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MIXING STRATEGIES FOR DENSITY ESTIMATION

By Yuhong Yang

Iowa State University

General results on adaptive density estimation are obtained with re-
spect to any countable collection of estimation strategies under Kullback-
Leibler and squared L2 losses. It is shown that without knowing which
strategy works best for the underlying density, a single strategy can be
constructed by mixing the proposed ones to be adaptive in terms of statis-
tical risks. A consequence is that under some mild conditions, an asymp-
totically minimax-rate adaptive estimator exists for a given countable col-
lection of density classes; that is, a single estimator can be constructed to
be simultaneously minimax-rate optimal for all the function classes being
considered. A demonstration is given for high-dimensional density estima-
tion on �0�1�d where the constructed estimator adapts to smoothness and
interaction-order over some piecewise Besov classes and is consistent for
all the densities with finite entropy.

1. Introduction. In recent years, there has been an increasing interest
in adaptive function estimation. The main objective, if possible, is to con-
struct a single estimator so that it is automatically asymptotically optimal in
terms of a minimax risk for each function class in a given collection. Adap-
tive function estimators were constructed, for example, by Efroimovich and
Pinsker (1984) and Efroimovich (1985) for ellipsoidal classes; by Härdle and
Marron (1985) using adaptive kernel estimators for some Lipschitz classes;
and by, for example, Donoho, Johnstone, Kerkyacharian and Picard (1996)
and others using wavelet analysis for Besov classes. General schemes have
also been proposed for the construction of adaptive estimators. Barron and
Cover (1991) derived general adaptation risk bounds for density estimation
based on minimum description length (MDL) criterion. These bounds were
used to demonstrate adaptive properties of MDL criterion including adapta-
tion over classical function classes using metric entropies. Lepskii (1991) gave
some sufficient conditions to ensure existence of minimax-rate adaptive esti-
mators and constructed adaptive estimators specifically for ellipsoidal classes
under Lp loss for 2 < p ≤ ∞� In addition to the use of MDL criterion, other
adaptation schemes by model selection have been developed, including very
general penalized contrast criteria in Birgé and Massart (1996), and Barron,
Birgé and Massart (1999) with a variety of interesting applications; penalized
maximum likelihood criteria in Yang and Barron (1998) and complexity penal-
ized criteria based on V-C theory; see, for example, Devroye, Györfi and Lugosi
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[(1996), Chapter 18] and Lugosi and Nobel (1999). Functional aggregation of
estimators to adapt to within order n−1/4 in L2 risk is proposed in Juditsky
and Nemirovski (1996).

Our interest in this work concerns adaptivity in a more general sense. The
questions we plan to address is, given a countable collection of estimation
strategies (regardless of how they have been obtained), is it possible to find
an adaptive strategy so that it automatically performs as well as the best one
in the list in an asymptotic sense? Such a strategy will be said to be adap-
tive with respect to the collection of the original ones. In the related context
of estimating a functional, negative results have been obtained showing that
optimal rate adaptation may not be possible [see Lepskii (1991) and Brown
and Low (1996)]. Here we give positive results for global density estimation.
Differently from the previous work on adaptation, no specific properties will
be required here on the collection of strategies. Thus advantages of a list of
possibly completely different strategies can be combined in terms of statistical
risks, and, if desired, adaptive strategies constructed using various schemes
available (e.g, automated kernel smoothing, wavelet procedures, smoothing
splines, neural net estimation, etc.) can also be included in the list for even
more adaptivity. The benefit of considering such a list of very different proce-
dures could be substantial, especially for high-dimensional density estimation,
where to overcome the curse of dimensionality, searching over different char-
acterizations of functions is desired for better accuracy (see Section 4 for a
demonstration).

Estimation strategies are often derived for specific function classes. For a
collection of such strategies which are constructed to be minimax optimal for
the corresponding target classes, adaptation with respect to the strategies as
explained above implies minimax adaptation with respect to the target classes.
In this sense, the notion of adaptation with respect to a collection of strategies
is more general than minimax adaptation with respect to a collection of density
classes. Results on minimax adaptation will be given as consequences of the
main results on combining strategies.

In the revision of an earlier version of this paper, an editor and an asso-
ciate editor brought to our attention an independent research of Catoni (1997)
completed after our submission of this work. A result similar in spirit to our
Theorem 1 under K-L loss was given.

