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ON THE ASYMPTOTIC DISTRIBUTION THEORY OF A CLASS OF
CONSISTENT ESTIMATORS OF A DISTRIBUTION SATISFYING A
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We identify the asymptotic behavior of the estimators proposed by
Rojo and Samaniego and Mukerjee of a distribution F assumed to be uni-
formly stochastically smaller than a known baseline distribution G. We
show that these estimators are

√
n-convergent to a limit distribution with

mean squared error smaller than or equal to the mean squared error of
the empirical survival function. By examining the mean squared error of
the limit distribution, we are able to identify the optimal estimator within
Mukerjee’s class under a variety of different assumptions on F and G. Sim-
ilar theoretical results are developed for the two-sample problem where F
and G are both unknown. The asymptotic distribution theory is applied
to obtain confidence bands for the survival function �F based on published
data from an accelerated life testing experiment.

1. Introduction. Uniform stochastic ordering (USO) is a relation
between random variables, or between their cumulative distribution functions,
which quantifies the idea that the value taken by one variable tends to be
smaller than the value taken by the other. There are many ways to model
this idea. Uniform stochastic ordering, which we will denote by X ≤�+� Y or
as F ≤�+� G, where X ∼ F and Y ∼ G, is characterized by the monotonicity
of the ratio �F�x�/�G�x� over the support set �G of the distribution G, where
�F = 1 − F and �G = 1 − G. We say that F ≤�+� G if and only if �F�x�/�G�x�
is nonincreasing on �G. Among the many extant notions of ordering between
distributions [see Shaked and Shanthikumar (1994) for a comprehensive dis-
cussion], uniform stochastic ordering has a particular relevance in the fields
of reliability and survival analysis. It is easily shown that, in the absolutely
continuous case where F and G have densities f and g
F ≤�+� G is equivalent
to the ordering of the respective failure rates, that is, F ≤�+� G⇔

f�x�
�F�x� ≥

g�x�
�G�x� ∀ x ∈ �F ∪�G�(1.1)

Thus, when F ≤�+� G is known, we have a circumstance in which items having
distribution F have a higher propensity to fail than items having distribution
G. Because of the equivalence of (1.1) and the basic USO definition in the
absolutely continuous case, the ordering is often called “the hazard rate or-

Received October 1998; revised October 1999.
AMS 1991 subject classifications. Primary 62G05; secondary 62G10, 62E20.
Key words and phrases. Uniform stochastic ordering, hazard rate ordering, Brownian motion,

empirical processes.

116



ESTIMATION UNDER UNIFORM STOCHASTIC ORDERING 117

dering.” It is known [see Ross (1983)] to be a stronger form of ordering than
ordinary stochastic ordering �F≤stG iff �F�x� ≤ �G�x� ∀ x ∈ �F ∪ �G� and to
be a weaker ordering than likelihood ratio ordering �F≤lrG iff f�x�/g�x� is
nonincreasing for x ∈ �G ∪�F�.

There has been considerable recent interest in uniform stochastic ordering,
both from the mathematical and the statistical perspectives. The relation-
ship between USO and other ordering notions, and various implications of a
USO assumption, have been explored in papers by Yanagimoto and Sibuya
(1972), Whitt (1980), Keilson and Sumita (1982), Bagai and Kochar (1986)
and Boland, El-Newehi and Proschan (1994). An excellent exposition of these
and related results may be found in Shaked and Shanthikumar (1994). Sta-
tistical papers include Caperaa’s (1988) treatment of a nonparametric testing
problem, Dykstra, Kochar and Robertson’s (1991) derivation of the likelihood
ratio test for equality of distributions against a USO alternative, Rojo and
Samaniego’s (1991, 1993) studies of consistent estimation of a distribution F
subject to a USO constraint and Mukerjee’s (1996) treatment of the estima-
tion of the pair �F
G�, with F ≤�+� G, based on independent samples from F
and G. The latter four papers deal with estimators of distributions which obey
USO constraints; while certain convergence questions are treated there, none
of the cited work considers the delicate matter of an asymptotic distribution
theory for the estimators in question. The purpose of this paper is to tackle
these open questions in the contexts studied by Rojo and Samaniego (1993)
and Mukerjee (1996).

The particular problem of interest in Section 2 may be described as follows.
A random sample X1
 � � � 
Xn is drawn from a distribution F on �0
∞�, where
F is unknown, but is subject to the constraint F ≤�+� G, with G a known
distribution on �0
∞�. This problem arises in situations in which testing is
done under two sets of conditions, one carefully controlled (in the laboratory,
for example), yielding effectively unlimited data governed by G, and the other
uncontrolled (in the field, e.g.) yielding a data set of modest size governed
by F. In that context, Rojo and Samaniego proposed, as an estimator of the
survival function �F ≡ 1−F, the function

�F̂n�x� = inf
�y� 0≤y≤x�

�G�x� �Fn�y�
�G�y� 
(1.2)

where �Fn is the empirical survival function (esf). They showed that F̂n ≤�+� G
and showed that strong uniform consistency of �F̂n as an estimator of �F follows.
They also showed that

sup
0≤x

∣∣∣�F̂n�x� − �F�x�
∣∣∣ ≤ sup

0≤x

∣∣�Fn�x� − �F�x�∣∣�(1.3)

We prove that, except in a trivial case, we have strict inequality with posi-
tive probability. It is not true that for each x
 � �F̂n�x� − �F�x�� ≤ � �Fn�x� − �F�x��
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(see the example after Theorem 2.1). However, we are able to prove that,
asymptotically, �F̂n is more accurate than �Fn. Next, we prove that{

n1/2
(
�F̂n�x� − �F�x�

)
� x ≥ 0

}
converges weakly to a certain stochastic process �L�x�� x ≥ 0�. As is well
known,

{
n1/2� �Fn�x� − �F�x��� x ≥ 0

}
converges weakly to �−W�F�x��� x ≥ 0�,

where �W�u� � 0 ≤ u ≤ 1� is a Brownian bridge. We show that for each x > 0
and each t > 0,

Pr��L�x�� ≥ t� ≤ Pr��W�F�x��� ≥ t��
This enables us to provide conservative approximate confidence bands around
the estimator �F̂n, that is, confidence regions which tend to achieve confidence
levels somewhat higher than the nominal levels employed in their construc-
tion. If both �F and �G are discrete distributions, then in some cases we obtain
that for each t > 0,

Pr��L�x�� ≥ t� < Pr��W�F�x��� ≥ t��
The MSE of the limit distribution can be reduced by as much as 50% of that
of �Fn. On the other hand, if both �F and �G are continuous, then for each x > 0
and each t > 0,

Pr��L�x�� ≥ t� = Pr��W�F�x��� ≥ t��

However, L�x� could have nonzero mean. Thus, �F̂n has the same asymptotic
MSE as �Fn
 but it is not necessarily asymptotically unbiased.

Mukerjee (1996) proposed an estimator in the two-sample problem that also
can be used in the one-sample case, using G itself instead of an estimate of
G. Given α ∈ �0
1�, let

�F̂α
n�x� = inf
y� 0≤y≤x

F̄n�y���1− α� �Fn�x� + α�G�x��
�1− α� �Fn�y� + α�G�y� �(1.4)

When α = 0, we have �Fn�x�� �F̂1
n is the Rojo and Samaniego estimator. We give
the asymptotic distribution of this estimator for general α. We also find the α
giving a limit distribution with the smallest MSE. If both �F and �G are discrete
distributions, this estimator does not improve upon the Rojo and Samaniego
estimator. In one case, the MSE of the limit distribution has a strict minimum
at α = 1. However, when both �F and �G are continuous distributions, the MSE
is minimized for α = �F�x�/�F�x� + �G�x�. Thus, in this situation the preferred
estimator is

inf
y� 0≤y≤x

2�Fn�y��G�x� �Fn�x�
�G�x� �Fn�y� + �G�y� �Fn�x�

�(1.5)

This estimator can reduce the MSE of the limit distribution by as much
as 25%.
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In Section 3, we turn our attention to the asymptotic distribution theory
associated with Mukerjee’s (1996) estimators of F and G when it is known
that F ≤�+� G and independent random samples are available from both F
and G. After obtaining the relevant asymptotic distributions, we derive the
general form of the optimal estimator within Mukerjee’s class and identify
conditions under which Mukerjee’s recommended estimator within this class
is in fact optimal.

In the final section, we put the asymptotic distribution theory developed
in Section 2 to use in providing confidence bands for the survival function
�F based on data from an accelerated life test on Kevlan/epoxy pressure ves-
sels. We close by making a few remarks about the extent to which similar
asymptotic results obtain under random censoring and by discussing the ap-
plication of our asymptotic results to testing problems involving the constraint
F ≤�+� G.

The proofs of all theoretical results in the sequel have been relegated to the
Appendix.

2. Asymptotic distribution theory in the one sample problem. In
this section, we will derive the asymptotic distribution of the Rojo–Samaniego
estimator �F̂n in (1.2) based on a random sample drawn from F, where F ≤�+� G
with G known. We assume throughout that F and G are supported on �0
∞�,
and we denote the least upper bounds of their support by

tF = sup
{
t� �F�t� > 0

}
and tG = sup

{
t� �G�t� > 0

}

(2.1)

respectively. Since F ≤�+� G, we have that tF ≤ tG. We will make repeated
use of the following additional notation: let

H�x� =
�F�x�
�G�x� for x ∈ �0
 tG��(2.2)

The constraint that F ≤�+� G is equivalent to the assumption that H is non-
increasing in �0
 tG�. Further, we define the function � as

��x� = inf �y� H�y� =H�x�� 
 x ∈ �0
 tG��(2.3)

When H is strictly decreasing, we have ��x� ≡ x; in this case, we will demon-
strate that �F̂n and �Fn are asymptotically equivalent. Finally, for x ∈ �0
 tG�,
define the set � �x� as

� �x� = {�F�y�� y ≤ x
 H�y� =H�x�}
∪ {�F�y−�� y ≤ x
 H�y−� =H�x�} �(2.4)

As we will see, the character of the set � �x� for x ∈ �0
 tG� has a strong
influence on the limiting distribution of the process{√

n
(
�F̂n�t� − �F�t�

)
� t ∈ �0
 tG�

}
�

Although the general form of the set � �x� can be very complicated, we can
determine the form of the set � for continuous and for discrete distributions.



