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GOODNESS-OF-FIT TESTS FOR MIXED MODEL DIAGNOSTICS1

By Jiming Jiang

Case Western Reserve University

A simple goodness of fit test is proposed for checking distributional
assumptions involved in a mixed linear model. An estimated critical value
of the test statistic is derived, and is shown to be asymptotically correct
under mild conditions. As a special case, the test may be applied to linear
regression models to formally check distribution of the errors. Finite sam-
ple performance of the proposed test is examined and compared with that
of a previously proposed test by simulations.

1. Introduction. Model-based statistical inference relies on careful
checking of the assumed models, including the distributional assumptions in-
volved, in order to find suitable models that fit the data well, and for the
methods used to be valid. The aim of this paper is to develop a method of
goodness-of-fit tests for checking distributional assumptions involved in mixed
linear models. A mixed linear model is defined as

y = Xβ+Z1α1 + · · · +Zsαs + ε�(1.1)

where y = �yi�1≤i≤N is a vector of observations; X is a N×p matrix of known
covariates such that rank�X� = p; β = �βj�1≤j≤p is a vector of unknown re-
gression coefficients (the fixed effects); Z1� 
 
 
 �Zs are known design matrices;
α1� 
 
 
 � αs are vectors of unobservable random variables (the random effects);
and ε is a vector of errors. Suppose that for 1 ≤ r ≤ s, αr = �αrk�1≤k≤mr

,
where the αrk’s are i.i.d. with mean 0, variance σ2

r which is unknown, and
continuous distribution Fr = Fr�· �σr�; and ε = �εi�1≤i≤N, where the εi’s are
i.i.d. with mean 0, variance τ2 which is unknown, and continuous distribution
G = G�· �τ�; and α1� 
 
 
 � αs� ε are independent. We are interested in testing
the following hypothesis:

H0 	 Fr�·�σr� = F0r�·�σr�� 1 ≤ r ≤ s and G�·�τ� = G0�·�τ�
(1.2)

that is, the distributions of the random effects and errors, up to a set of un-
known variance components σ2

1 � 
 
 
 � σ
2
s � τ

2, are as assumed.
Such distributional assumptions are vital in many applications of mixed

linear models, and this is true even in large sample situations. For example,
in many cases the prediction of a mixed effect is of main interest. Consider,
for example, a nested error regression model, a special case of mixed linear
models, which is useful in small area estimation [e.g., Battese, Harter and
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Fuller (1988), Prasad and Rao (1990), Ghosh and Rao (1994), Arora, Lahiri
and Mukherjee (1997)]: yij = x′ijβ+αi+εij, i = 1� 
 
 
 �m, j = 1� 
 
 
 � ni, where
xij is a known vector of covariates, β is an unknown vector of regression
coefficients, αi is a random effect associated with the ith small area, and εij is
an error. A mixed effect may be in the form η = x′β+αi, where x is known. If
the sample size is large (i.e., m is large), one may consistently estimate β and
even obtain an asymptotic confidence interval for it, and this does not rely on
distributional assumptions such as normality. However, large sample results
may not help, for example, in obtaining a prediction interval for η, because
the effective sample size for estimating αi is ni, the sample size for the ith
small area, which is often very small. Therefore, unless one knows the form
of the distribution of αi (e.g., normal), an accurate prediction interval for η
cannot be obtained no matter how largem is (provided that ni is small). To see
another example, consider the estimation of the mean squared error (MSE) of
the empirical best linear unbiased predictor (EBLUP). Prasad and Rao (1990)
gives approximation formulas for MSE of EBLUP in the context of small area
estimation, which are correct to the order o�m−1�. Although their results are
asymptotic, assuming that m is large, a normality distributional assumption
remains critical for the validity of their approximations.

In their comprehensive review on small area estimation, Ghosh and Rao
(1994) wrote the following: “... However, the literature on diagnostics for mixed
linear models involving random effects is not extensive, unlike standard re-
gression diagnostics. Only recently have some useful diagnostic tools been pro-
posed....” Most of the methods proposed for diagnosing mixed linear models,
including checking the distributional assumptions such as normality, involve
the use of EBLUP or empirical Bayes estimators [e.g., Dempster and Ryan
(1985), Lange and Ryan (1989), Calvin and Sedransk (1991)]. However, for-
mal tests are not given [on a rigorous basis, e.g., Verbeke and Lesaffre (1996),
last paragraph of Section 4]. Note that the EBLUP method may be regarded
as an extension of the residual method in linear regression with i.i.d. errors.
While the latter works well in regression diagnostics, the former has been
less successful in mixed model diagnostics [e.g., Verbeke and Lesaffre (1996)].
Jiang (1998) provides a theoretical interpretation of why there is such a dif-
ference. He noticed that the very reason that the residual method works in
checking the error distribution is that the empirical distribution of the resid-
uals converges in probability to the true distribution of the errors. However,
similar results hold for the EBLUP only under some strong conditions [see
Theorem 3.2 and Lemma 3.1 of Jiang (1998)]. For the most part, these condi-
tions require that the number of observations corresponding to each random
effect goes to ∞ (e.g., in the earlier nested error regression model, ni → ∞).
While this may be true in some cases, it certainly does not hold in many typ-
ical situations where mixed linear models are used. Recently, Jiang, Lahiri
and Wu (1998) developed asymptotic theory of Pearson’s χ2-test with esti-
mated cell frequencies, and applied the method to mixed model diagnostics.
They consider a special case of the mixed model (1.1) in which s = 1, and
give a formal test for checking distributional assumptions about the random
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effects and errors. However, their procedure requires splitting the data into
two parts, one used for estimation and the other for testing, and hence reduces
the power of the test.

