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ASSESSING LINEARITY IN HIGH DIMENSIONS1

By Art B. Owen

Stanford University

Some standard numerical problems become intractable in high dimen-
sions. Yet successes are often achieved in practice. This may be explained
in terms of the underlying target function being somehow simpler than
assumed in the intractability arguments. A prototypical form of simplicity
is approximate linearity. In moderate dimensions, linearity can be inves-
tigated by linear regression. In very high dimensions, this becomes com-
putationally inefficient and eventually infeasible, as the cost of regression
for n observations in d dimensions grows as nd2. This paper presents a
quasi-regression method for determining the degree of linearity in a func-
tion, where the cost grows only as nd. A bias-corrected version of quasi-
regression is able to estimate the degree of linearity with a sample size of
order d2/3. An example is given of a function on �0�1�1�000�000, for which
the amount of linear variability is accurately estimated from only 100�000
observations.

1. Introduction. Let f be a function of d variables that are free to vary
independently over the unit cube �0�1�d. As d increases, numerical problems
such as integration, approximation, and nonconvex optimization can become
computationally intractable, particularly in worst-case analyses. Yet it is also
common for specific algorithms to succeed on specific high-dimensional prob-
lems.

One explanation is that the high-dimensional functions appearing in these
success stories do not have full d-dimensional complexity. The function may
have a lower effective dimension than d. See Paskov and Traub (1995) and
Caflisch, Morokoff and Owen (1997) for examples. For mathematical descrip-
tions, see Caflisch, Morokoff and Owen (1997), Hickernell and Wozniakowski
(2000) and Sloan and Wozniakowski (1998). Some special forms of simplicity
involve the underlying function f being nearly additive, nearly quadratic, or
nearly linear.

It is of interest in applications to detect the presence of such simplified
structure, in order to know whether the problem at hand can be treated by
simpler methods. A condition such as additivity is comparatively easy to test:
if replicated Latin hypercube samples [McKay, Beckman and Conover (1979)]
yield a much smaller variance than ordinary Monte Carlo sampling, then from
the results in Stein (1987), the function is nearly additive.

This paper focuses on the specific problem of assessing the amount of lin-
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earity in a function, while An and Owen (2001) consider higher-order response
surface models. If a function is sufficiently linear, then it may pay to develop
a linear approximation, in order to exploit special-purpose algorithms. For an
industrial problem that is nearly linear, linear programming becomes avail-
able for optimization. If the value of a portfolio of financial instruments is
nearly linear in the returns of a large number of underlying assets, then that
portfolio is comparatively simple to hedge. Finally, a linear function can be
represented graphically by plotting or color coding the coefficient values.

Our interest in this problem was sparked by a finding in Caflisch, Morokoff
and Owen (1997). There, an integration problem motivated by valuation of col-
lateralized mortgage obligations (CMOs) appears as an integral over the unit
cube in 360 dimensions. The problem has one dimension for each monthly in-
terest rate fluctuation, for a portfolio of thirty-year mortgages. Interest rate
fluctuations affect the value of the portfolio in two ways: they change the dis-
count factor applied to the monthly payments and they change the rate of
prepayment. Prepayments reduce all future payments. Given simple models
for interest rate fluctuations and prepayment tendencies, the present value of
the CMO is a 360-dimensional integral. The function appears to be highly non-
linear, and yet it could be very accurately integrated by some low-discrepancy
methods. In fact, Latin hypercube sampling was also very effective, beating
some low-discrepancy methods. This made it clear that the function was nearly
additive. Inspection of the additive parts showed that the function was in fact
nearly linear.

In d = 360 dimensions, it is not difficult to fit a linear model and inspect
it. But this problem raised the following challenge: how would one assess the
amount of linearity, in a very high-dimensional function?

Section 2 defines the amount of linearity in a function through the vari-
ance of a best linear approximation. Section 3 describes direct methods based
on estimating this linear approximation. These methods are ordinary least
squares regression and the computationally less expensive method of quasi-
regression. Section 4 presents exact expressions for the bias and variance of
the quasi-regression based estimate, without assuming n > d. This allows the
construction of a bias-corrected version of quasi-regression that can estimate
the amount of linear variation in a function using n = O�d2/3� observations.
Section 5 finds expressions for the bias and variance of the least squares re-
gression based estimate, in the case where n → ∞ with d fixed. Section 6
presents a variance reduction for quasi-regression. Some examples including
one with d = 1�000�000 are presented in Section 7, and conclusions are given
in Section 8.

2. Examples, notation and definitions. This paper considers d-dimen-
sional functions in some limits as d → ∞. To fix ideas, we first consider
some settings with high-dimensional functions on �0�1�d, where it is natural
to consider an increasing sequence of values for d. In other settings we may
simply have a function over �0�1�d with large d and no natural interpretation
for how that function would change if d were increased.
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Example 2.1 (Extension). A function may describe some aspect, such as
the average waiting time, of the performance of a queue over t time steps.
Each time step may require s input variables to describe. There are then
d = st input variables in the system, and d increases with t.