Density estimation is closely related to universal coding as illustrated in
Barron (1987), Clark and Barron (1990), Barron and Cover (1991), Yang (1996)
(a formal statement is given as Lemma 2.6) and Haussler and Opper (1997).
This relationship, discussed in Barron (1987) and Barron and Cover (1991),
will be used for our construction of an adaptive strategy. For adaptation under
the squared L2 loss, some results used in our analysis come from Yang and
Barron (1999), which derives minimax rate of convergence for a fixed general
function class. Some recent results on universal coding are redundancy bounds
for Bayes hierarchical coding in Feder and Merhav (1996) and redundancy
bounds for individual sequences using a sequential procedure for binary tree
sources in Willems, Shtarkov and Tjalkens (1995).
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Finally, it is worth mentioning that Bayesian model averaging methods
have also been proposed to combine various models [see, e.g., Kass and Raftery
(1995) and Berger and Pericchi (1996)]. Our method permits but does not
require the estimators in the models to be obtained in a Bayesian framework,
which sometimes has difficulties in the choice of insensitive priors on the
parameters. In addition, our adaptation recipe works for combining estimation
strategies even when some or all of them are not model-based procedures.

1.1. Some notation. LetX1� X2� � � � �Xn be i.i.d. observations with density
f�x�� x ∈ � with respect to a σ -finite measure µ. Here the space � is general
and could be any dimensional. The goal is to estimate the unknown density f
based on the data.

Let 	 g1 − g2 	2=
(∫ �g1 − g2�2dµ

)1/2 be the L2 distance between functions
g1 and g2 with respect to µ. The Kullback–Leibler (K-L) divergence between
two densities f and g is defined asD�f 	 g� = ∫

f log �f/g�dµ� BothD�f 	 f̂�
and 	 f− f̂ 	22 will be considered as loss functions.

In this paper, a density estimation strategy δ refers to an estimation pro-
cedure producing density estimators fδ�0� f̂δ�1�x
X1�� � � � � f̂δ�n−1�x
X1� � � � �

Xn−1�� � � � based on observation(s) X0�X1� � � � �Xn−1� � � � � respectively [here
fδ�0 is an initial guess based on no data (X0) and Xi = �X1� � � � �Xi� for
i ≥ 1]. Let

Rseq�f
n
 δ� =
1

n+ 1

n∑
i=0

ED�f 	 f̂δ�i�

denote the average cumulative risk for estimating f using strategy δ up to n
observations. This notion of risk (sometimes called redundancy or regret) is
considered by many others in the context of data compression, prediction, gam-
bling and computational learning theory [see, e.g., Clarke and Barron (1990)
and Barron and Xie (1996) for asymptotics on finite-dimensional models, Yang
and Barron (1999), Section 3, and Haussler and Opper (1997) for rates of con-
vergence over a given density class]. It is a reasonable and stable discrepancy
measure to evaluate different strategies. The individual risk ED�f 	 f̂δ�n� at
sample size n denoted by R�f
n
 δ� will also be considered. Similarly define
rseq�f
n
 δ� and r�f
n
 δ� for the squared L2 loss.

A minimax risk measures difficulty in estimation in a uniform sense. Let l
be a chosen loss function; then for a density estimator f̂ , the risk is El�f� f̂�.
Let � be a class of densities. Then the minimax risk for estimating a density
in � at sample size n is defined as

R�� 
 l
n� = min
f̂

max
f∈�

El�f� f̂��

where the minimization is over all density estimators.
The symbol “�” will be used to mean the same order, that is, an � bn if

an/bn is bounded above and away from zero.
The paper is organized as follows. In Section 2, we present results on adap-

tation with respect to estimation strategies; in Section 3, minimax adaptation
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results for function classes are given. A demonstration of the results is pro-
vided in Section 4. A generalization for predictation for dependent data is
given in Section 5. The proofs of the results are given in Section 6.

2. Adaptation with respect to estimation strategies. Let �δj� j ≥ 1�
be any collection of density estimation strategies. Here the index set �j ≥
1� is allowed to degenerate to a finite set. As mentioned earlier, there is no
restriction at all on the choice of the strategies and they could be proposed for
different purposes, classes, and/or under different assumptions. Some of them
could be based only on heuristics but with practical significance. Strategy
δj produces density estimators fj�0� f̂j�1�x
X1�� � � � based on observation(s)
X0�X1� � � � respectively.