The present paper is devoted to developing a method that applies to a gen-
eral mixed linear model, and does not involve a less pleasant step such as
splitting the data. The basic idea may be traced back to Pearson’s χ2-test,
one of the celebrated results in classical statistics. Let X1� 
 
 
 �XN be i.i.d.
observations from an unknown distribution F. Let E1� 
 
 
 �EM be a partition
of R, the real line. Pearson’s χ2-test for the hypothesis: H0: F = F0 is based
on Pearson’s χ2-statistic:

χ̂2
P =

M∑
k=1

�Nk − ENk�2
ENk

�(1.3)

where Nk =
∑N

i=1 1�Xi∈Ek� = #�1 ≤ i ≤ N 	 Xi ∈ Ek� is the observed count for
cell Ek, and ENk = NP�X1 ∈ Ek� is the expected count under the null hy-
pothesis. Here it is assumed that the cell probabilities P�X1 ∈ Ek�, 1 ≤ k ≤ M
are completely specified under the null. In such a case, the asymptotic null
distribution of χ̂2

P is χ2 withM−1 degrees of freedom. In many cases, however,
the cell probabilities are not completely specified under the null but involve
unknown parameters. In such a case, it is customary to replace the unknown
parameters by their estimators. The result is Pearson’s χ2-test with estimated
cell probabilities. However, this is the case where the asymptotic theory gets
more complicated. In a simple problem of assessing the goodness of fit to a
Poisson or multinomial distribution, it is known that when the unknown pa-
rameters are estimated by the maximum likelihood estimators (MLE), the
asymptotic null-distribution of χ̂2

P is χ2
M−q−1, where q is the number of (inde-

pendent) parameters being estimated. This is the famous “subtract one degree
of freedom for each parameter estimated” rule taught in many elementary
statistics books. However, an easy mistake could be made here when one tries
to generalize this rule to other cases, because it is not even true in testing
fit to a normal distribution with unknown mean and variance. Chernoff and
Lehmann (1954) showed that when MLE based on the original observations
(not the cell frequencies) are used, the asymptotic null-distribution of χ̂2

P is
not χ2 but instead a “weighted χ2” in which the weights are eigenvalues of
some nonnegative definite matrix. All of the above results, and much more,
can be found in a nice historical review by Moore (1978) on χ2-tests.

Our test statistic is similar to Pearson’s χ2-statistic with estimated cell
probabilities. Let n be a suitable normalizing constant that increases with N.
Define

χ̂2 = 1
n

M∑
k=1

�Nk − Eθ̂Nk�2�(1.4)

where Nk = ∑N
i=1 1�yi∈Ek� = #�1 ≤ i ≤ N 	 yi ∈ Ek�, and θ̂ is an estimator

of the vector of parameters involved in model (1.1), which we shall specify
later. Despite the similarity, there are several major differences. First and
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most importantly, the observed count Nk is not a sum of independent random
variables. In Pearson’s χ2-test, one deals with i.i.d. observations, so thatNk is
a sum of i.i.d. random variables, and hence the asymptotic result follows from
the classic central limit theorem (CLT). In a mixed linear model, however,
the observations are correlated. Therefore, the classic CLT cannot handle the
asymptotics. Second, unlike (1.3), the normalizing constant in (1.4) is the same
for all the squares in the sum. The choice of the normalizing constants, ENk =
NP�X1 ∈ Ek�, in (1.3) is such that the asymptotic distribution is χ2. However,
as noted earlier, even in the i.i.d. case, the asymptotic distribution of (1.3) is not
necessarily χ2, if the parameters are to be estimated; in fact, it may never be χ2

no matter what normalizing constants might be used to replaceNP�X1 ∈ Ek�,
1 ≤ k ≤ M. Thus, for simplicity, we choose a unified n. Note that, because of
the dependence among the observations, n may not be increasing at the same
rate as N. Third, in a mixed linear model, the number of fixed effects may be
allowed to increase with N [e.g., Jiang (1996); see, also, Portnoy (1984) for the
case of linear regression]. As a consequence, the dimension of θ may increase
with N. This shows, from another angle, that one can no longer expect an
asymptotic distribution like χ2

M−q−1, where q is the number of (independent)
parameters being estimated.