Example 2.2 (Refinement). Some functions considered in financial math-
ematics depend on a Brownian motion Wt over t ∈ �0�T�. It takes an infinite
number of random variables to describe Wt. In practice, one might represent
Wt by

∑d
j=1Z

jψj�t�, where ψj�t� are given functions on �0�T� and Zj are in-
dependent N�0�1� random variables. Increasing d corresponds to exploiting
finer structure in Wt.

Example 2.3 (Computer experiments). An engineer may have a software
model of a physical process, such as the performance of an aircraft wing or a
semiconductor. The model may allow an extremely large numberD of variables
to be specified. The engineer may arrange these variables from those thought
to be most important to those thought to be least important. Then it is nat-
ural to consider a function defined over the first d input variables with the
last D− d input variables fixed at default values.

For computer experiments, it is reasonable, from Taylor’s theorem, to expect
f to be nearly linear over a small d-dimensional region. The practical difficulty
is knowing whether a given region is small enough, and exceptions can arise
if the region contains a stationary point of the function.

It will often be the case that the cost of a function is either constant in d or
increases linearly in d. For example, to follow a simulation through d steps
would often take computation of order d. For a computer experiment with D
variables of which d are being changed from their defaults, the computation
may be constant in d. Some realistic functions will require O�d2� time to
compute, but these are outside the scope of this paper.

2.1. Definitions. This section defines how linear a function is. The ap-
proach is through the best linear approximation in a least squares sense.

A typical point in �0�1�d is written X = �X1�X2� � � � �Xd�. A data point
is written Xi = �X1

i �X
2
i � � � � �X

d
i �. The underlying data are assumed to be

sampled using Xj
i ∼ U�0�1� independently for 1 ≤ i ≤ n and 1 ≤ j ≤ d. Let

the function f be defined on the unit cube �0�1�d, with ∫ f�X�2 dX <∞. Here
and elsewhere, an integral without a specific domain is understood to be over
�0�1�d.

A linear function takes the form

g�X� = γ0 +
d∑
r=1

γrφ�Xr��(1)

where the function φ is a fixed known univariate function with
∫ 1
0 φ�x�dx = 0

and
∫ 1
0 φ�x�2 dx = 1, and the γr are scalars. This definition is motivated by

the following two examples.
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Example 2.4 (Ordinary linearity). Taking φ�x� = √
12�x− 0�5�, for r ≥ 1,

recovers the usual definition of linearity on �0�1�d.

Example 2.5 (Gaussian linearity). Let ��x� = ∫ x
−∞�2π�−1/2 exp�−z2/2�dz.

Then taking φ�x� = �−1�x�, for r ≥ 1, yields an ordinary linear function of
independent normally distributed input variables on Rd.

The linear function fL that minimizes
∫ �f�X� − fL�X��2 dX is

fL�X� = β0 +
d∑
r=1

βrφ�Xr��(2)

where β0 = ∫
f�X�dX and for r > 0, βr = ∫

f�X�φ�Xr�dX. The residual
function η�X� = f�X� − fL�X� satisfies orthogonality relations

∫
η�X�dX =∫

η�X�φ�Xr�dX = 0 for r = 1� � � � � d. The linear variation in f is defined
to be

σ2
L = σ2

L�f� =
∫
�fL�X� − β0�2 dX =

d∑
r=1

β2
r�(3)

and the nonlinear variation in f is

σ2
NL = σ2

NL�f� =
∫
�f�X� − fL�X��2 dX =

∫
η�X�2 dX�(4)

To streamline notation, we introduce functions φr, with φ0�X� = 1 for all
X ∈ �0�1�d and φr�X� = φ�Xr� for 1 ≤ r ≤ d.

The fourth moment of φ appears frequently below. It is conveniently ex-
pressed in terms of the kurtosis

κ =
∫ 1

0
φ�x�4 dx− 3�(5)

For the Gaussian example, κ = 0, and for the linear example, κ = −6/5.

2.2. Normalization. The variance of f is σ2 = ∫ �f�X� − β0�2 dX = σ2
L +

σ2
NL. The quantities that interest us the most are the fractions σ2

L/σ
2 and

σ2
NL/σ

2, of variation in f that is due to linear and nonlinear structure, re-
spectively. These ratios are unaffected when f is replaced by a dimensionally
dependent scaling cdf, where cd ∈ �0�∞�. We assume that, perhaps after some
scaling,

0 < m ≤ σ2 ≤M<∞(6)

uniformly in d, where m and M are two constants.
We further assume that

0 < m ≤ σ2
L/σ

2
NL ≤M<∞�(7)

ruling out cases where σ2
L/σ

2 tends to 0 or 1 as d → ∞. This seems reason-
able for many applications, especially computer experiments. If there is some



ASSESSING LINEARITY IN HIGH DIMENSIONS 5

nonlinearity in the effect of the first d0 input variables considered, it cannot
be expected to disappear when d1 > d0 input variables are considered.

