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LOCAL GREEDY APPROXIMATION FOR NONLINEAR
REGRESSION AND NEURAL NETWORK TRAINING

By L. K. JoNEs!

University of Massachusetts, Lowell

A criterion for local estimation and approximation in nonlinear regres-
sion and neural network training is introduced and motivated. Nth-order
greedy approximation for the regression (or target) function based on the
criterion is shown to converge at rate O(1/N'/2) in the nonsampling case.

1. Introduction. For many applications in regression, classification, or
neural network training an estimate of expected response (class, output), (x),
is desired at or close to (in an appropriate sense) one fixed predictor (observa-
tion, input) vector. This estimate should depend heavily on predictor vectors
in the sample which are close to the given fixed predictor vector. For example,
in [2], a local technique based on a set of closest vectors in Euclidean distance
is shown to be a significant improvement over previous methods for optical
character recognition. Restriction to a local region in the feature vector space
allows estimation to be fine tuned to letters with similar structure. For such
classification problems the images may be easily normalized in size and cor-
rectly oriented and the noise level is low. Unfortunately, in many cases where
there is low signal-to-noise ratio and/or a continuum of random predictor ori-
entations described by many parameters, Euclidean distance is usually not
a possible measure of closeness due to the curse of dimensionality which is
exhibited in the following special case: suppose the predictor distribution is
uniform on a ball of radius one in d-dimensional space R?. Assume we are
interested in estimating the expected response at or close to the origin 0. It
might be reasonable to use only sample vectors inside a ball of radius p < 1,
assuming Euclidean distance as a measure of closeness. But, since the prob-
ability of a sample vector lying in the smaller ball is p?, it is necessary that
sample sizes are exponential in d to get enough close vectors for accurate esti-
mation. Clearly, the curse persists for many general predictor distributions
and distances which are topologically equivalent to Euclidean distance.

To avoid the curse, one might assume f(x) has a ridge approximation,

N
1 f(x) =3 cp8a(ayx)

n=1

with a, € A, g, € G, where A is a given class of vectors in R? and G is a
given class of real valued functions on R. Hence we assume f is nearly a linear
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combination of functions of projections onto R. (More generally the a’s could be
dx m matrices and the g’s could be real functions on R™: all results mentioned
or proved here extend straightforwardly to this case of ridge approximation
with projections onto R™). Greedy algorithms for finding the expansion might
then be used, that is obtain the “best” approximation of f(x) of the form
g(a'x) (a € A, g € G), subtract this from f(x) and repeat the process with
the residual, etc. In the implementation with samples, the procedure involves
solving simple regression (one-dimensional predictor) problems. If A is the set
of d unit vectors in the coordinate directions, the predictor measure is uniform
on the unit cube and G is all functions square integrable on the unit interval,
then any f(x) of the form (1) (w.l.o.g. N < d, g, orthogonal to 1 for n > 1) is
recovered in N greedy steps where “best” means best in L, of the unit cube.
As we shall see below, f(x) can also be efficiently greedily recovered in more
general settings. But this greedy method seems insensitive to the need to favor
local structure. Indeed, in the previous example the g;’s would be recovered
in the order given by the size of the integrals of their squares. The last to
be recovered might be the only one which is nonzero near the fixed predictor
of interest. So in this paper we derive a greedy algorithm which is sensitive
to the need for a good local approximation and at the same time shares the
global efficiency of other greedy algorithms. In the next section we examine
some of the results in more general settings before deriving our modification.
Readers familiar with recent results on greedy approximation and estimation
and complexity of neural net training may want to go immediately to Section 3.