There have been extensive studies on the estimation of θ in the literature
[e.g., Searle, Casella and McCulloch (1992)]. Among various procedures, the
main difference seems to be in the estimation of the variance components.
In this paper, we choose to use the restricted maximum likelihood (REML)
estimators of the variance components, which have been well-accepted in this
field. (However, see the last paragraph in Section 5.) Let φ = τ2, γr = σ2

r /τ
2,

1 ≤ r ≤ s. Define Vγ = I +∑s
r=1 γrZrZ

t
r with γ = �γr�1≤r≤s. Following Jiang

(1996), the REML estimators of φ, γ1� 
 
 
 � γs are defined as solution to the
Gaussian REML equations (i.e., REML equations derived under normality),
even if the data is not normal. The REML equations are

ytA�AtVγA�−1Aty = φ�N− p��(1.5)

ytA�AtVγA�−1AtZrZ
t
rA�AtVγA�−1Aty

= φtr�Zt
rA�AtVγA�−1AtZr�� 1 ≤ r ≤ s�

(1.6)

where A is any N×�N−p� matrix such that rank�A� = N−p and AtX = 0.
Once the variance components have been estimated, the fixed effects are then
estimated by the empirical best linear unbiased estimator:

β̂ = �XtV−1
γ̂ X�−1XtV−1

γ̂ y�(1.7)

where γ̂ is the REML estimator of γ. It is known that the REML estimators
have nice asymptotic properties even if the data is not normal, and p →∞ as
N → ∞ [Jiang (1996, 1997)]. A key condition for consistency and asymptotic
normality of the REML estimators is the AI4 condition given below [see Jiang
(1996)].
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The main result of this paper is based on the asymptotic distribution of
the statistic (1.4). Before giving the proof for a general result, we first take
a look, in the next two sections, at two special cases: the case of no random
effects, that is, linear regression; and the case of single random effect factor.
In the first special case, the problem of testing goodness of fit for the error
distribution has been studied by Pierce and Kopecky (1979); also see Gray and
Pierce (1985), using a quite different approach. Let F0�·� be the distribution
of the standardized errors under the null hypothesis, and ûi = F0�êi�, where
êi is the Studentized residual, êi = �yi − xt

iβ̃�/σ̃ with �β̃� σ̃� being the MLE.
Let F̂N�·� be the empirical distribution of the ûi’s. Pierce and Kopecky showed
that, under regularity conditions

√
N�F̂N�t�− t� converges to a Gaussian pro-

cess as N →∞. Thus, the result may be used for checking the distribution of
the errors. However, it is not clear whether such a result still holds if p →∞,
because, as is well-known, in such a case the MLE may not be consistent
[Neyman and Scott (1948)]. Nevertheless, it would be interesting to compare
Pierce and Kopecky’s procedure with ours. The second special case has been
considered by Jiang, Lahiri and Wu (2001), as discussed earlier. In this case
we use a special property of mixed models with single random effect factor,
that is, the observations may be divided into independent groups. Such a tech-
nique, however, may not apply to mixed models with multiple random effect
factors, and this general case is considered in Section 4. For simplicity, in this
paper we mainly consider the case where p is fixed. However, the techniques
used here do allow extension of the results to the case where p is not neces-
sarily fixed or bounded. See the discussion in Section 5 and Jiang (2001b) for
details. Section 5 also contains discussion and further remarks on a number
of issues regarding the application of the results in this paper. A simulated
example is considered in Section 6. In addition to those that have been intro-
duced, a number of notations will be used throughout, which we summarize
below.

Notation. Let x ∨ y represent max�x�y� for real numbers x, y. Let b
be a vector and B a matrix. Then, bl represents the lth component of b and
bi�j, or simply Bi�j, = the �i� j� element of B. Define �b� = �btb�1/2, �b� =
maxl �bl�; �B� = �tr�BtB��1/2, �B� = �λmax�BtB��1/2, where λmax represents
the largest eigenvalue (and similarly λmin the smallest one). Let B1� 
 
 
 �Bk

be matrices. Define Cor�B1� 
 
 
 �Bk� = �cor�Bi�Bj�� if B1� 
 
 
 �Bk �= 0 and 0
otherwise, where cor�Bi�Bj� = tr�Bt

iBj�/�Bi��Bj�; and diag�B1� 
 
 
 �Bk� = the
block diagonal matrix with B1� 
 
 
 �Bk on its diagonal.