We also assume that the basis function satisfies∫ 1

0
φ�x�8 dx <∞�(8)

This is true for both the uniform and Gaussian examples. Finally, we assume
that, after scaling to induce (6),∫

f�X�8 dX <M�(9)

holds uniformly in d. In many practical examples, f itself is bounded, making
(9) hold. Condition (9) fails for a function such as

∏d
r=1φr�X� which has a

large number of equally important variables, and an ANOVA decomposition
in which only the order d interaction is nonzero. This condition is used below
to arrange terms in some expansions according to their asymptotic size. When
the condition fails, it could affect the relative importance of some terms. For
such cases, different asymptotic expansions should be used.

The quantity

S2 = S2�X� =
d∑
r=1

φr�X�2(10)

appears frequently below. It has mean d and variance �2+κ�d, so thatV�S2� =
2d in the Gaussian example, and V�S2� = 4d/5 in the uniform example.

2.3. Approximations and limits. This paper makes use of asymptotes as
the sample size n and dimension d tend to infinity separately or together. We
employ a form of big-O notation that is stricter in d than in n. Given two
quantities a�n�d� and b�n�d�, we say that

a�n�d� = O�b�n�d��
if there exist constants 1 ≤ n0 <∞ and C <∞ such that

�a�n�d�� ≤ C�b�n�d��� 1 ≤ d <∞� n0 ≤ n <∞�

The central limit theorem implies a concentration of measure result in
which P�1 − ε < S2�X�/d < 1 + ε� → 0 as d → ∞, for any ε > 0. Thus
while S2 ranges from 0 to d supx φ

2�x�, it is almost equal to d on all but a
vanishingly small part of �0�1�d, when d is large.

Let g�X� be a function defined on �0�1�d with
∫
g�x�2 dx <∞. Write µg =∫

g�X�dX and σ2
g = ∫ �g�X� − µg�2 dX, and let ρ = ρS2�g be the correlation

between S2�X� and g�X� for X ∼ U�0�1�d. Then∫
g�X�S2�X�dX = d

∫
g�X�dX+ d1/2ρσg�κ+ 2�1/2�(11)

Because �ρ� ≤ 1, we have∣∣∣d−1
∫
g�X�S2�X�dX− µg

∣∣∣ ≤ d−1/2σg�κ+ 2�1/2�(12)
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so that ∫
g�X�S2�X�dX = dµg +O�d1/2��

when σg < M <∞ for all d.

We assume throughout that
∫
f�X�8 dX < M <∞ and that

∫ 1
0 φ�x�8 dx <

∞, allowing a Cauchy–Schwarz inequality to be applied to E�f4S4�. The fol-
lowing moment approximations are used below,

E�f2S2� = dE�f2� +O�d1/2��(13)

E�f4S4� = O�d2��(14)

Equation (14) can also be obtained if either f or φ is bounded and the other
has a finite fourth moment.

3. Regression and quasi-regression. The approach used here for as-
sessing linearity uses n independent points X1� � � � �Xn ∼ U�0�1�d. A linear
approximation

f∗
L�X� = β∗

0 +
d∑
r=1

β∗
rφr�Xr�

is fit to f and then the linear variability is estimated by

σ∗2
L =

d∑
r=1

β∗2
r �

The nonlinear variability is estimated by subtracting the estimated linear
variability from σ̂2 = 1/n

∑n
i=1�f�Xi� − f̄�2.

Although we are primarily interested in the ratio σ2
L/σ

2, we focus on the
accuracy of estimates for σ2

L. The reason is that σ2 is ordinarily easier to
estimate than σ2

L. Furthermore, when two or more competing estimates of σ2
L

are under consideration, they may be used with the same estimate of σ2.

3.1. Definitions. We consider two estimators, the usual linear regression
estimator f̂L and a quasi-linear regression estimator f̃L that avoids solving a
least squares equation. The term “quasi-linear regression” or simply “quasi-
regression” is adopted because the same idea, when used for fast approximate
interpolation, is called quasi-interpolation [Chui and Diamond (1987)].

For the regression methods, let � be the n by d + 1 matrix with ith row
equal to �1� φ1�Xi�� � � � � φd�Xi�� and � be the column vector of length n with
ith entry Yi = f�Xi�. These are related by

� = � β+ � �

where � is the vector with ith entry η�Xi� and β = �β0� β1� � � � � βd�′.
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The true value β can be written

β = [
E�� ′� �]−1E�� ′� �(15)

= E�� ′� ��(16)

with (16) following by orthogonality of φr�X�. The usual least squares esti-
mate

β̂ = �β̂0� β̂1� � � � � β̂d�′ = �� ′� �−1� ′� �(17)

is a sample analogue of (15). The quasi-regression estimate is

β̃ = �β̃0� β̃1� � � � � β̃d�′ =
1
n
� ′� �(18)

a sample analogue of (16).
What we call quasi-regression has been studied by Efromovich (1992) for

orthogonal series smoothing on the unit interval. Owen (1992) proposes it
for regression modeling of data from Latin hypercube samples, Koehler and
Owen (1996) propose it for computer experiments, and An and Owen (2001)
implement it for some computer experiments. The quasi-regression problem
treated here is simpler than the general case. Not only are the basis functions
φr�X� uncorrelated, they are also independent.