2.1. Adaptation under K-L risk. The following is a simple yet powerful
recipe to get an adaptive strategy by mixing �δj� j ≥ 1� given in Yang (1996).
Let π = �πj� j ≥ 1� be a set of positive numbers satisfying

∑
j≥1 πj = 1� They

may be viewed as weights or prior probabilities of the strategies.
Let

q0�x� = ∑
j≥1

πjfj�0�x��

q1�x
x1� =
∑

j≥1 πjfj�0�x1�f̂j�1�x
x1�∑
j≥1 πjfj�0�x1�

�

q2�x
x1� x2� =
∑

j≥1 πjfj�0�x1�f̂j�1�x2
x1�f̂j�2�x
x1� x2�∑
j≥1 πjfj�0�x1�f̂j�1�x2
x1�

· · ·

qn−1�x
x1� x2� � � � � xn−1�

=

∑
j≥1 πjfj�0�x1�f̂j�1�x2
x1� · · · f̂j�n−2�xn−1
x1� x2� � � � � xn−2�

×f̂j�n−1�x
x1� x2� � � � � xn−1�∑
j≥1 πjfj�0�x1�f̂j�1�x2
x1� · · · f̂j�n−2�xn−1
x1� x2� � � � � xn−2�

� � � �

Define estimators for i ≥ 0 based on X1� � � � �Xi as follows:

f̂seq�i�x� = qi�x
X1� � � � �Xi��(1)

They are valid probability density estimators at each sample size. Call this
estimation strategy δ∗seq. This strategy will be shown to be adaptive in terms
of the average cumulative risk. For adaptation under the individual risk, let

f̂n�x� =
1

n+ 1

n∑
i=0

qi�x
Xi��
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It is a valid density estimator of f based onXn. The strategy producing f̂n� n ≥
1 will be called a combined strategy denoted by δ∗.

Consider

inf
j≥1

(
1

n+ 1
log

1
πj

+Rseq�f
n
 δj�
)
�

It is the best trade-off between the average cumulative risk and the logarithm
of the inverse weight (or prior probability) relative to the sample size over all
the estimation strategies.

Theorem 1. For any given countable collection of estimation strategies
�δj� j ≥ 1� and π, we can construct a single estimation strategy δ∗seq as given
in the above recipe such that for any underlying density f,

Rseq�f
n
 δ∗seq� ≤ inf
j≥1

(
1

n+ 1
log

1
πj

+Rseq�f
n
 δj�
)
�(2)

The combined strategy δ∗has individual risk bounded by the same quantity

R�f
n
 δ∗� ≤ inf
j≥1

(
1

n+ 1
log

1
πj

+Rseq�f
n
 δj�
)
�(3)

Remarks. (i) A similar adaptation bound is given in Yang (1997) for non-
parametric regression under Gaussian errors with known variance using a
connection between estimating the regression function and the joint density
of the observation. Adaptation risk bounds for regression by model selection
are in Barron, Birgé and Massart (1999) and Yang (1999).

(ii) An individual risk bound is given in Catoni (1997) for a similarly defined
strategy. His formulation has a computational advantage and can avoid an
extra logarithmic term in the risk bound for parametric estimation.

From (2), up to an additive penalty of order 1/n� the adaptive strategy δ∗seq
performs as well as any strategy in the list in terms of the average cumulative
risk. For a strategy δ with regularly decreasing risk converging essentially
more slowly than the parametric case, Rseq�f
n
 δ� and R�f
n
 δ� are of the
same order (see Section 3). When such strategies are combined, (3) ensures
adaptation in terms of individual risk.

For applications, we may assign smaller weights (or prior probabilities) πj
for more complex estimation strategies. Then the risk bounds in the theorem
are trade-offs between accuracy and complexity. For a complex strategy (with
a small weight), its role in the risk bound becomes significant only when the
sample size becomes large.

A strategy is said to be consistent for f under loss l� if El�f� f̂δ�n� → 0 as
n → ∞� A simple consequence of Theorem 1 is that if any of the strategy in
the list is consistent for the unknown density, so is the combined adaptive
strategy δ∗.
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2.2. Adaptation under L2 loss. For the adaptation results under the
squared L2 loss, unlike the bounds in Theorem 1, some mild technical con-
ditions will be used (which arise from relating the K-L and L2 distances).
Throughout the paper, for squared L2 adaptation, we assume that the domi-
nating measure µ is finite and is normalized to be a probability measure, and
the unknown density is uniformly upper bounded, that is, 	 f 	∞≤ A < ∞
for a known constant A�

For each f, let g = �f+ 1�/2 be a mixture of f and the uniform density 1�
We have the following conclusion.