Let ψ = �φ�γt�t, θ = �βt�ψt�t. Let θ0 be the true θ. For notation simplicity,
we shall write, in short, θ = θ0, when there is no confusion.

Let b�γ� = �I�N��
√
γ1Z1� 
 
 
 �

√
γsZs�t, where I�k� represents the k-dimen-

sional identity matrix, and b�ψ� = φ1/2b�γ�; V�γ� = A�AtVγA�−1At, where
A is as in (1.5). Let V0�γ� = b�γ�V�γ�b�γ�t, V0 = I�N−p�/φ and p0�N� =√
N− p; Vr�γ� = b�γ�V�γ�ZrZ

t
rV�γ�b�γ�t, Vr = �AtVγA�−1/2AtZrZ

t
r

A�AtVγA�−1/2 and pr�N� = �Vr�, 1 ≤ r ≤ s.
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Let p�N� = diag�p0�N�� 
 
 
 � ps�N��; IN = �tr�VuVv�/pu�N�pv×
�N��0≤u�v≤s; KN = �Ku�v�0≤u�v≤s, where

Ku�v =
N+m1+···+ms∑

l=1
�Eω4

N�l − 3� Vu�γ�l�lVv�γ�l�l
φ1�u=0�+1�v=0�pu�N�pv�N� �

in which the random variables ωN�l are defined as follows:

ωN�l =
{
εl/τ� 1 ≤ l ≤ N�

αrl−N−∑u<r mu
/σr� N+ ∑

u<r

mu + 1 ≤ l ≤ N+ ∑
u≤r

mu�

1 ≤ r ≤ s, that is, the standardized errors and random effects. Let JN =
2IN + KN and PN = J

−1/2
N INp�N�; Vψ = φVγ, QN = �XtV−1

ψ X�1/2, and
CN = b�ψ�V−1

ψ XQ−1
N , whose lth row is denoted by Ct

N�l.
The following definition is needed [see Jiang (1996)]. Model (1.1) is said to

be asymptotically-identifiable and infinitely-informative under the invariant
class, or AI4, if

lim inf λmin�Cor�V0�V1� 
 
 
 �Vs�� > 0 and lim �Vr� = ∞� 0 ≤ r ≤ s


Finally, if ξ is a random variable, ξ ∼ F means that ξ is distributed
as F. If aN, bN are sequences of positive numbers, aN ∼ bN means that
lim inf �aN/bN� > 0 and lim sup�aN/bN� < ∞. We use the following abbre-
viations: w.p. → 1 for “with probability tending to one,” and w.r.t. for “with
respect to.”

2. No random effect factor (linear regression). We first consider the
case in which there is no random effect, that is, the linear regression model:

yi = xt
iβ+ εi�(2.1)

i = 1� 
 
 
 �N, where xi = �xij�1≤j≤p is a vector of known covariates, β is an
unknown vector of regression coefficients, and ε1� 
 
 
 � εN are i.i.d. random
errors with mean 0, variance τ2, and continuous distribution G = G�· �τ�. Let
X = �xt

i�1≤i≤N; and θ = �βt� τ2�t. We are interested in testing the following
hypothesis:

H0 	 G�·�τ� = G0�·�τ�
(2.2)

Let E1 = �−∞� c1��E2 = �c1� c2�� 
 
 
 �EM−1 = �cM−2� cM−1��EM = �cM−1�∞�,
where c1 < c2 < · · · < cM−1. For convenience, let c0 = −∞, cM = ∞. Let Nk be
as in (1.4). A well-known estimator of θ is θ̂ = �β̂ τ̂2�t, where β̂ is the least-
squares estimator and τ̂2 is the unbiased estimator based on residual sum of
squares:

β̂ = �XtX�−1Xty� τ̂2 = �ε̂�2
N− p

�(2.3)
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where ε̂ = y−Xβ̂. Note that τ̂2 is, in fact, the REML estimator of the variance
component τ2 obtained by maximizing the Gaussian likelihood based on z =
Aty, where A is as in (1.5).