3.2. Statistical efficiency. To analyze the estimates β̂ and β̃, let

1
n
� ′� = I+A�

1
n
� ′� = δ�

The matrix A and the vector δ both have mean zero and elements with vari-
ance proportional to 1/n. We use indices running from 0 through d for the
entries in A and δ, so that the subscripts correspond naturally with those
of β.

The error in quasi-regression is

β̃− β = n−1� ′� − β

= n−1�� ′� β+� ′� � − β

= δ+Aβ�

and the error in least squares regression is

β̂− β = �� ′� �−1� ′� − β

= �� ′� �−1� ′�

= �I+A�−1δ�
Write I + A = ∑d

k=1 λkeke
′
k, where λk and ek are eigenvalue–eigenvector

pairs. The matrix A has the same eigenvectors ek with corresponding eigen-
values νk = λk − 1. The regression error �I+A�−1δ can be written

β̂− β = �I−A+A2 −A3 · · ·�δ(19)
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provided that max1≤k≤d �νk� < 1. If also max1≤k≤d �νk� → 0 as n → ∞, then
the expansion is dominated by early terms, allowing an approximation of the
form

β̂− β
�= δ−Aδ�(20)

or even β̂− β
�= δ.

For the rest of this subsection, consider the limit with d fixed and n→ ∞.
In this case, all d eigenvalues of I +A converge to 1 with a log�n�/√n rate
[Anderson (1984)]. It follows that the eigenvalues of A converge to 0 at that
rate, justifying (19) and (20).

The error δ contributes directly to both estimators β̃ and β̂. They differ in
how the error A enters: through Aβ for quasi-regression, and approximately
as Aδ for regression. In limits with d fixed and n → ∞, the components of δ
are Op�n−1/2� while those of β are constant in n. Thus, in such limits, we can
expect that regression should have better performance than quasi-regression.
Because they both share the error δ, which, like Aβ, is Op�n−1/2�, the rates
of convergence for the methods are the same, while the constant ordinarily
favors regression.

In a limit with σNL → 0, it is possible for linear regression to achieve a
better rate of convergence than n−1/2. In a limit with σL → 0, it is possible for
the Aβ term to be negligible compared to Aδ, giving quasi-regression a more
favorable constant. Both of these are ruled out by the condition (7).

That regression is more statistically efficient than quasi-regression is borne
out by some more detailed calculations in Sections 4 and 5. This notion of
statistical efficiency is taken with respect to a fixed n. Section 3.4 shows
that, for a fixed computing budget, quasi-regression can be more efficient, for
large d.

3.3. Regression with d→ ∞. Here we describe the case of regression with
d→ ∞. We draw on the recent survey paper Bai (1999).

Apart from the first row and column (corresponding to the constant φ0),
the matrix I + A is a large sample covariance matrix of the type recently
surveyed in Bai (1999). The limit of covariance matrices with d�n → ∞ and
d/n → τ ∈ �0�∞� has been thoroughly studied. The Marcenko–Pastur law
describes the limiting empirical distribution of λ1� � � � � λd. For the case where
τ < 1, the limiting distribution has density function

pτ�λ� =
�bτ − λ��λ− aτ�

2πτλ
on aτ ≤ λ ≤ bτ�(21)

where aτ = �1 − τ1/2�2 and bτ = �1 + τ1/2�2. Finite fourth moments of φr�Xi�
are sufficient for this and for the sharper results that

lim
d→∞

min
1≤k≤d

λk = �1− τ1/2�2 a.s.,

lim
d→∞

max
1≤k≤d

λk = �1+ τ1/2�2 a.s.
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It follows that, in the limit as d → ∞ with d/n → τ < 1, expansion (19) can
be made. The terms decrease in magnitude as the power of A increases, but
they are not of a smaller order in n. The approximation of �I+A�−1 by I−A
can be made very accurate by taking a small value for τ, but, for any fixed
τ > 0, the approximation does not become increasingly accurate as n→ ∞.

For the case with d→ ∞ and d/n→ 0, it is known that the limiting density
of the eigenvalues of �n/d�1/2A is given by the semicircular law

�4− ν2�1/2
2π

� �ν� ≤ 2�(22)

This corresponds to eigenvalues ofA distributed between±2�d/n�1/2 for which
successive powers of A are of smaller order in n. Less is known about the rate
at which extreme eigenvalues approach their limits in this case.

The qualitative conclusion from the previous section should still hold in
this case. Along a given sequence d→ ∞ with d/n→ 0, regression should be
more accurate than quasi-regression, because β̂− β is approximately δ−Aδ
and Aδ should be smaller than Aβ.

3.4. Computational efficiency. A large dimension d will require a large
sample size n for either method. Consider regression using n = n̂ = âdq

for some q ≥ 1 and â > 0. The computational cost of regression is at least
n̂d2/2+d3/6 floating point operations [Golub and Van Loan (1983)]. For large
d, this dominates the cost of n̂ function evaluations, under our assumption
that function evaluations cost at most O�d�.