120 M. A. ARCONES AND F. J. SAMANIEGO

If X and Y have continuous cdf ’s, then �y ≤ x� H�y� = H�x�� = �l�x�
 x�
and � �x� = � �F�x�
 �F���x���. If X and Y are discrete r.v.’s with finite support
�x1 < · · · < xm�, where 0 = x0 < x1 < · · · < xm, then there are positive
integers i ≤ k such that H�xi−1� > H�xi� = H�x� and xi ≤ xk ≤ x < xk+1;
and

� �x� = ��F�xj�� xj ≤ x
 H̄�xj� = H̄�x���

In studying the asymptotic behavior of �F̂n�x�, we will restrict attention to
x ∈ �0
 tF� since, for x ∈ �tF
 tG�,

�F̂n�x� = �Fn�x� = �F�x� = 0�

Our treatment of the Rojo–Samaniego estimator begins with a refinement
of a result on the relative accuracy of �F̂n and �Fn. Rojo and Samaniego (1993)
proved that, for fixed known G and for all F ≤�+� G,

sup
0≤x<tF

∣∣∣�F̂n�x� − �F�x�
∣∣∣ ≤ sup

0≤x<tF

∣∣�Fn�x� − �F�x�∣∣
(2.5)

with strict inequality holding for some F. This result may be strengthened as
follows.

Theorem 2.1. Let X1
 � � � 
Xn

iid∼ F, where F ≤�+� G, with G known. As-
sume that tF > 0.

(i) If �G�tF−� = 1, then for each 0 ≤ x < tF


inf
y� 0≤y≤x

�G�x� �Fn�y�
�G�y� = �Fn�x��

(ii) If �G�tF−� < 1, then, with positive probability,

sup
0≤x<tF

∣∣∣∣∣ inf
y� 0≤y≤x

( �G�x�F̄n�y�
�G�y� − �F�x�

)∣∣∣∣∣ < sup
0≤x<tF

∣∣�Fn�x� − �F�x�∣∣�
It is not true that the inequality � �F̂n�x� − �F�x�� ≤ � �Fn�x� − �F�x�� holds

for every x ≥ 0. Suppose, for example, that �F = �G
 with each distribution
placing mass 1/3 at x = 1
2
3. Then, �F̂n�x� = min�3−1
2−1 �Fn�1�
 �Fn�2��. If
a sample of size n = 4 yields �1
1
1
3� 
 so that �Fn�1� = �Fn�2� = 2−2, then
� �F̂n�2� − �F�2�� = 5/24 > 1/12 = ��Fn�2� − �F�2��.

Next, we consider the asymptotic theory of the Rojo–Samaniego estima-
tor. As is well known, �n1/2�Fn�x� − F�x��� x ∈ �� converges in distribu-
tion to �W�F�x��� x ∈ ��, where �W�t�� 0 ≤ t ≤ 1� is a Brownian bridge.
As a consequence, �n1/2� �Fn�x� − �F�x��� x ∈ �� converges in distribution to
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�−W�F�x��� x ∈ ��. The convergence of �F̂n�x� in distribution, at rate n1/2, is
established in the following:

Theorem 2.2. Let X1
 � � � 
Xn

iid∼ F, where F ≤�+� G, with G known. Then
the stochastic process{

n1/2 inf
y� 0≤y≤x

( �G�x� �Fn�y�
�G�y� − �F�x�

)
� 0 ≤ x < tF

}
(2.6)

converges weakly to �L�x�� 0 ≤ x < tF� where

L�x� �= − sup
t∈� �x�

�F�x�W�1− t�
t

�(2.7)

As one should expect, when �F and �G are close together, �F̂n is superior to
�Fn. Suppose, for example, that �F = �G is a continuous survival function. Then,

sup
x≥0

n1/2
∣∣�Fn�x� − �F�x�∣∣ d→ sup

x≥0
�W�F�x��� = sup

0≤t≤1

∣∣W�t�∣∣ 

while

sup
x≥0

n1/2
∣∣∣�F̂n�x� − �F�x�

∣∣∣ d→ sup
x≥0

∣∣∣∣ sup
y� 0≤y≤x

�F�x�W�F�x��
�F�y�

∣∣∣∣
= sup

x≥0
sup

y� 0≤y≤x

�F�x�W+�F�x��
�F�y� = sup

0≤t≤1
W+�t��

The tails of sup0≤t≤1 W�t� and sup0≤t≤1 W+�t� can be found on page 85 of
Billingsley (1968).

Theorem 2.2 allows us to discuss the asymptotic bias and asymptotic MSE
of �F̂n�x�. It is well known that for each k > 0
E��n1/2 supx>0 � �Fn�x�− �F�x���k�
is a bounded sequence. By (2.6), we can assert that the same is true for

n1/2 sup
0≤x<tF

∣∣∣�F̂n�x� − �F�x�
∣∣∣�

Hence, by uniform integrability, the moments of n1/2� �F̂n�x�− �F�x�� converge to
those of L�x�. If � �x� = ��F�x��, then L�x� = W�F�x�� and �F̂n�x� is asymp-
totically equivalent to �Fn�x�. Otherwise, L�x� ≤ −W�F�x�� and E�L�x�� <
−E�W� �F�x��� = 0; that is, �F̂n�x� is asymptotically biased. Observe that if
t ∈ � �x� and t �= �F�x�, then

E�L�x�� ≤ −E

[
max

( �F�x�W�1− t�
t


W�F�x��
)]

= −E

[
max

(
0
W�F�x�� −

�F�x�W�1− t�
t

)]
= − �2π�−1/2� �F�x��1− t−1 �F�x���1/2 < 0�



122 M. A. ARCONES AND F. J. SAMANIEGO

As to the accuracy and MSE of the Rojo–Samaniego estimator, we have the
following:

Theorem 2.3. Consider the conditions:

(a) H�l�x�� =H�l�x�−� and �F�l�x�� < �F�l�x�−�.
(b)

{�F�y�� l�x� ≤ y ≤ x
} �= [�F�l�x��
 �F�x�].

(i) If neither (a) nor (b) holds, then for each t > 0,

Pr��L�x�� ≥ t� = Pr��W�F�x��� ≥ t��(2.8)

(ii) If either (a) or (b) holds or both hold, then for each t > 0,

Pr��L�x�� ≥ t� < Pr��W�F�x��� ≥ t��(2.9)

It follows from the result above that a conservative 100�1−α�% confidence
interval for �F�x� is given by

�F̂n�x� ± zα/2n
−1/2� �F̂n�x��1− �F̂n�x���1/2


where Pr
{
Z ≥ zα/2

} = α/2 and Z is a standard normal r.v.
Suppose that �F and �G are discrete distributions giving probability 1 to the

points x1 < · · · < xm. It follows from the previous theorem that if H�xi� >
H�xi+1� for each i, then n1/2� �F̂n�x� − �Fn�x��

Pr−→0. Otherwise for some x’s,
the limit distribution of n1/2� �F̂n�x� − �F�x�� has smaller MSE than the limit
distribution of n1/2� �Fn�x� − �F�x��. If �F and �G are continuous and ��x� = x,

the asymptotic distribution of �F̂n is that of �Fn; if, however, ��x� < x, then �F̂n
is not asymptotically normal.

We now expand our focus to consider estimators of �F of the form consid-
ered by Mukerjee (1996). Let �F̂α
n�x� be the estimator given in (1.4). By the
definition of the Rojo–Samaniego estimator, we have that

sup
�y� 0≤y≤x�

�G�y�
�Fn�y�

=
�G�x�
�F̂n�x�




which implies that

�F̂α
n�x� =
�F̂n�x���1− α� �Fn�x� + α�G�x��

�1− α� �F̂n�x� + α�G�x�
�

Since �F̂n�x� ≤ �Fn�x�, we have that

�F̂n�x� ≤ �F̂α
n�x� ≤ �Fn�x��

This implies that �F̂α
n approaches �F at least as efficiently as �Fn does; that is,

sup
0≤x

∣∣∣�F̂α
n�x� − �F�x�
∣∣∣ ≤ sup

0≤x

∣∣�Fn�x� − �F�x�∣∣�
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Among other things, this latter inequality shows that every estimator in the
Mukerjee class has the property established in Theorem 2.1 for �F̂n. The asymp-
totic distribution of �F̂α
n�x� is identified in the following result.

Theorem 2.4. Let X1
 ���
Xn

iid∼ F, where F ≤�+� G, with G known. Then{
n1/2 inf

y� 0≤y≤x

( �Fn�y���1− α� �Fn�x� + α�G�x��
�1− α� �Fn�y� + α�G�y� − �F�x�

)
� 0 ≤ x < tF

}
(2.10)

converges weakly to �Lα�x�� 0 ≤ x < tF� where

Lα�x� �= − sup
t∈� �x�

�1− α�tW�F�x�� + α�G�x�W�1− t�
�1− α�t+ αt� �F�x��−1�G�x� �(2.11)

As with the Rojo–Samaniego estimator, the moments of estimators in the
Mukerjee class

{�F̂α
n�x�� α ∈ �0
1�} converge to those of the limiting distribu-
tion Lα�x�. It will be both feasible and useful to examine the limiting MSE
of estimators in this class. In Theorem 2.5, we identify the value of α which
minimizes this MSE. The optimal value α0 depends, in general, on the set
� �x� in a complicated way. We will limit ourselves to examining three spe-
cific examples in which α0 can be identified explicitly.