Let ξN = �ξN�k�1≤k≤M, where ξN�k = Nk − Eθ̂Nk. Define

hN�i = �1�yi∈Ek� − pik�θ��1≤k≤M −
(∑

i

∂

∂βt
pi�θ�

)
�XtX�−1xiεi

−1− xt
i�XtX�−1xi

N− p

(∑
i

∂

∂τ2
pi�θ�

)
ε2i �

where pi�θ� = �pik�θ��1≤k≤M, pik�θ� = Pθ�yi ∈ Ek�, and =N = =N�θ� =
N−1∑N

i=1 Var�hN�i�. Note that
∂

∂βj

pik�θ� = xij�G′�ck−1 − xt
iβ�τ� −G′�ck − xt

iβ�τ��� 1 ≤ j ≤ p�(2.4)

∂

∂τ2
pik�θ� =

∂

∂τ2
G�ck − xt

iβ�τ� −
∂

∂τ2
G�ck−1 − xt

iβ�τ��(2.5)

where G′�x�τ� means �∂/∂x�G�x�τ�. In particular, if G has density τ−1g�·/τ�,
then

∂

∂βj

pik�θ� =
xij

τ

[
g

(
ck−1 − xt

iβ

τ

)
− g

(
ck − xt

iβ

τ

)]
� 1 ≤ j ≤ p�

and it is easy to show that

∂

∂τ2
pik�θ� = �2τ3�−1

[
�ck−1 − xt

iβ�g
(
ck−1 − xt

iβ

τ

)
−�ck − xt

iβ�g
(
ck − xt

iβ

τ

)]
�

where the corresponding terms are understood as 0 if k = 1 or M. Let Pi�θ�
be the M × �p + 1� matrix whose �k� j� element is given by the right side of
(2.4), and �k�p+1� element that of (2.5). We now derive an expression for =N.
It is easy to show that

=N =
3∑

r=1
=N�rr�θ� +

∑
1≤r<s≤3

�=N�rs�θ� + =N�rs�θ�t��(2.6)

where the = matrices on the right side of (2.6) are defined as follows:

=N�11�θ� = diag

(
1
N

N∑
i=1

pi�θ�
)
− 1

N

N∑
i=1

pi�θ�pi�θ�t

(note that the kth component of pi�θ� is G�ck − xt
iβ�τ� −G�ck−1 − xt

iβ�τ�);

=N�22�θ� =
τ2

N

{
N∑
i=1

Pi�1�θ�
}
�XtX�−1

{
N∑
i=1

Pi�1�θ�t
}
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with Pi�1�θ� being the matrix consisting of the first p columns of Pi�θ�;

=N�33�θ� =
∫
x4dG�x�τ� − τ4

N

[
N∑
i=1

{
1− xt

i�XtX�−1xi

N− p

}2]

×
{

N∑
i=1

Pi�2�θ�
}{

N∑
i=1

Pi�2�θ�t
}

with Pi�2�θ� being the �p+ 1�th column of Pi�θ�;

=N�12�θ� = − 1
N

{
N∑
i=1

(∫ ck−xtiβ

ck−1−xtiβ
xdG�x�τ�

)
1≤k≤M

xt
i

}
�XtX�−1

{
N∑
i=1

Pi�1�θ�t
}



=N�13�θ� = − 1
N

{
N∑
i=1

1− xt
i�XtX�−1xi

N− p

×
(∫ ck−xtiβ

ck−1−xtiβ
�x2 − τ2�dG�x�τ�

)
1≤k≤M

}{
N∑
i=1

Pi�2�θ�t
}



=N�23�θ� =
∫
x3dG�x�τ�

N

[
N∑
i=1

1− xt
i�XtX�−1xi

N− p

×
{

N∑
i=1

Pi�1�θ�
}
�XtX�−1xi

]{
N∑
i=1

Pi�2�θ�t
}



Note that, although =N has a “closed-form” expression, given θ it is often
more convenient to compute =N by a Monte-Carlo method, using the original
definition: =N = N−1∑N

i=1 Var�hN�i� (see the eighth paragraph in Section 5).
Let TN = TN�θ� be an orthogonal matrix such that Tt

N=NTN = DN =
diag�λN�1� 
 
 
 � λN�M�, where λN�1 ≥ · · · ≥ λN�M are the eigenvalues of =N. In
order to obtain critical values for χ̂2, we need to replace the λN�k’s by their
estimators. Let λ̂1 ≥ · · · ≥ λ̂M be the eigenvalues of =̂N = =N�θ̂�. Note that
these eigenvalues are random and dependent on N, even if =N�θ� does not
depend on N. For any λ1 ≥ · · · ≥ λM and 0 < α < 1, let cα�λ1� 
 
 
 � λM� be the
α-critical value of the random variable ξ =∑M

k=1 λkZ
2
k, where Z1� 
 
 
 �ZM are

independentN�0�1� random variables, that is, P�ξ > cα�λ1� 
 
 
 � λM�� = α. Let
ĉα = cα�λ̂1� 
 
 
 � λ̂M�. We now give conditions under which ĉα is the asymptotic
α-critical value of χ̂2.

Assumption 2.1. Eε4i < ∞, Eε2i > 0.