2. Previous work on nonlocal greedy algorithms and
computational feasibility.

ExXAMPLE 1. If f € Ly(P) with P the predictor measure, if A is all unit
vectors in R? and if G is the set of all measurable functions, we might approx-
imate in a (pure) greedy fashion: first, find a,, g, such that f(x) = gy(alx)
best approximates f(x) in Ly(P); then determine a;, g; such that g;(a’x) best
approximates f(x)—f1(x) and set fo(x) = f1(x)+g1(aix);---; find a,, g, such
that g, (al x) best approximates f(x)—f,(x) and set f, ., = f,+g,(alx),....
This is the projection pursuit regression algorithm (PPR) (approximation form)
of [8]. For any a in the nth step the best g is just E(Y — f,(X) | a'X).
For practical implementation with a sample {(x;, y;)}, in the nth step for
each a the best g is found using a variable bandwidth smoother applied to
the simple regression problem with predictors a’x; and (residual) responses
r; = ¥;—f,(x;). The quality of the fit, the average squared error of the smooth,
is minimized over a. One such simple smoother is described as follows: for any
x select the closest 5% of {a'x;} to x and let g(x) be the least squares linear
fit at x based on this 5%. We now employ a global optimization algorithm to
solve (approximately)

(S) main Z(’“i - g(atxi))z-
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Hence the objective function is at each step the same except that the residuals
are from the previous step.

There are many refinements in the sampling case above: A and G may be
appropriately restricted, a more general loss function may be used. See [7].
We will treat only squared error loss and will motivate a weighted variation of
(S). The form of the variation is motivated in the same way for more general
loss functions.

EXAMPLE 2. Assume that A is the set of unit vectors in R?, the c; are real,
and G consists of all translated dilations of a fixed bounded function, o(t),
which is sigmoidal [i.e., 0(—o0) = 0 and o(+00) = 1]. The approximation is the
output of the single hidden layer neural network. A modified projection pursuit
algorithm could be applied: a would vary over unit vectors as in Example 1 but
g(ax) would be replaced by the best approximation of the form co(ra‘x — t).
For the sampling case a, ¢, r and ¢ are determined in step n for which this
form best fits the data {(x;, v, — f,(x;)} (= {(x;, r;)}) in the least squares
sense.

The advantage of the greedy procedures (if they converge) is that we are
solving a sequence of N d-dimensional optimization problems as opposed to
one Nd-dimensional problem. The convergence of the procedure and its rate
of convergence are the focus of recent investigations. In [9] weak convergence
in Ly(P) of PPR under mild assumptions is established and in [10] strong
convergence is proved. In [15] an extension of [10] is proved which has strong
convergence for Example 2 as a corollary.

A relaxed extension of the above greedy algorithms has been investigated.
Let f(x) lie in the closure of the convex hull of a subset F; of Ly(P) whose
elements A have norms, || 4|, bounded by a fixed constant B. Assume f(x) =0
and at step n pick g, € Fo(F; C Fy) and «, € [0, 1] minimizing | f(x) —
ag(x) - (1 - a)fn(x)” over a, §. Set fnJrl(x) = (1 - an)fn(x) + angn(x) In
[11] ||f(x) = f,(x)|| was shown to be O(1/n'/?). [In [5] it was shown to be
O(1/nta=V/a) if ||| is (more robustly) norm in L, (P), g < 2).] This can now
be applied to the two examples:

EXAMPLE 1. (Cont.) (1) Take Fy = {g(a'x): g € G, a € A}. In[11] it was fur-
ther shown that, if the Fourier transform of f(x) has bounded L,(R?) norm,
then f(x) lies in the closure of the convex hull of multiples of sinusoidal
functions bounded in absolute value by some fixed B. Taking these multi-
ples to be F';, one applies the relaxed greedy procedure and establishes that
PPR (relaxed approximation form) converges at rate O(1/n'/2). For the sam-
pling case one may use a variable bandwidth smooth of the data D(a, a) =
{(a’x;, y; — (1 — &)f,(x;))}, call it h,, for the term ag at step n and then
determine a, and «, which solve

(RS) min Y ((1 - a)r; +ay; - h(a'x)?
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In [6] a modification which is nonlinear in f, was proposed which accelerated
convergence for several practical problems.