Theorem 2.5. Suppose that � �x� contains more than one element. Then
E��Lα�x��2� is minimized at

α0 = α0� �F� =
�1− a1� �F�x�

�1− a1� �F�x� + �G�x��a2 − a1�

(2.12)

where

a1 �=
(

1
�F�x� −

1
m�x�

)−1

E

[
B

(
1
�F�x� −

1
m�x�

)
sup

t∈� �x�
B

(
1
t
− 1

m�x�
)]




a2 �=
(

1
�F�x� −

1
m�x�

)−1

E

( sup
t∈� �x�

B

(
1
t
− 1

m�x�
))2


and m�x� is the largest element of � �x�. The estimator corresponding to this
choice of α is

�F̂̂α0
n
�x� = inf

y� 0≤y≤x

�Fn�y���a2 − a1��G�x� �Fn�x� + �1− a1� �Fn�x��G�x��
�a2 − a1��G�x� �Fn�y� + �1− a1� �Fn�x��G�y�


(2.13)

where α̂0 = α0� �Fn�. Moreover, for this choice of α,

E��Lα0
�x��2� = �F�x�

(
A+

�F�x�
m�x��1−A�

)
− �F̄�x��2 < E��W�F�x��2�
(2.14)
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where

0 < A � = a2 − a2
1

a2 − 2a1 + 1
< 1�

The optimal choice of α depends on several parameters, mainly on � �x�.
We close this section with some optimality results for three possible types
of � �x�.

Theorem 2.6. Suppose that l�x� �= x and � �x� = � �F�x�
 �F�l�x���. Then,
E��Lα�x��2� is minimized at

α0 = α0� �F� =
�F�x�

�F�x� + �G�x� 
(2.15)

E�L2
α0
�x�� = �F�x�

(
3
4
+

�F�x�
4�F�l�x��

)
− ��F�x��2(2.16)

and the estimator with this choice α0 is

�F̂̂α0
n
�x� = inf

y� 0≤y≤x
2�Fn�y��G�x� �Fn�x�

�G�x� �Fn�y� + F̄n�x��G�y�
�(2.17)

where α̂0 = α0� �Fn�.

It is easy to see that in the previous case, E�L2
α0
�x��/E�W2�F�x��� ≥ 3/4,

with the lower bound attained if �F���x�� = 1� Although the reduction in the
MSE is not dramatic, neither is it negligible. If �G and �F are both contin-
uous, either L�x� = W�F�x�� or we have the case in Theorem 2.6. Thus,
in the continuous case, the estimate in (2.17) is either equivalent to the
Rojo–Samaniego estimator or superior to it.

Next, we consider two special cases in which both �G and �F are discrete
distributions.

Theorem 2.7. Suppose that � �x� = ��F�x�
m�x��, for somem�x� �= �F�x�,
thenE��Lα�x��2� is minimized at α0 = 1, that is, the Rojo–Samaniego estimator
minimizes the MSE among estimators of the form (1.4). The asymptotic MSE
of this estimator is given by

E��Lα0
�x��2� = 2−1 �F�x�

(
1+

�F�x�
m�x�

)
− ��F�x��2�(2.18)

In the previous theorem E�L2
α0
�x��/E�W2�F�x��� ≥ 1/2� the lower bound is

attained if m�x� = 1.
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Theorem 2.8. Suppose that� �x� = ��F�x�
 y1
 y2� where �F�x� < y1 < y2,
then E��Lα�x��2� is minimized at

α0 =
�1− a1� �F�x�

�1− a1� �F�x� + �G�x��a2 − a1�



where

a1 = 2−1 − t2−2 − �2π�−1 arctan��t/�1− t��1/2�

a2 = 2−1 + t2−2 + �2π�−1�t�1− t��1/2 − �2π�−1 arctan��t/�1− t��1/2�

and

t = 1/y1 − 1/y2

1/�F�x� − 1/y2
�

In order to construct an asymptotic confidence interval, we need to have
bounds on the tail of the limit distribution. Since the only case in which the
general Mukerjee estimator is recommended is the case of continuous distri-
butions, we restrict consideration to this case.

Theorem 2.9. If the assumptions of Theorem 2�4 hold, and if F and G are
continuous distributions, then

(i) If either α ∈ �0
1� or � �x� = ��F�x��, then for each t > 0,

Pr�∣∣Lα�x�
∣∣ ≥ t� = Pr�∣∣W�F�x��∣∣ ≥ t��

(ii) If 0 < α < 1 and � �x� �= � �F�x��, then for each t > 0,

Pr�∣∣Lα�x�
∣∣ ≥ t� < Pr�∣∣W�F�x��∣∣ ≥ t��

The theorem above demonstrates that, for continuous distributions, both
the empirical survival function and the Rojo–Samaniego estimator of survival
are asymptotically dominated by estimators �F̂α in the Mukerjee class with
α ∈ �0
1�. Further, we have that if �F and �G are continuous distributions, a
conservative 100(1–α%) confidence interval for �F�x� is given by

�F̂̂α0
n
�x� ± zα/2n

−1/2� �F̂̂α0
n
�x��1− �F̂̂α0
n

�x���1/2


where �F̂̂α0
n
�x� is given in (2.13) and zα/2 is the 1−α/2 quantile of the standard

normal distribution.
It is worth noting that, except when α = 1, the estimator above cannot be

guaranteed to satisfy the USO constraint with respect to G. A consistent esti-
mator which does satisfy the USO constraint can be constructed by applying
the transformation in (2.4) of Rojo and Samaniego (1993) to �F̂α
n�x�.
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3. Asymptotic distribution theory for the two sample problem. Sup-
pose now that independent random samples are available from the distribu-
tions F and G, where F ≤�+� G, and we wish to estimate F (or F and G) from
these data. Mukerjee (1996) proposed estimators of the form

�F̂α
n�x� = inf
y� 0≤y≤x

�Fn�y���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�y� + α�Gm�y�

(3.1)

and

�Ĝα
m�x� = sup
y� 0≤y≤x

Ḡm�y���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�y� + α�Gm�y�


(3.2)

where α ∈ �0
1�
 � �Fn
 �Gm� are the empirical survival functions based on sam-
ples of size n and m from F and G, respectively, and x is such that max� �Fn�x�
�Gm�x�� > 0. He demonstrated the strong consistency of these estimators for
arbitrary α and suggested the use of

α̂ = m

m+ n

(3.3)

based on a heuristic argument related to maximizing a nonparametric likeli-
hood.

The aim of this section is to develop the asymptotic distribution theory of
the estimators �F̂α
n and �Ĝα
m. We provide detailed derivations only for �F̂α
n
since the arguments for �Ĝα
m are similar. Our results include asymptotic dis-
tributions for arbitrary α and the identification of the general form of the
value α0 of α which minimizes the asymptotic MSE of �F̂α. We will also iden-
tify circumstances under which Mukerjee’s recommended α̂ is asymptotically
optimal, but also demonstrate that other choices of α are superior in alter-
native situations. The notation established for tF
 tG
H�x�
 ��x� and � �x� in
(2.1)–(2.4) carry over to this section without alteration. In addition, we will
use the notation

�n1/2�Fn�x� −F�x��� x ∈ �� d→ �W1�F�x��� x ∈ R�
and

�m1/2�Gm�x� −G�x��� x ∈ �� d→ �W2�G�x��� x ∈ R�

where �W1�t�� 0 ≤ t ≤ 1� and �W2�t�� 0 ≤ t ≤ 1� are two independent Brown-
ian bridges. As a consequence, we have that

�n1/2� �Fn�x� − �F�x��� x ∈ �� d→ �−W1�F�x��� x ∈ R�
and

�m1/2��Gm�x� − �G�x��� x ∈ �� d→ �−W2�G�x��� x ∈ R��
Since the estimators are related to the empirical processes n1/2� �Fn�x�− �F�x��
and m1/2��Gm�x� − �G�x��
 we have joint convergence of the estimators of �F
and �G.
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Theorem 3.1. Let X1
 � � � 
Xn

iid∼F and Y1
 � � � 
Ym

iid∼G, where F≤�+�G.
(i) If m/n→∞, then{
n1/2 inf

y� 0≤y≤x

( �Fn�y���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�y� + αḠm�y�

− �F�x�
)
� 0 ≤ x < tF

}
converges weakly to �Lα�x�� 0 ≤ x < tF� where

Lα�x� �= − sup
t∈� �x�

�1− α�tW1�F�x�� + α�G�x�W1�1− t�
�1− α�t+ αt� �F�x��−1�G�x� �(3.4)

(ii) If m/n→ c, where 0 < c <∞, then{
n1/2 inf

y� 0≤y≤x

( �Fn�y���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�y� + αḠm�y�

− �F�x�
)
� 0 ≤ x < tF

}
(3.5)

converges weakly to �Lα
c�x�� 0 ≤ x < tF� where

Lα
c�x� �= − sup
t∈� �x�

S�t
 α
 x�
�1− α�t+ αt� �F�x��−1�G�x� 


with S�t
 α
 x� given by
�1− α�tW1�F�x�� + α�G�x�W1�1− t� + c−1/2αtW2�G�x��

− c−1/2α�F�x�W2�1− t�G�x�� �F�x��−1��
(iii) If m/n→ 0, then{

m1/2 inf
y� 0≤y≤x

( �Fn�y���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�y� + α�Gm�y�

− �F�x�
)
� 0 ≤ x < tF

}
converges weakly to �Lα
0�x�� 0 ≤ x < tF� where

Lα
0�x� �= − sup
t∈� �x�

αtW2�G�x�� − α�F�x�W2�t�G�x�� �F�x��−1�
�1− α�t+ αt� �F�x��−1�G�x� �(3.6)

In the case m/n→∞, we are able to estimate �G very well, and the asymp-
totic distribution is the same as in the case when �G is known. Thus, the
comments in Section 2 apply to this case. In the case m/n → 0, with α > 0,
the rate of convergence is m1/2 which is a slower rate than the rate of conver-
gence of the empirical survival function. In this situation, we cannot estimate
�G with sufficient precision, and the information that H in nonincreasing is
not very useful. The empirical survival function is the more reliable estimator
of F in such situations.