The cost of estimation for quasi-regression, using n = ñ, is of order ñd,
and therefore by setting ñd = n̂d2/2, for the same computational effort it is
possible to use at least ñ = âd1+q/2 function evaluations in quasi-regression.
If the cost of computing f grows proportionally to d, then taking this into
account gives ñ = ãd1+q for some ã ≤ â/2. The bias and variance in σ̃2

L and σ̂2
L

are shown below to be of the same order with leading constants that are likely
to favor σ̂2

L. But for the same computational effort, a much larger sample size,
with ñ/n̂ = O�d� is possible for σ̃2

L.
It follows that as dimension increases, quasi-regression will eventually be

more accurate than regression, when given the same amount of computer
time. Quasi-regression also requires only O�d� storage compared to O�d2� for
regression.

4. Accuracy of quasi-regression. This section considers the mean and
variance of σ̃2

L in quasi-regression. An exact expression is presented. Then it
is simplified with respect to n, then simplified with respect to d.

Proposition 4.1. The quasi-regression based estimator σ̃2
L = ∑d

r=1 β̃
2
r has

expectation

E�σ̃2
L� =

n− 1
n

σ2
L + 1

n
E
(
S�X�2f�X�2) �(23)
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Proof. This follows immediately from short moment calculations. ✷

Variance in β̃r induces a positive bias in the estimate σ̃2
L. This bias is of

order d/n:

E�σ̃2
L� = σ2

L + d

n
E
(
f�X�2)+O

(
d1/2

n

)
�

with the error bound coming from (13). Next we consider the variance of σ̃2
L.

Theorem 4.1. For the quasi-regression estimator,

V�σ̃2
L� =

�n− 1��6− 4n�
n3

σ4
L + 4

�n− 1��n− 2�
n3

E��fL − β0�2f2�

−4n− 1
n3

σ2
LE�S2f2� + 2

n− 1
n3

∑
r

∑
s

E�φrφsf2�2(24)

− 1
n3
E�S2f2�2 + 4

n− 1
n3

E�S2�fL − β0�f3� + 1
n3
E�S4f4��

Proof. The proof requires tedious but straightforward algebra. Details
are available from the author. ✷

Equation (24) in Theorem 4.1 holds for any n ≥ 1 and d ≥ 1. In particular,
it does not require n > d. After simplifying and rearranging terms, we obtain

V�σ̃2
L� =

4
n

(
E��fL − β0�2f2� − σ4

L

)
+ 2
n2

∑
r

∑
s

E�φrφsf2�2

+ 4
n2

(
E�S2�fL − β0�f3� − σ2

LE�S2f2�
)

+ 1
n3

(
E�S4f4� −E�S2f2�2

)
+O

(
1
n

)
�

For large d, concentration of measure gives that S2 is nearly d, and this
leads to the further simplification

V�σ̃2
L� =

4
n

(
E��fL − β0�2f2� − σ4

L

)
+ 2
n2

∑
r

∑
s

E�φrφsf2�2

+4d
n2

(
E��fL − β0�f3� − σ2

LE�f2�
)

(25)

+d
2

n3

(
E�f4� −E�f2�2

)
+O

(
d2

n3

)
�

The first, third and fourth terms in (25) are of orders 1/n, d/n2 and d2/n3,
respectively. The dominant error is from applying concentration of measure to
the fourth term, using (14), and it is of the same order of magnitude as that
term.
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The second term, while apparently of order d2/n2, is in fact only of order
d/n2 because the sum of the off diagonal terms r �= s cannot be larger than
2E�f2�2. To see this, note that

d∑
r=1

r−1∑
s=0

E�φrφsf2�2 ≤ E�f2�2�

by projecting f2 on the d�d + 1�/2 mutually orthogonal basis functions
φr�Xr�φs�Xs�. The r = s terms contribute O�d/n2�, which dominates the
O�1/n2� contribution from the r �= s terms.

Thus, quasi-regression produces an estimate σ̃2
L with a squared bias of order

d2/n2 and a variance of order 1/n+ d/n2 + d2/n3.
Consider the simple limit where n → ∞ with d fixed, followed by d → ∞.

In this limit, the mean squared error is dominated by the first term in the
variance (25), and d does not appear:

lim
n→∞ nE

(
�σ̃2

L − σ2
L�2
)
= 4

(
E��fL − β0�2f2� − σ4

L

)
�

The natural sample size ñ for quasi-regression is proportional to d. Taking
ñ
�= αdq for q > 1 has the unreasonable consequence that accuracy improves

as the dimension of the problem increases, and taking q < 1 implies that as
d increases the method eventually fails.

Using the natural sample size n �= αd, for α > 0, and taking the limit as
d→ ∞, we find

lim
d→∞
n=�αd�

E
(
�σ̃2

L − σ2
L�2
)
= E�f�X�2�

α2
+O

(
1
n1/2

)
�

where the error term contains a factor proportional to α−1/2. The resulting
error is dominated by bias. This motivates bias-corrected versions of quasi-
regression considered next.

