
s �dv� = εs ⊗ fk� i

s �v1� � � � � vd−1�dld−1�

E�α-
k�y�� → E

(
fk� i

s �y�λk� i
s

) = αk�y��

and the result follows similarly. ✷
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