ExaMPLE 2. (Cont.) (2) if f(x) is in the closure of the convex hull of F; =
{co(ra’x — t): |¢|] < Bja,r,t arbitrary} take Fy, = {co(ra'x — t):
c,a,r,t arbitrary} and apply the relaxed algorithm. Then the output error
in Ly(P) norm is O(1/n%/2). In [1] it was shown that such a B exists if P has
bounded support and the Fourier transform of f(x) has a finite first moment in
L1(R%). In the sampling form, at step n, one finds the term ag = co(ra‘x —t)
which fits {(x;, y; — (1 —a)f,(x;))} so that the average squared error is min-
imized as a function of a,a, r,c, . If the a’s in A are restricted to have a
limited number of non-zero components and f(x) is in the closure of the con-
vex hull of bounded multiples of the associated sigmoids then it follows from
[14] that for each £ > 0 we may efficiently construct a network whose output
is within ¢ of f(x) with probability at least 1 — ¢ from a sample whose size is
bounded by a polynomial in d and 1/¢. In cases where A is constrained due
to higher order smoothness assumptions on f(x), some practical bounds on
expected mean squared error are computed in [12] explicitly as a function of
sample size for the ridge estimation problem.

Consider this pure version of the relaxed extension: at step n choose g € F;
and real ¢ such that |/ — f, —cg| is minimum and set /', ;(x) = f,(x)+cg(x).
In [4] it is shown that the approximation error is O(1/n/%). Finally, we remark
that certain regularity assumptions were necessary in the cited references for
the minima to exist. In several of these investigations, variants of the results
were given where at step n one needs only to be within 7(n) of the infimum
for some (tolerance) sequence 7(n). We will formulate our local approximation
results in terms of such sequences.

Another topic of current interest is the computational tractability (capabil-
ity of being solved with a number of steps which is polynomial in the descrip-
tion length of the data set) of nearly determining the best neural network
parameters based on the sample {x;, y;}. When a linear combination of two
(or more) sigmoidal functions is sought which (nearly) best fits a sample, some
negative results have been obtained: in [3] it is shown that the problem of
determining whether two classes of vectors can be separated by thresholding
a linear combination of two Heaviside sigmoidal functions [o(x) is 1 for x > O,
0 for x < 0] is intractable. In [13] it is shown that the problem of finding a
linear combination of two Lipschitzian sigmoidal functions for which the sum
of squared errors (under suitable normalization of the response data) is within
1/10 of the infimum possible is intractable. Similar results were obtained in
[13] for achieving a sum of squared errors within 1/(4n°) of the infimum possi-
ble by convex combinations of n sigmoidal functions. In [16] the results of [13]
were improved by demonstrating that sum of squared errors could be replaced
by average squared error (but with somewhat smaller dimension dependent
distances to the infimum). In particular, the techniques of [16], based on recent
results on approximation algorithms for NP-Hard problems, yielded a proof
of the intractability of fitting the sample with a multiple of one sigmoid to
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within a constant of the infimum in the least squares sense. Hence greedily
training one node at a time (to within the previous constant of the infimum
squared error) is intractable. However these negative results are all worst
case analyses and are asymptotic in nature. “Average” complexities may be
polynomial. More research is needed in this direction. Also, with the mas-
sively parallel architectures of future machines, it may be feasible to perform
100 greedy steps for dimensions about 20 (while training a 100-node network
with its 2200 parameters might still be too time-consuming). Hence further
investigation of greedy approximation schemes is warranted.

3. A local approximation criterion and its motivation. Unfortun-
ately, as we pointed out earlier, the above methods yield global expansions
which have the following drawbacks for the local estimation problem:

1. The ridge approximation is designed to fit the data in the sense of an aver-
age and not necessarily to fit well close to any particular point.

2. An expansion is assumed to exist which is approximately valid at every
x; simpler expansions may be valid locally and these may be more easily
estimated.

3. A local expansion may be easier to interpret.

We now motivate the form of our proposed method. Henceforth A consists of
a subset of unit vectors in R? and G is a subset of real valued functions on R.
Call the ridge functions formed from A and G admissible. By sphering the
available data and shifting so that f(x) is desired at or close to the origin 0, we
search for ridge expansions which approximately hold in a region containing
a ball of radius ¢ about 0. Assume a relaxed greedy approximation in the nth
step: set fo(x) =0 and f,,1(x) = (1 — a)f,(x) + ag(a’x) with ag(a’x) best
fitting f(x)—(1—«)f,(x) in this region. The right norm for this approximation
one might argue, is |||A||| = ||2(x)I(x'x < &?)|| where I(-) = indicator function
for -. However, in the practical sampling situation there is little chance of any
sample vectors lying in the ¢ ball (hence little chance of estimating this norm)
unless our sample size is exponential in d.