When m/n→ c, with 0 < c <∞, the best choice of estimator depends on c
via an analysis similar to that in Section 2.
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Theorem 3.2. Suppose that m/n → c ∈ �0
∞� and that � �x� contains
more than one element. Then, E��Lα
c�x��2� is minimized at

α0 = α0� �F
 �G� = �1− a1� �F�x�
�1− a1 + c−1�1− 2a1 + a2�� �F�x� + �a2 − a1��G�x�


(3.7)

where

a1 �=
(

1
�F�x� −

1
m�x�

)−1

E

[
B

(
1
�F�x� −

1
m�x�

)
sup

t∈� �x�
B

(
1
t
− 1

m�x�
)]


(3.8)

a2 �=
(

1
�F�x� −

1
m�x�

)−1

E

( sup
t∈� �x�

B

(
1
t
− 1

m�x�
))2

 
(3.9)

and m�x� is the largest element in � �x�.
Moreover, for this choice of α,

E��Lα0
c
�x��2� = �F�x�

(
A+

�F�x�
m�x��1−A�

)
− ��F�x��2


where

0 ≤ A �=
�F�x��1+ a2 − 2a1� + c�G�x��a2 − a2

1�
�1+ a2 − 2a1�� �F�x� + c�G�x�� ≤ 1�

Since �F�x�, �G�x� and c are unknown, it is natural to estimate them by
�Fn�x�, �Gm�x� and m/n, respectively. In particular, the best choice for α is
well approximated by

α̂0� �Fn
 �Gm� =
�1− a1� �Fn�x�

�1− a1 + nm−1�1− 2a1 + a2�� �Fn�x� + �Gm�x��a2 − a1�



and the asymptotic behavior of the estimator is unaffected by this substitution.
It is easy to see that E��Lα0
c

�x��2� decreases with c. This corresponds to the
intuitive notion that the precision in estimating G increases with m.

Theorem 3.3. Suppose that m/n → c ∈ �0
∞�
 l�x� �= x and � �x� =
� �F�x�
 �F�l�x���. Then, E��Lα
c�x��2� is minimized at

α0 = α0� �F
 �G� = c�F�x�
�2+ c� �F�x� + c�G�x�

and

E��Lα0
c
�x��2� = �F�x�

(
A+

�F�x�
m�x��1−A�

)
− ��F�x��2


where

A = 2� �F�x��2 + 7�F�x�c�G�x� + 3c2��G�x��2
4� �F�x� + c�G�x��2 �
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The estimator of �F with this choice α0 is

�Fα̂0
n
�x� = inf

y� 0≤y≤x

�Fn�y���2n�Fn�x� +m�Gm�x�� �Fn�x� +m�Fn�x��Gm�x��
�2n�Fn�x� +m�Gm�x�� �Fn�y� +m�Fn�x��Gm�y�




where α̂0 = α0� �Fn
 �Gm�.

Next, we consider two cases in which both �G and �F are discrete distribu-
tions. The proofs of these results are similar to those of Theorems 2.8 and 2.10
and are omitted.

Theorem 3.4. Suppose that m/n → c ∈ �0
∞� and that � �x� = ��F�x�

m�x�� for some m�x� �= �F�x�, then E��Lα
c�x��2� is minimized at α0�c� =
c/�c+ 1�, and

E��Lα0
c
�x��2� = �F�x�

(
A+

�F�x�
m�x��1−A�

)
− ��F�x��2


where

A =
�F�x� + �3/2�c�G�x�
�F�x� + c�G�x� �

The estimator of �F with this choice α0 is

�F̂̂α0
n
�x� = inf

y� 0≤y≤x

�Fn�y��n�Fn�x� +m�Gm�x��
n�Fn�y� +m�Gm�y�


(3.10)

where α̂0 = α0�m/n��

Remark. Theorem 3.4 identifies sufficient conditions for Mukerjee’s rec-
ommended α in (3.3) to be asymptotically optimal. Since m/n→ c, we have

lim
n→∞

m

m+ n
= lim

n→∞
m/n

m/n+ 1
= c

c+ 1
= α0�

Theorem 3.5. Suppose that� �x� = ��F�x�
 y1
 y2� where �F�x� < y1 < y2,
then E��Lα
c�x��2� is minimized at

α0 =
�1− a1� �F�x�

�1− a1 + c−1�1− 2a1 + a2��F̄�x� + �G�x��a2 − a1�



where

a1 = 2−1 + t2−2 − �2π�−1 arctan��t/�1− t��1/2�
and

a2 = 2−1 + t2−2 + �2π�−1�t�1− t��1/2 − �2π�−1 arctan��t/�1− t��1/2�
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with

t = 1/y1 − 1/y2

1/�F�x� − 1/y2
�

Next, we present the asymptotics of the estimator in (3.2). Since the proofs
of these results are similar to those of the asymptotics of (3.1), they are omit-
ted. The limit distribution will be given in terms of �W1�t�� 0 ≤ t ≤ 1� and
�W2�t�� 0 ≤ t ≤ 1�. Since in both cases, the limit distributions are obtained
from

�n1/2�Fn�x� −F�x��� x ∈ �� w→ �W1�F�x��� x ∈ R�
and

�m1/2�Gm�x� −G�x��� x ∈ �� w→ �W2�G�x��� x ∈ R�

the processes in (3.1) and (3.2) converge jointly.

Theorem 3.6. Under the conditions of Theorem 3�1 �
(i) If m/n→∞, then{
m1/2 sup

y� 0≤y≤x

( �Gm�y���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�y� + α�Gm�y�

− �G�x�
)
� 0 ≤ x < tF

}
converges weakly to �L∗α
∞�x�� 0 ≤ x < tF� where

L∗α
∞�x� �= − inf
t∈� ∗�x�

αtW2�G�x�� + �1− α� �F�x�W2�1− t�
αt+ �1− α�t��G�x��−1 �F�x�

and

� ∗�x� = ��G�y�� y ≤ x
H�y� =H�x�� ∪ ��G�y−�� y ≤ x
H�y−� =H�x���
(ii) If m/n→ c, for some 0 < c <∞, then{
m1/2 sup

y� 0≤y≤x

( �Gm�y���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�y� + α�Gm�y�

− �G�x�
)
� 0 ≤ x < tF

}
converges weakly to �L∗α
c�x�� 0 ≤ x < tF� where

L∗α
c�x� �= − inf
t∈��G�x�

S∗�t
 α
 x�
αt+ �1− α�t��G�x��−1 �F�x� 


with S∗�t
 α
 x� given by
αtW2�G�x�� + �1− α� �F�x�W2�1− t� + c1/2�1− α�tW1�F�x��

− c1/2�1− α��G�x�W1�1− t�F�x���G�x��−1��
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(iii) If m/n→ 0, then{
n1/2 sup

y� 0≤y≤x

( �Gm�y���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�y� + α�Gm�y�

− �G�x�
)
� 0 ≤ x < tF

}

converges weakly to �L∗α
0�x�� 0 ≤ x < tF� where

L∗α
0�x� �= − inf
t∈��G�x�

�1− α�tW1�F�x�� − �1− α��G�x�W1�1− t�F�x���G�x��−1�
αt+ �1− α�t��G�x��−1 �F�x� �

Remark. Suppose that m/n → c, where 0 < c < ∞. The result above
is proved by considering the cases in Theorem 2.2. In Cases 1 and 2 of the
proof of Theorem 2.2, the limit distributions of (3.1) and (3.2) are the same as
the limit distributions of n1/2�Fn�x� −F�x�� and m1/2�Gm�x� −G�x��, so the
joint distribution of (3.1) and (3.2) is that of a multivariate normal random
vector with independent components. In other cases, the limiting process is
not normal and has correlated components.

Theorem 3.7. Suppose that � ∗�x� contains more than one element. Then,
E��Lα
c�x��2� is minimized at

α0 =
c�1− 2a1 + a2��G�x� + �a2 − a1� �F�x�

�1− a1 + c�1− 2a1 + a2���G�x� + �a2 − a1� �F�x�
�

Moreover, for this choice of α,

E��Lα0
c
�x��2� = �G�x�

(
A+

�G�x�
m�x��1−A�

)
− ��G�x��2


where

0 ≤ A �= c�G�x��1+ a2 − 2a1� + �F�x��a2 − a2
1�

�1+ a2 − 2a1�� �F�x� + c�G�x�� ≤ 1�

and m�x� is the largest member of the set � ∗�x��
Although the estimators, in (3.1) and (3.2) satisfy, F̂α
n ≤+ Ĝα
m, for each

α, this USO condition is not satisfied for the estimators featured in Theorems
3.3 and 3.6. When the choice of alpha is allowed to vary with x and take
on different values within F̂ and Ĝ, the ordering of the resulting estimators
is sacrificed. These estimators each satisfy the USO constraint with respect
to a consistent, though suboptimal, estimator of the complementary distri-
bution function. For example, if α�x� is chosen minimizing the asymptotic
MSE of F̂α
n, then F̂α�x�
n ≤+ Ĝα�x�
m.



132 M. A. ARCONES AND F. J. SAMANIEGO

4. Discussion. The domination of the hazard rate of one population of
items by the hazard rate of another or, more generally, the uniform stochas-
tic ordering between two lifetime distributions, is often the most natural way
to model the superiority of one population over another in a given reliability
study. Two recent investigations have provided approaches to the estimation
of underlying survival functions under such ordering constraints. While these
studies have produced closed form estimators with good fixed-sample size and
asymptotic properties, neither provided insight into the theoretical variabil-
ity of the estimators. The purpose of the present study is to fill this gap by
providing a complete asymptotic distribution theory for the estimators. The
achievement of this goal will facilitate the development of confidence bands
for the true survival curves based on these estimators and has also served the
important purpose of facilitating the comparison of competing estimators in
terms of their asymptotic precision.

In Section 2, the asymptotic distribution of the estimator proposed by Rojo
and Samaniego (1993) is derived, as is that of the one-sample version of the
class of estimators introduced by Mukerjee (1996). Among the notable findings
of that section is the demonstration of the asymptotic inadmissibility of the
empirical survival curve under a squared error criterion, the identification of
conditions under which the Rojo–Samaniego estimator is optimal within the
Mukerjee class and the identification of conditions under which alternative
estimators within the Mukerjee class are optimal.

With the asymptotic distributions of estimators in (1.4) and (3.1) in hand,
we are now able to formulate confidence statements regarding the underlying
distribution F based on the available (one or two) samples. The argument
for using these estimators in place of the empirical survival function (esf)
can be made on either of two bases, one logical and one practical. The logical
basis stems from the fact that, when a postulated model satisfies a known con-
straint, one should estimate that model from within the constrained class. For
instance, when one is satisfied that the available data is derived from a nor-
mal population, it would seem unreasonable to estimate the density governing
the data as a double exponential.