Theorem 2. For any given countable collection of strategies �δj� j ≥ 1�, we
can construct a strategy �∗ such that

r�f
n
�∗� ≤ C inf
j≥1

(
1

n+ 1
log

1
πj

+ 1
n+ 1

n∑
i=0

r�g
 i
 δj�
)
�(4)

where the constant C depends only on A.

Note that the risk of the combined strategy at an unknown density f is
bounded in terms of the risks of the original strategies at g = �f + 1�/2
instead of f itself. For usual nonparametric procedures, the risks at f and g
are most likely to be bounded at the same rate. Formally, this does not cause
trouble for applications where minimax risks are considered for nonparametric
classes including f and g at the same time as is the case for the classical
convex classes. This technical difficulty is avoided if one is wiling to assume
that the unknown density is bounded away from zero, for which case the K-L
divergence and the squared L2 distance are equivalent and thus r�g
 i
 δj� can
be replaced by r�f
 i
 δj� directly in the theorem.

In light of Theorems 1 and 2, adaptive estimators can be obtained using the
adaptation recipe for a countable collection of function classes as will be given
in the next section. The results are also useful for combining estimation proce-
dures with hyperparameters (e.g., bandwidth for a kernel estimator). Various
conclusions can be made for a combined strategy with a suitable discretization
of the hyperparameters.

3. Adaptation with respect to function classes. Let ��j� j ≥ 1� be a
collection of density classes. Assume the true function is in one of the classes,
that is, f ∈ ∪j≥1�j. The question we want to address is without knowing which
class contains f , can we have one estimator (not depending on j) such that
it converges asymptotically at the minimax rate of the class containing f? If
such an estimator exists, we call it a minimax-rate adaptive estimator with
respect to the classes ��j� j ≥ 1�. This concept of adaptation can be obviously
extended to any given collection of classes not necessarily countable.

We need a regularity condition for our results. The familiar rates of conver-
gence for function estimation are n−α �log n�β for some 0 ≤ α < 1 and β ∈ R�
When 0 < α < 1 [then R�� 
 l
n� converges essentially more slowly than the
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parametric case], we have that �1/n�∑n
i=0R�� 
 l
 i� is of the same order as

R�� 
 l
n�. For such a case, we say the class has a regular nonparametric risk
rate.

Theorem 3. Let ��j, j ≥ 1� be any collection of density classes each with
a regular nonparametric risk rate under the loss being considered.

1. There exists a combined minimax-rate adaptive strategy under the K-L loss.
2. Assume that ��j, j ≥ 1� is uniformly bounded with

sup
j≥1

sup
f∈�j

	 f 	∞≤ A <∞�

If, in addition, each �j is convex including the uniform density 1 or the
classes are uniformly bounded away from zero, then there exists a minimax-
rate adaptive estimator over the classes under the squared L2 loss.

4. An illustration. Consider estimating a density function on �0�1�d with
respect to Lebesgue measure µ� We focus on the K-L loss.
Densities with finite entropy. Let � consist of all densities that have finite

entropy, that is, � = �f � ∫ f log fdµ < ∞�� Note that densities in � are not
necessarily bounded above or away from zero. The class is very large and no
uniform rate of convergence is possible under K-L or L2 loss.
Piecewise Besov classes with different interaction order and smoothness.

To allow discontinuities, consider the following modification of a function class.
Let � be a class of functions on �0�1�d that are uniformly upper bounded and
lower bounded away from zero. For an integer k� and positive constants γ1 and
γ2, let �k�γ1�γ2

= �h�x�· ∑k
i=1 bi1Bi

/c � h ∈ � , Bi’s are hypercubes partitioning
�0�1�d satisfying

∑k
i=1 biµ�Bi� ≥ γ1 and 0 ≤ bi ≤ γ2�1 ≤ i ≤ k�� Here c is the

normalizing constant to make �k�γ1�γ2
a class of probability density functions.

Note that with the constraints on bi’s and the volumes of Bi’s, the densities
in �k�γ1�γ2

are uniformly upper bounded. However, they are allowed to be 0 on
some hypercubes and arbitrarily close to 0 on others. If the functions in � are
smooth, then the densities in �k�γ1�γ2

are piecewise smooth. The modification
provides somewhat more flexibility than the original class.