4.1. Bias-corrected quasi-regression. Unless n is of order d2 or larger, the
bias dominates the error in σ̃2

L. Since we have an expression for the bias, we
consider bias-corrected quasi-regression estimators

σ̃2
L�BC = n

n− 1

(
σ̃2
L − 1

n2

n∑
i=1

S�Xi�2f�Xi�2
)

(26)

and

σ̃2
L�BCCM = n

n− 1

(
σ̃2
L − d

n2

n∑
i=1

f�Xi�2
)
�(27)

The estimate (26) is unbiased by Proposition 4.1 but requires extra computa-
tion on the order of nd to calculate the sample average of S2f2. This is the
same order of computation required to construct σ̃2

L itself. The estimate (27)
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is derived by employing the concentration of measure approximation, replac-
ing every S�Xi�2 by d. It only requires extra computation on the order of n,
instead of nd, and hence may be preferable for large d.

The variance of the bias correction in (26) is n−3�E�S4f4� − E�S2f2�2� =
O�d2/n3�, using (14). The variance already has a term of this order, and so
the bias correction does not increase the asymptotic order of the variance.
Because the variance of σ̃2

L is of smaller order than the original squared bias,
bias correction should provide an asymptotic improvement.

For bias-corrected quasi-regression estimates of σ2
L, it is possible to have n <

d as d→ ∞. The natural sample size for bias-corrected quasi-regression grows
proportionally to d2/3. If n grows faster than d2/3, one gets better answers in
higher dimensions than in lower ones, and if n grows slower than d2/3, the
method fails for large enough d. With n �= ad2/3, the bias of σ̃2

L�BC is zero and
the variance tends to zero as a→ ∞.

5. Accuracy of regression. The regression method requires n > d. In
limits with n → ∞ and d/n → τ < 1, the extreme eigenvalues of � ′� are
well behaved, and β̂ exists. In this section, we develop expressions for the bias
and variance of σ̂2

L for limits with n → ∞ and d fixed. These turn out to be
similar in form to the expressions for quasi-regression, allowing a comparison
of the two methods, although the formulas for quasi-regression hold for any n
and d.

We consider approximations formed by truncating

β̂− β = δ−Aδ+A2δ−A3δ � � � �(28)

with β̂ − β
�= δ being the first-order approximation and β̂ − β

�= δ − Aδ
being the second-order one. As is customary in delta method calculations, a
first order approximation suffices for variance calculations, but a second-order
one is required for bias calculations, because E�δ� = 0. The approximations
developed here may not apply to cases with d → ∞ and d/n → 0 because
the correct number of terms to consider in such cases may not be the same
as in the usual delta method. The delta method is discussed by Efron and
Tibshirani (1993).

Proposition 5.1. The rth component of E�δ−Aδ� is − 1
n
E
(
φrS

2η
)
�

Proof. The proof involves straightforward moment calculations. It is
available from the author. ✷

Using concentration of measure,

E��δ−Aδ�r� − βr = −�d/n�E�φrη� +O

(
d1/2

n

)
= O

(
1
n

)
�

Thus, while quasi-regression gives unbiased estimates β̃, regression estimates
have a slight bias. For a first-order delta approximation,

V�δ̂r� =
1
n
E�φ2

rη
2��
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This results in

E

(
d∑
r=1

β̂2
r

)
= σ2

L + 1
n
E
(
S�X�2η2)+O�n−2�

= σ2
L + d

n
σ2
NL +O�n−1��

The lead term in the bias of σ̂2
L is �d/n�E�η2� compared to �d/n�E�f2�

under quasi-regression. Thus, the regression estimate typically has smaller
bias and can have much smaller bias for nearly linear functions f.

For regression,

V�σ̂2
L� =

d∑
r=1

d∑
s=1

(
E�β̂2

rβ̂
2
s� −E�β̂2

r�E�β̂2
s�
)

(29)

and

Lemma 5.1.

E�β̂2
r� = β2

r −
2βr
n
E�S2φ2

rη
2� + 1

n
E�φ2

rη
2� + o

(
1
n

)
�

E�β̂2
rβ̂

2
s� −E�β̂2

r�E�β̂2
s� =

4βrβs
n

E�φrφsη2� + o

(
1
n

)
�

Proof. In the series

β̂r = βr + δr − �Aδ�r + �A2δ�r − · · · �
the consecutive terms are of order n−k/2 in probability, for integer k ≥ 0. The
proof requires straightforward but lengthy expansion and evaluation of terms.
Details of the proof are available from the author. ✷

Theorem 5.1.

V�σ̂2
L� =

4
n
E
(
�fL − β0�2η2

)
+ o

(
1
n

)
�

Proof. This follows directly from Lemma 5.1. ✷

To compare the variance of regression and quasi-regression, write

lim
n→∞nV�σ̂2

L� = 4E
(
�fL − β0�2η2

)
�

lim
n→∞nV�σ̃2

L� = 4E
(
�fL − β0�2�f2 − σ2

L�
)
�

For large n, the variance comparison becomes one of comparing a weighted
mean of η2 to a similarly weighted mean of f2−σ2

L. Expanding f = β0+�fL−
β0�+η, we find that f2 contains a term η2, a term �fL −β0�2 that more than
compensates for the −σ2

L, a nonnegative and possibly large term β2
0, as well
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as some cross terms. As in Section 3.2, we conclude that the accuracy of σ̂2
L

should generally be superior to that of σ̃2
L on the same sample size n, though

for some f the cross terms may be large enough and of the right sign to make
V�σ̃2

L� < V�σ̂2
L�.