On practical grounds, one can justify the constrained estimators in this
paper on the basis of their relative performance. We have shown that the
asymptotic performance of these estimators is never worse than that of the
esf, and is superior to it in certain specific circumstances. In addition, evidence
is presented in Rojo and Samaniego (1993) and in Mukerjee (1996) that, even
in cases in which their estimators are asymptotically equivalent to the esf,
the constrained estimators have uniformly smaller mean squared errors in an
array of fixed-sample size problems. Given this, it is plausible to suggest that
approximate confidence bands in the latter cases using the identical asymp-
totic variances will tend to yield conservative bands when based on the con-
strained estimator, that is, will provide, in conjunction with the constrained
estimator, confidence bands with coverage probability exceeding the nominal
level. This would provide good reason, even in the presence of asymptotic
equivalence, to favor confidence statements based on the constrained estima-
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tor. Of course the strongest argument for the constrained estimates and their
associated confidence bands arises in cases (for example, where F and G are
discrete distributions) in which the bands around the constrained estimators
are narrower that those around the esf. While the examples below are not
of that type, they do illustrate that, having settled on a specific constrained
estimator for �Fn in the one- or two-sample problem, one can, using results de-
veloped here, complete the inference concerning �Fn by factoring in an estimate
of variability.

Rojo and Samaniego (1993) employed their one-sample estimator in ana-
lyzing the results of an accelerated life testing experiment in which a sam-
ple of 39 failure times of Kevlar/Epoxy Pressure Vessels under “86% stress”
were assumed to be drawn from a distribution F satisfying the constraint
F <�+� Wei�0�875
0�00127�, where Wei�α
 λ� represents the Weibull distribu-
tion with shape parameter α and scale parameter 1/λ. These data, drawn from
Barlow, Toland and Freeman (1988), are displayed in Table 1.

Using the fact that for continuous distributions F and G and decreas-
ing H, the Rojo–Samaniego estimator of F�x� has standard error �F�x��1 −
F�x��/n�1/2 (see the proof of Theorem 2.2, case 1), a 95 confidence band for �F
is displayed in Figure 1.

The assumption of known G in the example above might well be considered
heroic. As explained in Rojo and Samaniego, the assumption was motivated
by the fact that the particular Weibull curve used above was the model fitted
to data from an auxiliary test at a lower stress level and thus represented a
plausible approximation of a dominating G. As an alternative to an assumed
known G, we have utilized the Mukerjee two-sample estimator for �F with the
24 failure times from the auxiliary experiment serving as the second sample.
These latter data, also from Barlow, Toland and Freeman (1988), are displayed
in Table 2.

The Mukerjee estimator �F̂̂α0
n
of (3.1), with α̂ = 24/�24+ 39� = 0�381, is

shown in Figure 2, together with an approximate 95% confidence band for �F.
The band utilizes the standard error �F�x��1−F�x��/n�1/2 for �F̂̂α0
n

[see Theo-
rem 3.1, part (ii), case 1], applicable for continuous F and G and decreasing H.

Figures 1 and 2 show that the estimators �F̂n and �F̂̂α0
n
differ rather little over

the major portion of the range of observed failure times; for x ∈ �300
600�;
however, �F̂̂α0
n

�x� is noticeable larger than �F̂n�x�.
We turn to a brief discussion of the natural extension of our results to

the treatment of censored data. For simplicity, we confine our remarks to the

Table 1
Failure times (in hours) of Kevlar/Epoxy pressure vessels at 86% stress

2.2 8.5 18.7 111.4 755.2 4.0 9.1 22.1 144.0 952.2
4.0 10.2 45.9 158.7 1108.2 4.6 12.5 55.4 243.9 1148.5
6.1 13.3 61.2 254.1 1569.3 6.7 14.0 87.5 444.4 1750.6
7.9 14.6 98.2 590.4 1802.1 8.3 15.0 101.0 638.2
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Fig. 1. Estimated survival function �F̂n and approximate 95% confidence band for �F.

one-sample problem. Suppose we observe �Z1
 δ1�
 � � � 
 �Zn
 δn� where

Zi = min�Xi
Yi�
 δi = I �Xi ≤ Yi� 


and X1
 � � � 
Xn

iid∼ F and Y1
 � � � 
Yn

iid∼K are independent samples from a life-
time distribution F and a censoring distribution K
 respectively. Suppose fur-
ther that F ≤�+� G, where G is known. If Sn represents the Kaplan–Meier
estimator of �F, then it is well known [see, e.g., Breslow and Crowley (1974),
Gill (1981)] that

sup
t>0

∣∣Sn�t� − �F�t�∣∣→ 0 a�s�

and that �n1/2�Sn�t� − �F�t��� t ≥ 0� converges weakly to a Gaussian process
�Z�t�� t ≥ 0� with mean zero and covariance

E �Z�s�Z�t�� = C�s� �F�s� �F�t�


Table 2
Failure times (in hours) of Kevlar/Epoxy pressure vessels at 80% stress

19.1 199.1 514.2 694.1 1536.8 24.3 403.7 541.6 876.7 1755.5
69.8 432.2 544.9 930.4 2046.2 71.2 453.4 554.2 1254.9 6177.5

136.0 514.1 664.5 1275.6
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Fig. 2. Estimated survival function �F̂̂α0
n
and approximate 95% confidence band for �F.

where s < t and

C�s� =
∫ s

0

1
F2�t�K�t� dF�t��

Thus, the same arguments made in proving Theorem 2.2 apply when F and
G are continuous. In particular, we have that{

n1/2 inf
y� 0≤y≤x

(
Sn�y�

(�1− α�Sn�x� + α�G�x�)
�1− α�Sn�y� + α�G�y� − �F�x�

)
� 0 ≤ x < tF

}
converges weakly to �Lα�x�� 0 < x < tF� where

Lα�x� = inf
y� ��x�≤y≤x

�1− α� �F�x�Z�x� + α�G�x�Z�y�
�1− α� �F�y� + α�G�y�

and ��x� = inf �y� H�y� =H�x��.
Rojo (1998) considers asymptotics of estimators similar to those in the

present paper in the context of estimating the quantile function F−1 under
the restriction that F−1�x�/G−1�x� is nonincreasing on �0
1�. In his Theorem
7, he shows that the estimator is asymptotically equivalent to the empirical
distribution function, assuming that F−1�x�/G−1�x� is strictly decreasing and
F is absolutely continuous. This result parallels our result under comparable
conditions on F
G and H (though we eschew the absolute continuity assump-
tion). We believe the methods in the present paper can be employed to provide
more general asymptotics for the estimators in Rojo (1998).



136 M. A. ARCONES AND F. J. SAMANIEGO

Finally, we consider briefly how the asymptotics developed in this paper
may be used to address testing questions regarding the constraint F ≤�+� G.
We first examine the one sample problem: let X1
 � � � 
Xn be i.i.d. r.v.’s with
unknown distribution F, and let G be a known distribution. We wish to test
H0� F ≤�+� G versus H1� F �≤�+� G. Let D = supy≤x��G�y� �F�x� − �G�x� �F�y��.
It is easy to see that D = 0 iff F ≤�+� G. A natural statistic for this testing
problem is

Dn = sup
0≤y≤x

��G�y� �Fn�x� − �G�x� �Fn�y���

An elementary computation yields∣∣Dn −D
∣∣ ≤ 2 sup

x≥0

∣∣�Fn�x� − �F�x�∣∣�
Thus, if F ≤�+� G, then Dn → 0 a.s.; on the other hand, if F �≤�+� G, then
Dn → D > 0 almost surely. The methods of Theorem 2.2 will show that if
F ≤�+� G, then

n1/2Dn

d→ sup
x≥0

sup
t∈� �x�

��G�x�W�1− t� − t�G�x�� �F�x��−1W�F�x����

It is easy to see that

0 ≤ sup
x≥0

sup
t∈� �x�

�Ḡ�x�W�1− t� − t�G�x�� �F�x��−1W�F�x��� ≤ 2 sup
0≤x≤1

�W�x���

Given 0 < α < 1, take cα/2 such that Pr�sup0≤x≤1 �W�x�� ≥ cα/2� = α. We
propose the test that rejects H0 if n1/2Dn ≥ cα/2. This test has asymptotic
level α� if F ≤�+� G


lim
n→∞Pr�n1/2Dn ≥ cα/2� ≤ α�

It also has asymptotic power one: if F �≤�+� G


lim
n→∞Pr�n1/2Dn ≥ cα/2� = 1�

Trivial variations of the argument above give a test when two samples, one
for F and another for G, are available. We omit the details.

Another problem of interest is that of testing the equality of two distri-
butions. Let X1
 � � � 
Xn be i.i.d. r.v.’s with unknown dfF. Let Y1
 � � � 
Ym be
i.i.d. r.v.’s with unknown df G. Suppose that F ≤�+� G. The problem is to test
H0� F = G versus H1� F �= G. The common test for this situation (ignoring
the stochastic ordering assumption) is the Kolgomorov–Smirnov test. This is
based on the fact that, under the null hypothesis,

sup
x≥0

√
mn

m+ n

∣∣�Fn�x� − �Gm�x�
∣∣ d→ sup

x≥0

∣∣W�F�x��∣∣ �
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Consider

Dn
m = sup
x≥0

∣∣∣∣�Gm�x� − inf
y� 0≤y≤x

�Gm�x� �Fn�y�
�Gm�y�

∣∣∣∣ = sup
0≤y≤x

(
�Gm�x� −

�Gm�x� �Fn�y�
�Gm�y�

)
�

Let D = supx≥0

∣∣�F�x� − �G�x�∣∣. Obviously, we have that D = 0 iff F = G and
that Dn
m → D almost surely. The methods in the proof of Theorem 3.2 give
that if F = G, then√

mn

m+ n
Dn
m

d→ sup
x≥0

∣∣∣∣∣ sup
t∈� �x�

�F�x�
t

W�1− t�
∣∣∣∣∣ 


where � �x� is the set defined when G = F. It is easy to see that

sup
x≥0

∣∣∣∣∣ sup
t∈� �x�

�F�x�
t

W�1− t�
∣∣∣∣∣ ≤ sup

x≥0
sup

t∈� �x�

�F�x�
t

W�1− t� ≤ sup
0≤u≤1

W�u�


where equality holds for continuous distributions. It is well known [see, e.g.,
page 85 in Billinsgley (1968)] that Pr�sup0≤u≤1 W�u� ≥ λ� = exp�−2λ2�. Thus,
the test that rejects H0 if

√
mn/�m+ n�Dn
m ≥

√
2−1 log α−1 has asymptotic

level α� if F = G


lim sup
n→∞

Pr
{√

mn

m+ n
Dn
m ≥

√
2−1 log α−1

}
≤ α�

Of course, the test also has asymptotic power one: if F �= G (but F ≤�+� G),

lim
n→∞Pr

{√
mn

m+ n
Dn
m ≥

√
2−1 log α−1

}
= 1�

The cut-off points of this test are smaller than those of the Kolmogorov–Smirnov
test. Instead of using the tails of sup0≤x≤1 �W�x��, we use the tails of sup0≤x≤1
W�x�. The latter testing problem has been considered by Dykstra, Kochar
and Robertson (1991) using the methods of isotonic regression; no asymptotic
distribution theory is provided for the test they propose.