For 1 ≤ σ� q ≤ ∞ and α > 0, let Bα�r
q�σ be the Besov space consisting of all

functions g ∈ Lq�0�1�r such that the Besov norm satisfies 	 g 	Bα�r
q�σ
< ∞ [see,

e.g., Triebel (1975) and DeVore and Lorentz (1993)]. Let Bα�r
q�σ�C� denote the

subset of positive functions g in the Besov space with 	 g 	Bα�r
q�σ

+ 	 logg 	∞≤
C (without the extra boundness assumption here, we could not identify the
minimax rate of convergence under the K-L loss). Define

Sα�1
q�σ�C� = �∑d

i=1 gi�xi� � gi ∈ Bα�1
q�σ�C�� 1 ≤ i ≤ d��

Sα�2
q�σ�C� = �∑1≤i<j≤d gi�j�xi� xj� � gi�j ∈ Bα�2

q�σ�C�� 1 ≤ i < j ≤ d�
� � �

Sα�d
q�σ�C� = Bα�d

q�σ�C��
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The simplest function class Sα�1
q�σ�C� contains additive functions (no interac-

tion) and the complexity of the classes increases when r increases. To allow
discontinuity, let Sα�r

q�σ�C�k�γ1�γ2
be the modified class (piecewise Besov in some

sense) from Sα�r
q�σ�C� as defined earlier. It is easy to show that the metric en-

tropy of Sα�r
q�σ�C� under the L2 distance and its covering entropy under the

K-L divergence are of the same orders as Bα�r
q�σ�C�. By Theorem 5 of Yang and

Barron (1999), the minimax rate of convergence under the K-L (or squared
L2) loss for estimating a density in Sα�r

q�σ�C�k�γ1�γ2
is n−2α/�2α+r� for 1 ≤ r ≤ d�

4.1. Desired properties on estimation. Suppose we have the following wish
list for the adaptive estimator f̂n� n ≥ 1 to be constructed:

1. f̂n is consistent for all f ∈ � �

2. f̂n converges automatically at the optimal rate n−2α/�2α+r� if f ∈ Sα�r
q�σ

�C�k�γ1�γ2
without knowing any of the hyperparameters.

3. f̂n behaves well if a projection pursuit density estimator happens to
converge reasonably fast.

The rationale behind the wish list is as follows. Besov classes with different
choices of the hyperparameters provide considerable flexibility in modeling a
density [see, e.g., Donoho, Johnstone, Kerkyacharian and Picard (1996)]. The
piecewise modification allows discontinuity of the density. When α is small
relative to d� the rate of convergence is rather slow (well known as the curse
of dimensionality). The consideration of different interaction order can lead to
a substantial improvement if f happens to be in Sα�r

q�σ�C�k� γ 1� γ2
with r much

smaller than d. Projection pursuit [see, e.g., Huber (1985)] is another approach
to high-dimensional density estimation by dimension reduction. Despite the
lack of theory on convergence rate property, such procedures have practical
merits. Hence the third wish above. (Of course, one could go on with more
target classes or add different strategies such as neural nets in the wish list,
sacrificing simplicity and computation ease.) Finally, since the true density f
may well not be in any of these classes, we want at least consistency for every
f ∈ � �

4.2. Method of adaptation. To use the adaptation recipe, it suffices to con-
struct a consistent estimator for � and optimal-rate estimators for the classes
Sα�r
q�σ�C�k� γ1� γ2

and then combine them and the projection pursuit estimator ap-
propriately.

Barron (1988) [see also Barron, Györfi and van de Meulen (1992)] con-
structed a histogram estimator consistent for � under the K-L loss, that is,
there is a strategy δ� such that R�f
n
 δ� � → 0 for each f ∈ � .

For adaptation among the piecewise Besov classes, we may first obtain
adaptivity over the smoothness parameters 1 ≤ σ ≤ ∞� 1 ≤ q ≤ ∞� α > d/q
for fixed r� C� k� γ1 and γ2� To that end, a suitable discretization of the
smoothness parameters leaves us a countable collection of density classes to
work with, for each of which a minimax-rate adaptive estimator can be con-
structed, for example, utilizing a covering set under K-L divergence as in Yang
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and Barron (1999). Then the adaptation recipe together with an appropriate
assignment of weights on the discretized values can result in adaptation for
these classes following some “continuity” argument. Further adaptation is ob-
tained by combining these estimators over integer values of r (between 1 and
d), C� k� γ1 and γ2� This strategy, say δB, is minimax-rate adaptive over all
the piecewise Besov classes.