Assumption 2.2. G�x�τ� is twice continuously differentiable w.r.t. both x
and τ, and

∫
xλdG�x�τ� is continuously differentiable w.r.t. τ, λ = 3�4.
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Assumption 2.3. xij, 1 ≤ i ≤ N, 1 ≤ j ≤ p and N/λmin�XtX� are
bounded.

Theorem 2.1. Under Assumptions 2
1−2
3� P�χ̂2 > ĉα� −→ α asN →∞.

Proof. First assume that, in addition, the following limit exists:

=N −→ =
(2.7)

We show that, in this case,

N−1/2Tt
NξN

d−→ N�0�D��(2.8)

where D = diag�λ1� 
 
 
 � λM� with λ1 ≥ · · · ≥ λM being the eigenvalues of =. It
follows that

χ̂2 = 1
N

M∑
k=1

�Nk − Eθ̂Nk�2
d−→

M∑
k=1

λkZ
2
k�(2.9)

where Z1� 
 
 
 �ZM are independent N�0�1� random variables.
For any λ ∈ RM, let λ�N� = TNλ. By (4.5) (with n replaced by N) and the

Taylor expansion, we have

λt�N−1/2Tt
NξN� =

N∑
i=1

ηN�i −N−1/2λt�N�

(∑
i

∂

∂θt
pi�θ�

)
�θ̂− θ� + oP�1�

=
N∑
i=1

ηN�i − dt
NωN − �ωt

NBNωN − Eωt
NBNωN� + oP�1�(2.10)

=
N∑
i=1

YN�i + oP�1��

where ηN�i = N−1/2∑M
k=1 λ�N��k�1�yi∈Ek�−pik�θ��, ωN = ε/τ with ε = �εi�1≤i≤N,

dN = τ√
N

X�XtX�−1
(∑

i

∂

∂βt
pi�θ�

)t

λ�N��

BN = τ2

�N− p�√N

(∑
i

∂

∂τ2
pi�θ�

)t

λ�N�PX⊥�

PX⊥ = I−PX = I−X�XtX�−1Xt

and

YN�i = ηN�i − dN�iωN�i − bN�i�i�ω2
N�i − 1� − 2

(∑
i′<i

bN�i�i′ωN�i′

)
ωN�i


Let �N�i = σ�εi′� i′ ≤ i�. Then, �YN�i��N�i�1 ≤ i ≤ N� is an array of martin-
gale differences. The rest of the proof for (2.8) is similar to the corresponding
part in the proof of Theorem 4.1 (but easier).
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We now show that (2.7) and the conditions imply

max
1≤k≤M

∣∣λ̂k − λk
∣∣ P−→ 0
(2.11)

First we note that the conditions are sufficient for the consistency of θ̂ [this
can be seen from (2.10), or proved directly]. By Weyl’s eigenvalue perturbation
theorem [e.g., Bhatia (1997), page 63], we have

max
1≤k≤M

∣∣λ̂k − λN�k

∣∣ ≤ �=N�θ̂� − =N�θ��
(2.12)

On the other hand, it can be shown that all the partial derivatives of σN�kl�θ�
w.r.t. components of θ are bounded in a neighborhood of θ [see Jiang (2001)
for details], where σN�kl�θ� is the �k� l� element of =N�θ�. Thus, w.p.→ 1, we
have supN �σN�kl�θ̂�−σN�kl�θ�� ≤ c�θ̂−θ�, where c is a constant. It follows that
the right side of (2.12) converges to 0 in probability. Again, by Weyl’s theorem,
we have

max
1≤k≤M

�λN�k − λk� ≤ �=N�θ� − =��(2.13)

and the right side of (2.13) converges to 0 by (2.7). This proves (2.11).
Next, we show that cα�λ1� 
 
 
 � λM� is continuous in λ1� 
 
 
 � λM. Let the latter

be fixed. Suppose that �λ̃k − λk� < δ, 1 ≤ k ≤ M. Write ξ = ∑M
k=1 λkZ

2
k,

ξ̃ = ∑M
k=1 λ̃kZ

2
k, cα = cα�λ1� 
 
 
 � λM� and c̃α = cα�λ̃1� 
 
 
 � λ̃M�. Then, since the

distribution of ξ is nondegenerate, i.e., P�a < ξ ≤ b� > 0 for any 0 ≤ a < b, we
have P�ξ > cα+ε� < α for any ε > 0. If c̃α ≥ cα+2ε, we have α = P�ξ̃ > c̃α� ≤
P�ξ > cα+ε�+P�ξ̃−ξ > ε� ≤ P�ξ > cα+ε�+Mδ/ε, by Chebychev’s inequality.
Thus, by making δ sufficiently small we would have α < α, a contradiction.
Therefore, with such a δ we must have c̃α−cα < 2ε. Similarly, we have c̃α−cα >
−2ε, if δ is sufficiently small. This proves continuity of cα.