APPENDIX

We will make use of the following lemmas:

Lemma A.1. Consider the function f�x� = �c�1 − x�2 + 2dx�1 − x� +
ex2�/�a�1−x�+bx�2, for x > 0, where b > a > 0. Suppose that a�e−d� > b�d−c�
and bc > ad. Then f is minimized over �0
∞� at x = �bc − ad�/a�e − d� +
b�c− d�.

Proof. Since f′�x� = �2�a�e−d�+b�c−d��x−2�bc−ad��/�a�1−x�+bx�3,
the claim is transparent. ✷
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Lemma A.2. Let X and Y be two independent standard normal r.v.’s and
let a > 0; then

E�X max�0
X
aY�� = 2−1 − �2π�−1 arctan�a�
and

E��max�0
X
aY��2� = 2−1 + 2−2a2 + a�2π�−1 + �a2 − 1��2π�−1 arctan�a��

The proof of Lemma A.2 is omitted since it is a simple calculus exercise.

Proof of Theorem 2.1. The truth of the claim in case (i) is self-evident.
As for case (ii), we consider two subcases. Assume first that 0 < �F�tF−� and
�G�tF−� < 1. Since 0 = �F�tF� < �F�tF−�, it follows that �Fn�tF−� − �Fn�tF� = 1
with positive probability. If �Fn�tF−� − �Fn�tF� = 1, then

sup
x>0

∣∣�Fn�x� − �F�x�∣∣ = 1− �F�tF−�

and

sup
0≤x<tF

∣∣∣∣∣ inf
y� 0≤y≤x

( �G�x� �Fn�y�
�G�y� − �F�x�

) ∣∣∣∣∣ = sup
0≤x<tF

��G�x� − �F�x���

Since �G�tF−� < 1,

sup
0≤x<tF

��G�x� − �F�x�� < 1− �F�tF−��

Hence, the claim follows in this subcase.
Assume now that �F�tF−� = 0 and �G�tF−� < 1. Let δ = 1−sup0≤x<tF ��G�x�−�F�x�� and take x0 < tF such that 0 < �F�x0� < min�2−1
 δ�. Now, Pr� �Fn�x0� =

1� = ��F�x0��n > 0. Assume that �Fn�x0� = 1, and let X�1� = min1≤i≤n Xi. For
0 ≤ x < X�1�,∣∣∣∣∣ inf

y� 0≤y≤x

( �G�x� �Fn�y�
�G�y� − �F�x�

) ∣∣∣∣∣ = ��G�x� − �F�x�� ≤ 1− δ�

For x ≥X�1� > x0, we have

−�F�x0� ≤ −�F�x� ≤ inf
y� 0≤y≤x

( �G�x� �Fn�y�
�G�y� − �F�x�

)
≤ �G�x� − �F�x� ≤ 1− δ�

Combining the bounds above, we obtain

sup
0≤x<tF

∣∣∣∣∣ inf
y� 0≤y≤x

( �G�x� �Fn�y�
�G�y� − �F�x�

) ∣∣∣∣∣ ≤ max�1− δ
 �F�x0�� < 1− �F�x0��

Since x0 < X�1�, it follows that supx>0 � �Fn�x� − �F�x�� ≥ 1 − �F�X�1�−� ≥ 1 −
�F�x0�, establishing the claim in the second subcase. ✷
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Proof of Theorem 2.2. First, we prove convergence for a fixed x ∈ �0
 tF�.
Let H�x�
 ��x� and � �x� be as in (2.2)–(2.4), and let Hn�y� = �Fn�y�/�G�y�.

We consider six mutually exclusive and exhaustive cases.

Case 1. l�x� = x
 H̄�x−� = H̄�x� and �F�x−� = �F�x�. In this case,
� �x� = ��F�x��. Let θn = inf�t� Hn�t� ≤ infy� 0≤y≤x Hn�y� + n−1�. Since Hn

is right continuous, Hn�θn� ≤ infy� 0≤y≤x Hn�y� + n−1. By an elementary in-
equality and the Glivenko–Cantelli theorem, we have that for each tF > z ≥ 0,∣∣∣∣ inf

y� 0≤y≤z
Hn�y� − inf

y� 0≤y≤z
H�y�

∣∣∣∣ ≤ sup
y� 0≤y≤z

∣∣�Fn�y� − �F�y�∣∣
�G�y� −→0 a�s�(A.1)

Thus, for each δ > 0, we have, with probability 1, that

lim
n→∞ inf

y� 0≤y≤x−δ
Hn�y� =H�x− δ� > H�x� = lim

n→∞Hn�x��

Thus, with probability 1, θn → x. Observe that by the definition of θn and the
uniform stochastic ordering assumption,

−n−1/2 ≤ n1/2�Hn�x� −Hn�θn�� ≤ n1/2�Hn�x� −Hn�θn� −H�x� +H�θn��
= ��G�x��−1n1/2� �Fn�x� − �Fn�θn� − �F�x� + �F�θn��
+ (��G�x��−1 − ��G�θn��−1)n1/2� �Fn�θn� − �F�θn���

(A.2)

By the continuity of �G at x, �G�θn�
Pr→ �G�x�. Since �F is continuous at x, for each

η > 0,

lim
δ→0

lim sup
n→∞

Pr

{
sup
�t−x�≤δ

n1/2
∣∣�Fn�t� − �F�t� − � �Fn�x� − �F�x��∣∣ ≥ η

}
= 0�

So, n1/2� �Fn�θn�− �F�θn��
Pr→0. Hence, the right-hand side in (A.2) converges to

zero in probability. This implies that

n1/2

(
inf

y� 0≤y≤x

�G�x� �Fn�y�
�G�y� − �Fn�x�

)
Pr→ 0

and the claim of the theorem follows.

Case 2. l�x� = x and H̄�x−� > H̄�x�. In this case,

lim
n→∞ inf

y� 0≤y<x
Hn�y� =H�x−� > H�x� = lim

n→∞Hn�x��

So, θn = x eventually w.p. 1 and the claim follows.
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Case 3. l�x� = x
H�x−� =H�x� and �F�x−� > �F�x�. In this case � �x� =
��F�x�
 �F�x−��. We claim that

n1/2 inf
y� 0≤y<x

( �G�x� �Fn�y�
�G�y� −

�G�x� �Fn�x−�
�G�x−�

)
Pr→ 0�(A.3)

Let θn
− = inf�t� Hn�t� ≤ infy� 0≤y<xHn�y� + n−1�. Observe that θn
− < x

and that Hn�θn
−� ≤ Hn�x−� + n−1. It is easy to see that, as in Case 1,
θn
− → x. In this case, we have that

−n−1/2 ≤ n1/2�Hn�x−� −Hn�θn
−��
≤ n1/2�Hn�x−� −Hn�θn
−� −H�x−� +H�θn
−��
= ��G�x−��−1n1/2� �Fn�x−� − �Fn�θn
−� − �F�x−� + �F�θn
−��

+ (��G�x−��−1 − ��G�θn
−��−1)n1/2�F̄n�θn
−� − �F�θn
−��
Pr→ 0�

This implies that

n1/2

(
inf

y� 0≤y≤x

�G�x� �Fn�y�
�G�y� − �Fn�x�

)
Pr→ 0�

Observe that for any distribution, even a discrete one, for each η > 0,

lim
δ→0

lim sup
n→∞

Pr

{
sup

t∈�x−δ
x�

∣∣n1/2� �Fn�x−� − �Fn�t� − �F�x−� + �F�t��∣∣ ≥ η

}
= 0�

So, (A.3) holds.
We also have that

n1/2

(
inf

y� 0≤y≤x

�G�x� �Fn�y�
�G�y� − �F�x�

)

= n1/2 min

(
inf

y� 0≤y<x

�G�x� �Fn�y�
�G�y� − �F�x�
 �Fn�x� − �F�x�

)

= n1/2 min

(
inf

y� 0≤y<x

�G�x� �Fn�y�
�G�y� −

�G�x� �Fn�x−�
�G�x−� +

�G�x� �Fn�x−�
�G�x−�

− �F�x�
 �Fn�x� − �F�x�
)

Since H�x� =H�x−�, we get that

n1/2

( �G�x� �Fn�x−�
�G�x−� − �F�x�

)
=
�F�x�n1/2� �Fn�x−� − �F�x−��

�F�x−� �
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So, the limit distribution in this case is

L�x� = min

(
−�F�x�W�F�x−��

�F�x−� 
−W�F�x��
)

(A.4)

which is equivalent to (2.7) in the case under consideration.