Finally, we combine the above strategies δH� δB� and a chosen projection
pursuit strategy (e.g., with equal weights). Then the overally combined strat-
egy makes the three wishes come true.

A similar result holds for the squared L2 risk applying Theorem 2, assum-
ing the unknown density is bounded above by a known constant. Adaptation
results over Besov classes by wavelets are in Donoho, Johnstone, Kerkyachar-
ian and Picard (1996), Birgé and Massart (1996) and Juditsky (1997).

Adaptation over density classes with different characteristics is discussed
in Barron and Cover (1991) using MDL criterion and later in Barron, Birgé
and Massart (1999) and Yang and Barron (1998) by other model selection
criteria.

5. A generalization for prediction for dependent data. A similar
adaptation result holds for prediction with dependent data.

Let X1� X2� � � � �Xn be a stochastic process. One is interested in “estimat-
ing” or predicting the conditional density fi�xi+1�xi� of Xi+1 given Xi. For
an predictor f̂i� we measure the loss using K-L divergence D�fi 	 f̂i� =∫
fi�xi+1�xi� log

(
fi�xi+1�xi�/f̂i�xi+1�

)
µ�dxi+1�� The average cumulative pre-

diction risk is

1
n+ 1

n∑
i=0

ED�fi 	 f̂i��

Let δ denote a prediction strategy which produces predictors fδ�0� f̂δ�1�x
X1��
� � � � based on observation(s) X0�X1� � � � � respectively. Let Rpred��fi� i ≥ 1�

n
 δ� = �1/�n+ 1��∑n

i=0ED�fi 	 f̂δ�i� denote the average cumulative risk
when the true conditional densities are fi� i ≥ 1�

Let �δj� j ≥ 1� be a collection of density prediction strategies. We have the
following conclusion on adaptive prediction.

Proposition 1. For any given countable collection of prediction strategies
�δj� j ≥ 1� and π, we can construct a single adaptive prediction strategy δ∗

such that

Rpred��fi� i ≥ 1�
n
 δ∗� ≤ inf
j≥1

(
1

n+ 1
log

1
πj

+Rpred��fi� i ≥ 1�
n
 δj�
)
�

The proof of the proposition is similar to that of Theorem 1 and is omitted
here.
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6. Proof of the results.

Proof of Theorem 1. Let fn�xn� denote the product density f�x1�f�x2�
· · ·f �xn� � Let

q
�n�
j = fj�0�x1� f̂j�1�x2
x1� · · · f̂j�n−1�xn
x1� � � � xn−1��

It is a joint density function on the product space of X1� � � � � �Xn. Then let
q�n� = ∑

j≥1 πjq
�n�
j be a mixture from q

�n�
j ’s. The cumulative risk of the con-

structed estimators satisfy

n−1∑
i=0

EfD�f 	 f̂seq�i�

=
n−1∑
i=0

Ef

∫
f�x� log f�x�

f̂seq�i�x�
µ�dx�

=
n−1∑
i=0

Ef

∫
f�xi+1� log

f�xi+1�
f̂seq�i�xi+1�

µ�dxi+1�

=
n−1∑
i=0

∫
f�x1�f�x2� · · ·f�xi�f�xi+1� log

f�xi+1�
qi�xi+1
x1� � � � � xi�

×µ�dx1�µ�dx2� · · ·µ�dxi+1�

=
n−1∑
i=0

∫
fn�xn� log f�xi+1�

qi�xi+1
x1� � � � � xi�
µ�dx1�µ�dx2� · · ·µ�dxn�

=
∫
fn�xn�

(
n−1∑
i=0

log
f�xi+1�

qi�xi+1
x1� � � � � xi�

)
µ�dx1�µ�dx2� · · ·µ�dxn�

=
∫
fn�xn�

(
log

fn�xn�
q�n�

)
µ�dx1�µ�dx2� · · ·µ�dxn�

= D�fn 	 q�n���

Thus we have nRseq�f
n − 1
 δ∗seq� = D�fn 	 q�n��� To prove Theorem 1, our
task is to bound D�fn 	 q�n��� For any f and any j ≥ 1, since log�x� is an
increasing function, we have