So we need a norm which measures closeness to 0 in a weaker sense. If
closeness is characterized by nearness in a one-dimensional projection, then
appropriate norms are of the form

12l = IA(x)I(Ja’x] < &)

For uniform P these norms give equal weight at P-supported points in |a’x| <
e. If a term g(a’x) were (nearly) linear in this region then this fact would be
consistent with the equal weighting of squared deviations at each sample pre-
dictor in the simple linear prediction problem. Before discussing how to define
the best approximation in the nth step, we make a minor modification. Note
that a stable reconstruction from projections should require some information
from the region |a’x| > &. Hence we further define

17202 = 1A(x)I(Ja’x] = &)]
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and propose that the appropriate norms for measuring closeness are given by
2) 1212 = 11212, + wlhllzs,

where w is a regularization parameter, 0 < w < 1. In practical implementa-
tions w may be varied and optimally determined using cross validation. Here
we discuss only rates of approximation using these norms. An interesting open
question in the case w = 0 is posed in Section 3.

Although we only want an expansion near 0 we will produce an expansion
on each subset in a partition of R?. We now motivate the criterion for the best
approximation in the nth step. Since different a’s will be used in different steps
and the norms in (2) are difficult to compare, we argue that the appropriate
criterion to be minimized as a function of «a is

I = Fosalla/Ilf = Falla-

Thus we should search for the direction vector in A which optimizes the per-
centage decrease in approximation error when measured relative to this direc-
tion. It seems quite plausible that, say for ¢ = w = 1/4, considerably more
local information will be obtained by such a procedure than by the global algo-
rithm. Indeed for the simple preliminary example (with just the d coordinate
directions) the g; with smallest || | would be chosen first if its support were
in a band of width 1/2 and its || | exceeds 0.5 of that of any other g;, provided
the other g;’s had supports outside the 1/4-ball. Thus practical use is antic-
ipated where neither ¢ nor w is very small. If we now allow « to take two
different values in the nth step (depending on whether & exceeds a’x), then
the approximation error is shown in Section 2 to be O(1/n'/2) in the original
norm, || |

4. The local greedy approximation algorithm and its convergence.
The precise description of the algorithm proceeds as follows: Let f, = 0 and
e,=f—f, Given n > 0, let

—(1- _ t 2 —(1-— _ t 2
#,., = infimum If —(Q—-a)f, —ag(a x)”(;l +wllf —( 2B)fn Bg(a'x)|ze
W= I = Fullas + wllf = Falla
Let 7(n) = O(1/n) be a decreasing (tolerance) sequence of positive real num-

bers. Now find any «, 8, a and g subject to the constraints of the preceding
infimum such that

N = Fuals _ If = Fraalis +wllf = Faiallae

Bt =T = -l — fally O
where
3) Frn(®) = (1 - @)f(x) + agla'x) i [alx] <
@ = (1- B)fo(x) + Bala'x) if [a'a| > e.

(If the ratio R, ; can be made smaller by changing « and/or 8 to 0, then we
do so.)
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By the condition in parentheses R, ; < 1; f,,; is a fixed convex combina-
tion of n + 1 ridge functions provided x'x < £2. Outside of this ball, f,,; is a
different convex combination of the same ridge functions. Also in any neigh-
borhood of the form .4, = {x: |alx| < e for i = 1,2,..., k}, where q, is the ith
unit vector of the algorithm, f,_; is a fixed convex combination of % + 1 ridge
functions and f,,; is a convex combination of f, ; and ridge functions from
steps beyond k.