Case 4. l�x� < x
 �F�l�x�−� = �F�l�x�� and H̄�l�x�−� = H̄�l�x��. We have
that

n1/2

(
inf

y� 0≤y≤x

�G�x� �Fn�y�
�G�y� − �F�x�

)

= n1/2 min

(
inf

y� 0≤y≤l�x�

�G�x� �Fn�y�
�G�y� − �F�x�
 inf

y� l�x�≤y≤x

�G�x� �Fn�y�
�G�y� − �F�x�

)
�

In this case, the argument in the proof of Case 1 yields that

n1/2 inf
y� 0≤y≤l�x�

( �G�x� �Fn�y�
�G�y� −

�G�x� �Fn�l�x��
�G�l�x��

)
Pr→ 0�

Since H�x� =H�l�x��, we get that

n1/2 inf
y� 0≤y≤l�x�

( �G�x� �Fn�y�
�G�y� − �F�x�

)

= n1/2 inf
y� 0≤y≤l�x�

( �G�x� �Fn�y�
�G�y� −

�G�x� �Fn�l�x��
�G�l�x�� +

�G�x� �Fn�l�x��
�G�l�x�� − �F�x�

)

= n1/2 inf
y� 0≤y≤l�x�

( �G�x� �Fn�y�
�G�y� −

�G�x� �Fn�l�x��
�G�l�x��

)

+
�F�x�n1/2� �Fn�l�x�� − �F�l�x���

�F�l�x�� 


which converges in distribution to −�F�x�W�F�l�x���/�F�l�x��. Since H is a
constant in �l�x�
 x�
 we obtain that

n1/2 inf
y� l�x�≤y≤x

( �G�x� �Fn�y�
�G�y� − �F�x�

)
= inf

y� l�x�≤y≤x

�F�x�n1/2� �Fn�y� − �F�y��
�F�y�

which converges in distribution to

L�x� = inf
y� l�x�≤y≤x

−�F�x�W�F�y��
�F�y� �(A.5)

Case 5. l�x� < x andH�l�x�−� > H̄�l�x��. The argument in Case 2 gives
that the limit distribution is the same one as in Case 4.



142 M. A. ARCONES AND F. J. SAMANIEGO

Case 6. l�x� < x, H�l�x�−� = H̄�l�x�� and �F�l�x�−� > �F�l�x��� Again
the same arguments imply that the limit distribution is

L�x� = min

(
−�F�x�W�F�l�x�−��

�F�l�x�−� 
 inf
y� l�x�≤y≤x

−�F�x�W�F�y��
�F�y�

)
�(A.6)

Now, we proceed to prove the weak convergence of the whole process. If
Ḡ�tF−� > 0, then �G�y� ≥ �G�tF−� > 0 for each y < tF and the remainder terms
in the approximations above go to zero uniformly in x. Thus, the convergence
of �F̂n�x� to L�x� above is uniform on �0
 tF�. Assume that �G�tF−� = 0; then
for each k < tF, we have convergence of �n1/2� �F̂n�x� − �F�x��� 0 ≤ x ≤ k�. We
need to prove that for each η > 0,

lim
k→tF−

lim sup
n→∞

Pr
{

sup
k≤x<tF

∣∣∣n1/2� �F̂n�x� − �F�x��
∣∣∣ ≥ η

}
= 0�(A.7)

Since for each x �G�x� ≥ �F�x�
 �F�tF−� = 0. Now, for k ≤ x < tF and
0 < α < 1/2, we have that∣∣∣n1/2� �F̂n�x� − �F�x��

∣∣∣ ≤ sup
y� 0≤y<x

n1/2�G�x�� �Fn�y� − �F�y��
�G�y�

≤ ��G�x��α sup
y� 0≤y<x

n1/2� �Fn�y� − �F�y��
��G�y��α

≤ ��G�k��α sup
y� 0≤y<x

n1/2� �Fn�y� − �F�y��
� �F�y��α 


which converges in distribution to

��G�k��α sup
y� 0≤y<x

�W�F�y���
� �F�y��α

[see, e.g., Theorem 3.7.1 in Shorack and Wellner (1986)]. Hence,

lim
k→tF−

lim sup
n→∞

Pr

{
sup

k≤x<tF

∣∣∣n1/2� �F̂n�x� − �F�x��
∣∣∣ ≥ η

}

≤ lim
k→tF−

Pr

{
��G�k��α sup

y� 0≤x<tF

�W�F�x���
� �F�x��α ≥ η

}
= 0�

So (5.7) follows. ✷

Proof of Theorem 2.3. We consider the six cases in the proof of Theorem
2.2. In Cases 1 and 2, the limit distribution is W�F�x�� and neither (a) nor
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(b) hold. In Case 3, the limit distribution is

L�x� = −max

( �F�x�W�F�x−��
�F�x−� 
W�F�x��

)

= −
�F�x�W�F�x−��

�F�x−� −max

(
0
W�F�x�� −

�F�x�W�F�x−��
�F�x−�

)
�

(A.8)

Let U1 = �F�x�W�F�x−��/�F�x−� and let

U2 =W�F�x�� − �F�x�W�F�x−��/�F�x−��
Since U1 and U2 are normal with zero means and E�U1U2� = 0
U1 and U2
are independent. It it easy to see that

Pr��U1 +U+
2 � ≥ t�

= 2−1 Pr��E�U2
1��1/2�Z� ≥ t� + 2−1 Pr��E�U2

1 +U2
2��1/2�Z� ≥ t�


where Z is a standard normal r.v. Note that

E�U2
1� =

� �F�x��2�1− �F�x−��
�F�x−� < �F�x��1− �F�x�� = E�U2

1 +U2
2��

This shows that P��L�x�� ≥ t� = P��U1 + U+
2 � ≥ t� < P��U1 + U2� ≥ t� =

P��W�F�x��� ≥ t�, so that the claim follows in this case.
Now, we consider Case 4. Here the limit distribution is

L�x� = − sup
y� l�x�≤y≤x

�F�x�W�F�y��
�F�y�

= −
�F�x�W�F�l�x���

�F�l�x��

− sup
y� l�x�≤y≤x

( �F�x�W�F�y��
�F�y� −

�F�x�W�F�l�x���
�F�l�x��

)
�

(A.9)

Taking covariances, it is easy to see that
�F�x�W�F�l�x���

�F�l�x��
is independent of {

W�F�y��
�F�y� − W�F�l�x���

�F�l�x�� � l�x� ≤ y ≤ x

}
�

We also have that{ �F�x�W�F�y��
�F�y� −

�F�x�W�F�l�x���
�F�l�x�� � l�x� ≤ y ≤ x

}
has the distribution of{

B

(
1
�F�y� −

1
�F�l�x��

)
� l�x� ≤ y ≤ x

}
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where �B�u�� 0 ≤ u� is a Brownian motion. Thus, L�x� has the distribution of

−�F�x�
(

1
�F�l�x�� − 1

)1/2

Z1 − sup
y� l�x�≤y≤x

�F�x�B
(

1
�F�y� −

1
�F�l�x��

)



where Z1 is a standard normal r.v. independent of the Brownian motion B.
Now, we consider two subcases. If � �F�y�� l�x� ≤ y ≤ x� = � �F�x�
 �F�l�x���

then

sup
y� l�x�≤y≤x

�F�x�B
(

1
�F�y� −

1
�F�l�x��

)
= sup

0≤u≤1/�F�x�−1/�F�l�x��
�F�x�B�u��

By Billingsley [(1968), page 72], the random variable

sup
0≤u≤1/�F�x�−1/�F�l�x��

�F�x�B�u�

has the distribution of

�F�x�
(

1
�F�x� −

1
�F�l�x��

)1/2

�Z2�


where Z2 is a standard normal r.v. independent of Z1. So �L�x�� has the dis-
tribution of∣∣∣∣∣�F�x�

(
1

�F�l�x�� − 1
)1/2

Z1 + �F�x�� 1
�F�x� −

1
�F�l�x���

1/2�Z2�
∣∣∣∣∣ 
(A.10)

which has the distribution of �W�F�x���.
If � �F�y�� l�x� ≤ y ≤ x� �= � �F�x�
 �F�l�x���, then with positive probability,

sup
y� l�x�≤y≤x

�F�x�B
(

1
�F�y� −

1
�F�l�x��

)
< sup

0≤u≤1/�F�x�−1/�F�l�x��
�F�x�B�u��

An elementary computation shows that, for any fixed t > 0
Pr��Z+ b� ≥ t� is
increasing in b > 0, where Z is a standard normal random variable. Thus,

Pr

{∣∣∣∣∣�F�x�
(

1
�F�l�x�� − 1

)1/2

Z1 + sup
y� l�x�≤y≤x

�F�x�B
(

1
�F�y� −

1
�F�l�x��

)∣∣∣∣∣ ≥ t

}

< Pr

{∣∣∣∣∣�F�x�
(

1
�F�l�x�� − 1

)1/2

Z1 + sup
u� 0≤u≤1/�F�x�−1/�F�l�x��

�F�x�B�u�
∣∣∣∣∣ ≥ t

}
�

Thus the claim follows in this case. Cases 5 and 6 follow similarly. ✷

Proof of Theorem 2.4. The arguments in our proof of Theorem 2.2 apply.
The only change is that a different expression appears in the supremum in
the limit distribution.
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We consider the same six cases as in Theorem 2.2. In Cases 1 and 2, we
have that � �x� = {�F�x�} 


n1/2 inf
y� 0≤y≤x

( �Fn�y���1− α� �Fn�x� + α�G�x��
�1− α� �Fn�y� + α�G�y� − �Fn�x�

)
Pr−→ 0�

and Lα�x� =W�F�x��. In Case 3, we have that

n1/2 inf
y� 0≤y<x

( �Fn�y���1− α� �Fn�x� + α�G�x��
�1− α� �Fn�y� + α�G�y�

−
�Fn�x−���1− α� �Fn�x� + α�G�x��
�1− α� �Fn�x−� + α�G�x−�

)
Pr−→ 0�

The proof follows as in Theorem 2.2, except that since H�x� =H�x−� in this
case, we have

n1/2

( �Fn�x−���1− α� �Fn�x� + α�G�x��
�1− α� �Fn�x−� + α�G�x−� − �F�x�

)

= �1− α� �Fn�x−�n1/2� �Fn�x� − �F�x�� + α�G�x�n1/2� �Fn�x−� − �F�x−��
�1− α� �Fn�x−� + α�G�x−� 


which converges to

−�1− α� �F�x−�W�F�x�� − α�G�x�W�F�x−��
�1− α� �F�x−� + α�G�x−� �(A.11)