D�fn 	 q�n�� ≤
∫
fn�xn� log fn�xn�

πjq
�n�
j �xn�

dµ�xn�

= log
1
πj

+
∫
fn�xn� log fn�xn�

q
�n�
j �xn�

dµ�xn��
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The term
∫
fn�xn� log

(
fn�xn�/q�n�

j �xn�
)
dµ�xn� can be bounded in terms of

risks of the estimators produced by strategy δj. Indeed, as earlier,∫
fn�xn� log fn�xn�

q
�n�
j �xn�

dµ�xn� =
n−1∑
i=0

EfD�f 	 f̂j�i� = nRseq�f
n− 1
 δj��

Thus we have Rseq�f
n− 1
 δ∗seq� ≤ �1/n� log (1/πj)+Rseq�f
n− 1
 δj�� Since
the inequality holds for all j� minimizing over j� we have the first inequality
in Theorem 1. Let f̂n−1 = �1/n�∑n−1

i=0 f̂seq�i� by convexity, as in Barron (1987),
we have

EfD�f 	 f̂n−1� ≤
1
n

n−1∑
i=0

EfD�f 	 f̂seq�i� ≤ inf
j≥1

(
1
n

log
1
πj

+Rseq�f
n− 1
 δj�
)
�

This completes the proof of Theorem 1. ✷

Proof of Theorem 2. We use an idea in Yang and Barron [(1999), Section
2] to change the problem to another one for which application of Theorem 1
gives bounds under square L2 loss. In addition to the observed i.i.d. sample
X1�X2� � � � �Xn from f, let W1�W2� � � � �Wn be an independent sample gener-
ated i.i.d. from the uniform distribution on � with respect to µ. Let X̃i be Xi

or Wi with probability �1/2�1/2� according to independent coin flips. Then X̃i

has density g�x� = �f�x� + 1�/2. Clearly the new density g is bounded below
(away from 0), whereas the family of the original densities need not be. Since
the unknown density g is known to be bounded between 1/2 and 1/2 +A/2,
we can project (if necessary) the estimators produced by the original strate-
gies into this range without increasing the squared L2 risk (see, e.g., Yang
and Baron [(1999), Section 2)]. Then we apply the adaptation recipe using the
generated sample X̃i�1 ≤ i ≤ n to get an adaptive strategy �∗ with risk bound

R�g
n− 1
�∗� ≤ inf
j≥1

(
1
n
log

1
πj

+ 1
n

n−1∑
i=0

R�g
 i
 δj�
)
�

Note that from the construction recipe, the adaptive estimators are convex
combinations of the original estimators (but with random coefficients); thus
they also stay between 1/2 and �A + 1�/2. With this boundedness property,
the ratio of K-L divergence and squared L2 distance is bounded above and
below by constants depending only on A [see, e.g., Yang and Barron, Section
2)]. As a consequence, we have

r�g
n− 1
�∗� ≤ CA inf
j≥1

(
1
n
log

1
πj

+ 1
n

n−1∑
i=0

r�g
 i
 δj�
)
�

Finally, observing that for any estimator ĝ, the estimator f̂ = 2ĝ− 1 of f has
risk bounded by E	f − f̂	2 ≤ 4E	g − ĝ	2, from above, we have a combined
strategy with the claimed risk bound in Theorem 2. Note that the combined
strategy is randomized because of the dependence on the generated random
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variables. Due to convexity of the loss, a nonrandomized strategy can be ob-
tained with no bigger risk by averaging out the randomness in the generated
sample Wi� 1 ≤ i ≤ n and the coin flips. This completes the proof of Theorem
2. ✷

Proof of Theorem 3. For each class �j� let δj be an asymptotic mini-
max strategy. The existence of a minimax-rate adaptive estimator under K-L
loss follows directly from Theorem 1 together with the assumption that the
minimax risk is at a regular nonparametric rate.

For the proof of the conclusions under squared L2 loss, observe that under
the assumption on the density classes, for each f in a class, g = �f + 1�/2.
Applying the risk bound given in Theorem 2, we have

sup
f∈�j

r�f
n− 1
�∗� ≤ C inf
j≥1

(
1
n
log

1
πj

+ 1
n

n−1∑
i=0

sup
f∈�j

r�f
n
 δj�
)
�

Taking the strategies to be minimax-rate optimal for the classes, respectively,
we have the minimax-rate adaptation under the squared L2 loss. This com-
pletes the proof of Theorem 3. ✷
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