Consider the application to the two examples (see Section 2). In Example 1,
if @, a, B are chosen at step n, the infimum R, ,; is obtained using E(Y —(1—
a)f(X) | a'X) for ag in (3) and E(Y — (1 — B)f,(X) | a’X) for Bg in (4).
Hence in the sampling case at step n use a smooth 4, of D(a, a) for ag in (3)
and a smooth A4 of D(a, B) for Bg in (4) where a, @, B are chosen to solve

Zl |at xl\<a((1 a)rl+ayt —h (a X ))2+w21 |at x,\>a((1 B)I‘ +Byi— hﬁ(a X ))2
Zz latx; |<.°rl +wZz latx; |>s‘ l

(RLS)  min

A pure greedy local sampling algorithm is obtained by setting « = 8 = 0 in
the above. In this case the objective function is a ratio of weighted versions
of the original PPR objective function of (S). The optimization is still in d — 1
dimensions. Relaxation increases it only by 2. For Example 2 at step n set
g = co(ra'x —t) in (3) and (4) where a, a, B, ¢, r, ¢ are chosen to minimize
the objective function of (RLS) one would obtain after replacing the h, term
by aco(ra’x; — t) and the hg term by Beo(ra’x; —t).

The rest of this article is devoted to showing the algorithm convergence in
| || at the n=1/2 rate. In the remaining analysis the following simple fact will
be repeatedly used: (x + ¢)/(x + d) is increasing for positive x if ¢ < d and
decreasing for positive x if ¢ > d. Recall that, for any a, |- |2 = || |2, + | - |%,

LEMMA 1. Let M = (1 —w)/w. Then forany n,A(0 <A <1), heG, u €A,

M+\f = A= Nfn = AR D) P/If = fal®
M+1

e%n+1 =

Proor. If||f—(1—A)f, —Ah(u'x)| > ||f — f.ll, then the result is obvious;
otherwise for any «(0 < @ < 1),

'9?”+1 =

[(A-w)f ~(L—a)f, —ah(u'x)|5; +w(|f —(L—a)f —ah(u'x)|5; +]If —(1-2)f, —Ah(u'2)|55)]
A=w)If = Fulliy+wllf = f ]2

Now we can ensure that
If = (1= a)f, — ah(u'x)|2,
<min{||f — £, I, IFf — (1= D)f, — Ar(u'x)|5,}
by taking a« = 0 or A. Therefore,

_ A=w)lf = fulls+wlf —A=Nf, = Ahu'x)|?

K74
= A=w)|f = Fal2i+wllf —Fnll2
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_ (A=) f = Fal2) /@I =FullP)+1f = (A= N f =A@ 2) |2/ f — f o2
(A=) f=Fall2) /@I f = Fal?)+1

- M+|f—A=0f,—Ah@ )2 /IIf - f.l?

- M+1 '

LEMMA 2.

llen 1]l - M+R,,
le,lI2 = M+1

where M = (1 — w)/w.

PROOF. For the «, B, a and g defining £,

lensil® _ lensallz+(A—w)llenslzs

le,, |12 le, |12 +(1=w)lle, 17,

R H(A-w)f =A=B)f—Bg[@'0)2) /(If = Fullas +wlf = Fallze)
- 1+-((L=w)If = Fullze) /U = Fullia+wll f = FrllZe) '

Since |f — (1 - B)f, — Bg(@'®)|% < |f — F.I% (otherwise R, could be

reduced by changing B to 0), the above is

P (] Vi Fallee)/UIf = Fullay + wlf = Fallze)

T 1+ (A= w)If = FalZ) /A = Fallay + wllf = Falge)

< Rau+(-w)/w M+R,,

T 1+(l-w)/w  M+1

LEMMA 3. Suppose f lies in the closure of the convex hull of a class Q of
admissible ridge functions with each element of Q having || || < B. Then

. If = (A= Nf, = AR 4B’
E, ., =infimum < .
M- If = Fall? 4B + e, |

hadmissible

PROOF (From [11]). O lies in the closure of the convex hull of f — Q. Hence,
infimum(f — f,, f —h) <0,
heQ

where (,) is the inner product in Lo(P). Therefore, writing f — (1 — A)f, — Ak
as (1-A)(f — f,)+ A(f — h) and expanding the infimum expression for E,
in terms of (,), we get