Thus the limit distribution is that in (A.4) with the term in (A.10) replacing

−�F�x�W�F�x−��
�F�x−� �

Similar arguments apply in Cases 4, 5 and 6. ✷

Proof of Theorem 2.5. We have that W�1− t�/t has the distribution of
W�1−m�x��/m�x� + B �1/t− 1/m�x��, where �B�u�� u ≥ 0� is a Brownian
motion independent of W�1−m�x��. So L�x� has the distribution of

−
�F�x�W�1−m�x��

m�x� −
�F�x���1− α�U1 + αU2�
�1− α� �F�x� + α�G�x� 


where U1 = �F�x�B�1/�F�x�−1/m�x�� and U2 = �G�x� supt∈� �x�B�1/t−1/m�x��.
We have that

E�L2
α�x�� =

� �F�x��2�1−m�x��
m�x� + � �F�x��2

(
1
�F�x� −

1
m�x�

)

× �1− α�2� �F�x��2 + 2α�1− α� �F�x��G�x�a1 + α2��G�x��2a2

��1− α� �F�x� + α�G�x��2 �
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By Lemma A.1, the last expression is minimized at

α0 =
�1− a1� �F�x�

�1− a1� �F�x� + �G�x��a2 − a1�
�

An elementary computation shows that (A.6) holds. Now, because

0 ≤ sup
t∈� �x�

B�t−1 − �m�x��−1� ≤ sup
0≤u≤��F�x��−1−�m�x��−1

B�u�


we have 0 ≤ a2 ≤ 1. Since

B�� �F�x��−1 − �m�x��−1� ≤ sup
t∈� �x�

B�t−1 − �m�x��−1�


we also have that a1 ≤ a2. Further, the Cauchy–Schwartz inequality implies
that

∣∣a1

∣∣ < a
1/2
2 . It follows from these three inequalities in a1 and a2 that

0 ≤ A ≤ 1. The replacement of α0 by α̂0, which has no effect on the limiting

distribution, is justified by the continuity of Lα�x� in α
 the fact that α̂0
p→α0

and the fact that the process �Lα�x�� is tight. ✷

Proof of Theorem 2.6. We apply Theorem 2.5. We need to find a1 and
a2. By the reflection principle a2 = E��sup0≤t≤1 B�t��2� = 1 [see Billingsley
(1968)]. Let U = sup0≤t≤1 B�t� and let V = B�1�. It is known that the joint
density of �U
V� is given by fU
V�u
 v� = 2�2u− v� exp�−�v− 2u�2�/√2π
u ≥
v
u ≥ 0 [see Equation (11.11) in Billingsley (1968), page 79]. It follows that
a1 = E�UV� = 1/2 and A = 3/4. The formulas in (2.15)–(2.17) follow from
(2.12)–(2.14) upon substituting these values for a1 and a2 and A. ✷

Proof of Theorem 2.7. This follows from Theorem 2.5 upon evaluating
a1 = E�B�1�max�0
B�1��� = 1/2 and a2 = E��max�0
B�1���2� = 1/2� ✷

Proof of Theorem 2.8. It suffices to prove that if 0 ≤ t ≤ 1, then

E�B�1�max�0
B�t�
B�1��� = 2−1 − t2−2

− �2π�−1 arctan��t/�1− t��1/2�
(A.12)

and

E��max�0
B�t�
B�1���2� = 2−1 + t2−2 + �2π�−1�t�1− t��1/2

− �2π�−1 arctan��t/�1− t��1/2��
(A.13)
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To prove (A.12) let X = t−1/2B�t� and let Y = �1 − t�−1/2�B�1� − B�t��. By
Lemma A.2, we have

E�B�1�max�0
B�t�
B�1��� = E�B�1��B�t� +max�−B�t�
0
B�1� −B�t����
= t+E�B�t�max�−B�t�
0
B�1� −B�t���
+E��B�1� −B�t��max�−B�t�
0
B�1� −B�t���

= t− tE�Xmax�0
X
 ��1− t�/t�1/2Y��
+ �1− t�E�Xmax�0
Y
 �t/�1− t��1/2X��

= t− t�2−1 − �2π�−1 arctan��1− t�/t�1/2�
+ �1− t��2−1 − �2π�−1 arctan�t/�1− t��1/2�

= 2−1 − t2−2 − �2π�−1 arctan��t/�1− t��1/2��
Equation (A.13) follows similarly. ✷

Proof of Theorem 2.9. By Theorem 2.3, we only need to consider the case
0 < α < 1. If � �x� = ��F�x��, then Lα�x� =W�F�x�� and part (i) follows.

Next, we consider case (ii). In this case, � �x� = [�F�l�x��
 �F�x�] for some
l�x� < x. By the proof of Theorem 2.5, Lα�x� has the distribution of

−
�F�x�W� �F�l�x���

�F�l�x�� − �F�x�
(

1
�F�x� −

1
�F�l�x��

)1/2 (
τB�1� + �1− τ� sup

0≤u≤1
B�u�

)



where τ = α�G�x�/��1− α� �F�x� + α�G�x��. We claim that for each t > 0


Pr
{∣∣∣∣τB�1� + �1− τ� sup

0≤u≤1
B�u�

∣∣∣∣ ≥ t

}
< Pr

{∣∣Z∣∣ ≥ t
}

(A.14)

where Z is a standard normal r.v. We have noted earlier that, given t > 0 and
a standard normal r.v. Z
Pr

{∣∣Z+ b
∣∣ ≥ t

}
is increasing in b > 0. Thus

Pr
{∣∣Lα�x�

∣∣ ≥ t
}

< Pr

{∣∣∣∣∣ �F�x�W� �F�l�x���F�l�x�� + �F�x�
(

1
�F�x� −

1
�F�l�x��

)1/2

Z

∣∣∣∣∣ ≥ t

}
= Pr

{∣∣W�F�x��∣∣ ≥ t
}



where we have used that
�F�x�W� �F�l�x��

�F�l�x�� + �F�x�
(

1
�F�x� −

1
�F�l�x��

)1/2

Z

is a normal r.v. with mean zero and the variance of W�F�x��.
Let U = sup0≤t≤1 B�t� and let V = B�1�, as in the proof of Theorem 2.6. An

elementary computation shows that for each t > 0,

Pr
{∣∣τV+ �1− τ�U∣∣ ≥ t

} = 1
2− τ

Pr
{∣∣Z∣∣ ≥ t

1− τ

}
+ 1− τ

2− τ
Pr
{∣∣Z∣∣ ≥ t

1− τ

}
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which implies (A.14). ✷

Proof of Theorem 3.1. If m/n→∞, then∣∣∣∣∣ inf
y� 0≤y≤x

( �Fn�y���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�y� + αḠm�y�

)

− inf
y� 0≤y≤x

( �Fn�y���1− α� �Fn�x� + α�G�x��
�1− α� �Fn�y� + α�G�y�

)∣∣∣∣∣
≤ sup

y� 0≤y≤x

∣∣∣∣ �Fn�y���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�y� + α�Gm�y�

−
�Fn�y���1− α� �Fn�x� + α�G�x��

�1− α� �Fn�y� + α�G�y�

∣∣∣∣ �
Since supx>0 m1/2��Gm�x� − �G�x��� is bounded in probability, the expression
above is Op�m−1/2�. Thus, the asymptotics of the two expressions in (1.4) and
(3.2) are the same; these asymptotics are considered in detail in Section 2.

If m/n→ c, for some 0 < c <∞, we proceed as in Theorem 2.2. In Cases 1
and 2 we have that

n1/2 inf
y� 0≤y≤x

( �Fn�y���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�y� + α�Gm�y�

− �Fn�x�
)

Pr−→ 0�

In Case 3, we have that

n1/2 inf
y� 0≤y<x

( �Fn�y���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�y� + αḠm�y�

−
�Fn�x−���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�x−� + α�Gm�x−�

)
Pr−→ 0�

The proof follows as in Theorem 2.2, with the obvious difference that

�Fn�x−���1− α� �Fn�x� + α�Gm�x��
�1− α� �Fn�x−� + α�Gm�x−�

− �F�x�

= �1− α� �Fn�x−�n1/2� �Fn�x� − �F�x�� + α�G�x�n1/2� �Fn�x−� − �F�x−��
�1− α� �Fn�x−� + α�G�x−�

+α�Fn�x−�n1/2��Gm�x� − �G�x�� − αF̄�x�n1/2��Gm�x−� − �G�x−��
�1− α� �Fn�x−� + α�G�x−� 
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which converges in distribution to

−�1− α� �F�x−�W1�F�x�� − α�G�x�W1�F�x−��
�1− α� �F�x−� + α�G�x−�

− c−1/2α�F�x−�W2�G�x�� + c−1/2α�F�x�W2�G�x−��
�1− α� �F�x−� + α�G�x−� �

Similar arguments give Cases 4, 5 and 6. The proof of our claim when m/n→ 0
is similar and it is omitted. ✷

Proof of Theorem 3.2. Let �B1�u�� u ≥ 0� and let �B2�u�� u ≥ 0� be
two independent Brownian motions independent of W1�1−m�x�� and W2�1−
m�x��. We have that W1�1− t�/t has the distribution of

W1�1−m�x��
m�x� +B1

(
1
t
− 1

m�x�
)
�

We also have that

W2�1− t� �F�x��−1�G�x��
t

has the distribution of

W2�1−m�x��� �F�x��−1�G�x��
m�x� + � �F�x��1/2��G�x��1/2B2

(
1
t
− 1

m�x�
)
�

Hence, Lα
c�x� has the distribution of

−
�F�x�W�1−m�x��

m�x� −
�F�x���1− α�U1 + αU2�
�1− α� �F�x� + α�G�x� 


where U1 = �F�x�B1
(
1/�F�x� − 1/m�x�) and

U2 = c−1/2� �F�x��1/2��G�x��1/2B2

(
1
�F�x� −

1
m�x�

)
+ sup

t∈� �x�

(
�G�x�B1

(
1
t
− 1

m�x�
)

− c−1/2� �F�x��1/2��G�x��1/2B2

(
1
t
− 1

m�x�
))

�

We have that

E�L2
α
c�x�� =

� �F�x��2�1−m�x��
m�x� + � �F�x��2E

[( �1− α�U1 + αU2

�1− α�F̄�x� + α�G�x�

)2
]
�

By Lemma A.1, we get that the last expression is minimized at the claimed
α0. ✷
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