6. Adjusted quasi-regression. The regression estimator σ̂2
L has a bias

and variance that both depend only on η�X� and not on β. The quasi-regres-
sion estimator is not invariant in this way. The performance of the quasi-
regression estimator even depends on the constant β0; adding a constant to f
can change the accuracy of σ̃2

L.
This suggests the use of

β̃
�c�
r = 1

n

n∑
i=1

φr�Xi��f�Xi� − c�

with some constant c for r ≥ 1. A natural choice for c is β0, resulting in the

estimate σ̃ �β0�2 =∑d
r=1 β̃

�β0�2
r , with

E�σ̃ �β0�2
L � = σ2

L + dσ2

n
+O

(
d1/2

n

)
(30)

and

lim
n→∞nV�σ̃ �β0�2

L � = 4E
(
�fL − β0�2��f− β0�2 − σ2

L�
)
�(31)

In practice, one would usually have to estimate β0 by f̄ = 1/n
∑n
i=1 f�Xi�,

so that the estimate of βr becomes

β̃r·0 =
1
n

n∑
i=1

φr�Xi��f�Xi� − f̄��(32)

This can be done in one pass over the data in a numerically stable way, as
described in Chan, Golub and LeVeque (1983). Using an estimated value of
β0 will cause a small increase in the variance of the estimate of σ2

L.
More generally, one can use least squares regression for 1+ d0 of the com-

ponents of β and quasi-regression on the others. Efromovich (1992) studies
this approach for orthogonal series expansions over �0�1�.

7. Numerical results.

7.1. Dimension one million. This subsection considers a single example in
the d = 106-dimensional unit cube. Linear regression requires n ≥ d. The lin-
ear algebra for this problem would therefore require nd2/2 ≥ 5×1017 floating
point operations and storage for d2/2 = 5× 1011 floating point numbers.

The function f was generated randomly with βr ∼ U�0� �3/d�1/2�, indepen-
dently, for 1 ≤ r ≤ d, β0 = 0 and η�X� = 10−1/2�φ1�X�2 − 1�0�. For r ≥ 1, the
uniform φr were used. The function had σ2

L = 0�999549, varying only slightly
from the expected value 1, because d is so large. The true value of σ2

NL is 0�08.
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The quasi-regression estimate using n = 105 was σ̃2
L = 11�80. The theory

in Section 4 predicts a bias of �d/n�E�f�X�2� = �106/105��1�08� �= 10�8,
closely matching the observed bias. Bias-corrected quasi-regression gives
σ̃2
L�BC = 0�985429 with which the concentration of measure version, σ̃2

L�BCCM =
0�985433, agrees to five significant digits.

The true proportion of linearity in this function is 1/1�08 ≈ 0�926. The
sample estimate of variance in this example is 1�0817. The two bias-corrected
quasi-regression methods give a very accurate estimate �9854/1�0817 ≈ 0�911
of this proportion. They also give a good estimate 1�0817 − �9854 = �0963 of
the difference σ2

NL = �08.
This function requires roughly 50 hours of CPU time on an R10000 pro-

cessor running at 196 MHz. Most of that time is spent generating random
numbers and applying the φ function

√
12�Xr − 0�5�. But roughly 5�7 hours

are spent looping over the data computing β̃r and the estimate of bias. If we
suppose conservatively that just one hour was spent on the nd floating point
operations to form β̃r, then to do the d3/2+d3/6 calculations required for the
smallest possible least squares regression, having n = d+1 should take about
�2−1 + 6−1�d3/�nd� ≈ 6�7× 106 hours, or over 760 years.

This example establishes that quasi-regression can get useful answers in
some large problems where regression is infeasible.

7.2. Experiment. The function f in the previous subsection may have been
special: the d dimensions were all roughly equally important, the function η
only depended onX1, it had σ2

L/σ
2 ≈ 0�926, which might possibly be much eas-

ier than other ratios, it had β0 = 0, which is likely to have made the problem
easier, and it was only run once, because of its expense. This section explores
the effects of the issues raised above, using a small designed experiment.

The functions φr for r > 0 were taken to be either Gaussian or uniform.
Two different intercepts β0 are used: 0 and 4. Two different functions fL −
β0 are used. One has βr ∝ 2−r/2 for r ≥ 1, so that the importance of the
variables drops off quickly. The other has βr ∝ r−1/2, so that many variables
are important. Both are scaled so that σ2

L =∑d
r=1 β

2
r = 1. The noise function η

can depend on one of theXr or on roughly half of them: η�X� ∝ φ2
1�X�−1�0 or

η�X� ∝∑
1≤r≤�d/2�

∏2
s=0φr+s�X�. This function η is orthogonal to all of the φr

when d ≥ 5. The constant of proportionality in η was taken to obtain either
R2 = σ2

L/σ
2 = 0�5 or 0�95. In the functions above, the important variables

for fL tend to be the same as those for η. This might make the functions
atypical. Therefore, a direction reversal sending βr → βd+1−r for r > 0 was
also considered. The factors in this experiment are set out in Table 1. All
together, 64 different functions were considered, and four replicated data sets
were generated for each of the 64 functions.