E. . < infimum = Neal” + A%If = RI? + 201 = N(F = o f —h)
n+l —

oy e

1— A)%|e, |% + 4A2B2
 infimum (L= APle] + 41282
R leal?

which is [take A = ||, |2(]le, |2 + 4B%)"1] < 4B%/(4B% + |le, |2).
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THEOREM. Assume [ lies in the closure of the convex hull of Q, a subset
of admissible ridge functions with Lo(P) norms bounded by B. Then |e,| is
O(1/n'/2). In particular, the local greedy approximation algorithm converges
at the rate O(1/n'/?) for the PPR and neural network training examples. Also
f, converges at the rate O(1/n'/?) in the neighborhood .+, where it is a convex
combination of ridge functions with those from the first k steps having the same
relative weights.

PrOOF. By Lemma 2,

||en+1||2 < M+R,, < M+ R, + 7(n)
le 2 = M+1 — M+1

which is
MM+ Epn)/(M+1)+1(n)
- M+1

by Lemma 1 and the definition of E, ;. Finally, by Lemma 3, we get
lensall® _ M+ (M +(4B*/(4B% + [le,[*)) /(M + 1) + 7(n)

leal2 = M+1
H + (4B%/(4B2 + |le, ||? -
_H( jH(’+1 leal®)) A;(i)l (setting H = M? + 2M)
_ 4B’H + H|e,|* + 4B (M) hich is
T 4B?H + H|le |2 + le, |2 + 4B * M +1
4B?H + H|ey|? + 4B? ()

<
~ 4B?H + H|leo|” + [le, |* +4B* = M +1
(since |e, | is decreasing by Lemma 2)
T+ 7(n)

=T e [setting T'= 4B*H + H|e,|*> + 4B? and

7'(n) = 7(n)(T + lle,I*)(M +1)71].

Note that 7/(n) is decreasing and is O(1/n). Now, rewriting the inequality and
iterating, we get

1 1 T+r/@A+felP-7() 1 1= ®W/lel?

lenalP = Tlexl? T+7(n) et T T
1 no1—(7(k)/|e.|?
L1 g 1@/l
le? 7=  T+7(k)
Now 7/(n) < Sn~! for some S and alln = 1,2, 3, ... . Let us first examine even

n’s. Suppose |e, ||? > 4Sn~!. Then the numerators of the above summands are
all > 1/2 for k > n/2. Take [ = n/2. It follows that

1 n

> _ or el = 4(T + 7).
lenal? = &(T 1 7(0)) # (
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If, on the other hand, ||e,||? < 4Sn~! for the even n in question then |e, | <
4Sn~1 by the monotonicity of |e,||. Hence |e,||? is O(1/n) for n odd. Using
this monotonicity one more time, we see that |le,||? is O(1/n) for n even and
the proof is complete. O

5. Conclusions. We have derived the form of a local greedy approxima-
tion based on experiences with the curse of dimensionality. Convergence at
the 1/n'/2 rate in the Ly(P) norm has been established. An interesting open
question is under what conditions does 1/n1/2 convergence hold in the & ball

for the case w = 0?

As has been noted, this same form [see (3)(4)] of relaxed greedy approx-
imation may be motivated when ||f — f,|%, |f — fal?, etc. are replaced
by expected values of a more general loss function ¥(y, 8), that is, E(V(Y,
(X)), E(Y(Y, f(X)I(|a’X| < &)), etc. At step n in the sampling case
a, B, a, g are chosen to minimize

Sifatasl<e Y(¥ir (1= ) f n (%) + ag(@’x;)) + w0 ¥t ;120 P(¥i, (1= B n(x;) + Bgla’x;))
Zi:\a’xika V(s Fo(x)) +w Zi:\atxi\zs W(yi» falx;))

w may be interpreted as a local-global trade-off parameter and should be an
important choice in implementation with data. One open question is at what
rate is the approximation form convergent for general loss functions?
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