For each function, the following estimates of σ2
L were computed: σ̃2

L, σ̃
2
L�BC,

σ̃2
L�BCCM, a centered estimate

σ̃2
L�C =

d∑
r=1

β̃2
r·0
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Table 1
Factors in experiment: 64 different functions f�X� were considered in the experiment

Factor Level 0 Level 1 Label

φr� r > 0 Uniform Gaussian G
Intercept β0 0.0 4.0 B
β2
r decay Linear Exponential E

η�X� 1 Dimensional �d/2� + 2 Dimensional D
R2 = σ2

L/σ
2 0.50 0.95 R

βr direction Decreasing Increasing I

The table lists the six binary factors varied, gives their levels and a mnemonic label for each.

where β̃r·0 is given by (32) and a centered estimate with an approximate bias
correction derived from the concentration of measure

σ̃2
L�CCM = σ̃2

L�C − d

n2

n∑
i=1

�f�Xi� − f̄�2�

where f̄ = �1/n�∑n
i=1 f�Xi�. The factor n/�n − 1� in σ̃2

L�BC and σ̃2
L�BCCM was

not used, but the effect is negligible.
The experiment was done with n = 10�000 and d = 1�000. The results are

presented in Figure 1. The top histogram shows the estimates from σ̃2
L. It is

clearly bimodal. The rightmost mode consists of those cases with β0 = 4. As
can be expected from the theory, a moderately large nonzero intercept can
inflate the bias in σ̃2

L.
The other four methods all reduce the bias from β0 �= 0, and all per-

form better than the original quasi-regression. The simple mean adjustment
method σ̃2

L�C still shows some bias as predicted by (30). The concentration
of measure approximation is very accurate here, with the relation σ̃2

L�BC ≈
0�0002+ 0�9984σ̃2

L�BCCM explaining 99�987% of the variation in σ̃2
L�BC over the

256 generated functions. These bias corrections do not reduce that variance,
and so the histograms for these methods are roughly a superposition of the
two histograms from the top histogram, after shifting to remove bias. The
mean adjusted quasi-regression estimate σ̃2

L�CCM, at the bottom of Figure 1,
reduces both variance and bias compared to the original quasi-regression.

Figure 2 shows boxplots of the bias-corrected and centered estimates
σ̃2
L�CCM, broken down by the values of the six experimental factors. The only

factor that affects the performance of this estimate is R, which affects the
variance. A similar plot shows that R is the only important factor for σ̃2

L�C

where a large value R2 = �95 reduces the bias. The only important factor for
σ̃2
L�BC and σ̃2

L�BCCM isB, for which large intercept values yield greater variance.
Similar results are seen when the experiment is run at other values of n

and d. The performance of the bias-corrected estimates improves as n/d2/3

increases, while that of the uncorrected estimates depends more on n/d.
This experiment indicates that the factors studied do not strongly affect the

performance of quasi-regression estimators, and so the previous experimental
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Fig. 1. Experimental output. Shown are histograms of the estimated σ2
L for the five methods

discussed in the text, with n = 10000 and d = 1000. The points in the histogram come from 64
different functions, each of which was tested with four data sets. The true σ2

L is always 1�0 for each
function.

situation with d = 1�000�000 was not misleadingly simple, except that having
intercept 0 was advantageous because no centering was done.

8. Conclusions. Quasi-regression methods are able to estimate the
amount of linear variation in high-dimensional functions with much less com-
putation than linear regression methods require. With bias-corrected versions,
it is possible to use n� d observations in d dimensions when d is large. The
natural sample size n should grow as a multiple of d2/3 for these bias-corrected
estimates. This is less computation than would be required to take d divided
difference estimates of the gradient of f at a single point.

The example in Section 7.1 shows that even in a 1�000�000-dimensional
space, a good estimate of σ2

L can be obtained in a reasonable amount of compu-
tation. The experiment in Section 7.2 shows that performance can be improved
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Fig. 2. Shown are boxplots of the centered estimate σ̃2
L�CCM of σ

2
L. For each of the six experimental

factors in Table 1, there is a boxplot for each of the two levels of that factor. This experiment had
n = 10000 and d = 1000. The true σ2

L is always 1�0 for each function. The estimate is largely
unaffected by the factors varied in this experiment, except that the factor R influences the variance.

by making an adjustment for the mean of f. The mean of f is simply the co-
efficient of φ0�X� in fL, and it is reasonable to expect that if any φr�X�βr
dominates fL, that adjusting for it, as discussed in Section 6, could further
improve performance.

The experiment in Section 7.2 shows that a bias-corrected version of the
mean adjusted estimate works well for a set of 64 functions that vary according
to the six binary factors in Table 1. These factors vary aspects of f that may
have been especially favorable to the example in Section 7.1. None of them has
a very large effect on the performance of the methods, except that a nonzero
intercept can strongly bias the original quasi-regression estimate σ̃2

L.
An and Owen (2001) use quasi-regression to approximate functions as ex-

pansions over large tensor product bases. The bias corrections discussed here
may apply to estimates of the importance of various subsets of coefficients
there.
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