For any ε > 0, let δ > 0 be such that max1≤k≤M �λ̃k − λk� < δ implies
�c̃α − cα� < ε. Then, we have P�χ̂2 > ĉα� = P�χ̂2 > ĉα�max1≤k≤M �λ̂k − λk� <
δ� +P�χ̂2 > ĉα�max1≤k≤M �λ̂k − λk� ≥ δ� ≤ P�χ̂2 > cα − ε� +P�max1≤k≤M �λ̂k −
λk� ≥ δ�. It follows, by (2.9) and (2.11), that lim supP�χ̂2 > ĉα� ≤ P�ξ >
cα − ε�. Similarly, we have lim inf P�χ̂2 > ĉα� ≥ P�ξ > cα + ε�. Thus, by the
arbitrariness of ε > 0, we have P�χ̂2 > ĉα� → P�ξ > cα� = α.

Finally, we drop the additional assumption (2.7). We then use the following
argument of subsequences. First, it can be shown that all elements of =N are
bounded [see Jiang (2001b) for details]. Therefore, for any subsequence of �N�
there is a further subsequence, for which =N converges to a limit =, that is,
(2.7) holds. It then follows that, for the further subsequence, P�χ̂2 > ĉα� → α.
Because the limit does not depend on the subsequence, the proof is complete. ✷

We now consider a very special case in which the proposed test may be
related to a classic one.

Example 2.1. Suppose that yi = µ + εi, i = 1� 
 
 
 �N, where the εi’s are
i.i.d. ∼ G with density τ−1g�·/τ�. Then, the testing of (2.2) reduces to a classic
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problem, that is, goodness-of-fit test based on i.i.d. observations. Suppose that
g′�·� is bounded on any compact subset of R, and Assumption 2.1 is satisfied.
Then, it is obvious that Assumptions 2.2 and 2.3 are satisfied. Therefore, the
conclusion of Theorem 2.1 holds. Note that, here, =N = = = Var�h1�, where
h1 = ζ1−Fu�ε1/τ�−�1/2�Fv�ε1/τ�2; ζ1 = �1�y1∈Ek�−pk�1≤k≤M with pk = p1k�θ�;
Fu = �uk−1 − uk�1≤k≤M, Fv = �vk−1 − vk�1≤k≤M with uk = g��ck − µ�/τ�, vk =
��ck − µ�/τ�uk, 1 ≤ k ≤ M− 1 and uk = vk = 0, k = 0 or M.

To see how the test is related to Pearson’s χ2-test, write Var�h1� = Var�ζ1�+
F, where F represents the difference between the covariance matrices of h1
and ζ1. Note that F is the result of estimation of θ. If the parameters were
known, in which case there is no need to estimate θ, then, it is easy to show
that (2.8) holds, where D = Tt=T with = = Var�ζ1�, that is, F = 0. Note
that, since =N does not depend on N, neither does TN, the orthogonal matrix,
that is, TN = T. Furthermore, it is easy to show that Var�ζ1� = P − ppt,
where P = diag�pk�1 ≤ k ≤ M�, p = �pk�1≤k≤M. It follows that Q =
P−1/2Var�ζ1�P−1/2 = I − �p1/2��p1/2�t, where p1/2 = �p1/2

k �1≤k≤M. It is easy
to see that Q is idempotent with rank�Q� = M − 1. Thus, by (2.8), we have

N−1/2P−1/2ξN = P−1/2T�N−1/2TtξN�
d−→ N�0�Q�. Therefore,

M∑
k=1

�Nk −Npk�2
Npk

= N−1�P−1/2ξN�2
d−→ χ2

M−1
(2.14)

The left side of (2.14) is exactly Pearson’s χ2-statistic (1.3) when θ is known,
hence the cell probabilities are completely specified under H0. When θ is un-
known and therefore has to be estimated, the asymptotic distribution of χ̂2

P

is more complicated and, in particular, may not be χ2 (see our brief review in
Section 1).

3. Single random effect factor. We now consider the mixed
linear model (1.1) with one random effect factor (i.e., s = 1). Suppose that
the model can be expressed as

yij = xt
ijβ+ αi + εij�(3.1)

i = 1� 
 
 
 �m, j = 1� 
 
 
 � ni (ni ≥ 1), where xij = �xijk�1≤k≤p is a known vector
of covariates, β is an unknown vector of regression coefficients; αi is a random
effect; and εij is a random error. For a model that allows some extension, see
Jiang (2001b). Suppose that the αi’s are i.i.d. with mean 0, variance σ2 and
continuous distributionF = F�· �σ�; the εij’s are i.i.d. with mean 0, variance τ2

and continuous distribution G = G�· �τ�; and the α’s and ε’s are independent.
We are interested in testing the following hypothesis:

H0 	 F�·�σ� = F0�·�σ� and G�·�τ� = G0�·�τ�
(3.2)

Let Ek, 1 ≤ k ≤ M be defined as in Section 2. Consider

Nk =
∑
i�j

1�yij∈Ek� = #��i� j� 	 yij ∈ Ek�� 1 ≤ k ≤ M
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Define ξN as in Section 2. Let

p1�N� = �tr��ZtV�γ�Z�2��1/2� ρN = tr�ZtV�γ�Z�/�p0�N�p1�N��

Note that p1�N� defined here is ∼ to the p1�N� defined at the end of Section
1 (in fact, the ratio of the two → 1). Let Pij�θ� be the M × �p + 2� matrix
whose �k� r� element is

∂

∂θr

∫
�G�ck − xt

ijβ− u�τ� −G�ck−1 − xt
ijβ− u�τ��dF�u�σ��

where θr = βr if 1 ≤ r ≤ p, θp+1 = φ, and θp+2 = γ. Let Pij�r��θ� be the rth
column of Pij�θ� and Pij�1� p��θ� the matrix consist of the first p columns of
Pij�θ�. Define the following matrices:

HN = 1

1− ρ2N

(
φ2 −φρN
−φρN 1

)
1

p0�N�
∑
i�j

Pij�p+ 1��θ�t

1
p1�N�

∑
i�j

Pij�p+ 2��θ�t

 =
(
Ht

N�0
Ht

N�1

)
�

IN = b�ψ�V−1
ψ XQ−2

N

∑
i�j

Pij�1� p��θ�t = �It
N�l�1≤l≤N+m


Let Si = �l 	 ∑i′<i ni′ + 1 ≤ l ≤ ∑i′≤i ni′ � ∪ �N + i�. Write ωN�i� = �ωN�l�l∈Si
,

Vr�i� i′� = �Vr�γ�l�l′ �l∈Si�l
′∈Si′ , r = 0�1 and IN�i� = �It

N�l�l∈Si
. Note that

It
N�l = btlV

−1
ψ X�XtV−1

ψ X�−1∑
ij

Pij�1� p��θ�t�

where btl is the lth row of b�ψ�. Let

hN�i =
(

ni∑
j=1

�1�yij∈Ek� − pijk�θ��
)
1≤k≤M

−It
N�i�ωN�i�

−
1∑

r=0

ωt
N�i�Vr�i� i�ωN�i�

φ1−rpr�N� HN�r


Let HN =∑m
i=1 Var�hN�i�; RN = �rN�r�r′ �0≤r�r′≤1, where

rN�r�r′ =
∑m

i=1 tr�Vr�i� i�Vr′ �i� i��
φ2−r−r′pr�N�pr′ �N� 


and =N = =N�θ� = n−1�HN + 2Ht
N�IN − RN�HN�, where n = n�N� is a

sequence of normalizing constants. It is possible, as in Section 2, to obtain
a “closed-form” expression for =N [see Jiang (2001b) for details]. Again, it is
often more convenient to compute =N by a Monte-Carlo method.

Define TN and DN as in Section 2. In the following, we assume that
the ni’ are bounded. Under such an assumption, the conditions under which
our asymptotic result holds is rather simple and intuitive. In particular, one
may let n = m in the definition of =N. Note that, in most applications of
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mixed linear models there is limited information about individual random
effects, which means that the ni’s are small. For example, in small area es-
timation [e.g., Ghosh and Rao (1994)], the ni’s correspond to sample sizes
for the small areas, which are small. Therefore, such an assumption (i.e.,
that the ni’s are bounded) is not impractical. Nevertheless, this assumption
may be weakened, although the corresponding conditions are less neat [see
Jiang (2001b) for details, or, similarly, Theorem 4.1 in the sequel]. Define
Gd�x�τ� =

∫ x
−∞ vddG�v�τ�, d = 0�1�2 [so that G0�x�τ� = G�x�τ�]. The follow-

ing are analogues of Assumptions 2.1–2.3 in Section 2.

Assumption 3.1. Eα4i < ∞, Eα2i > 0; Eε4ij < ∞, Eε2ij > 0.

Assumption 3.2.
∫
G�ck − xt

ijβ− u�τ�dF�u�σ� is twice differentiable w.r.t.
β, σ , and τ;

∫
G�ck−xt

ijβ−u�τ�G�ck′ −xt
ij′β−u�τ�dF�u�σ�, ∫ ucGd�ck−xt

ijβ−
u�τ�dF�u�σ�, where c� d ∈ �0�1�2� such that c+ d = 1 or 2, are differentiable
w.r.t. β, σ and τ; and

∫
uλdF�u�σ�, ∫ vλdG�v�τ�, λ = 3�4 are differentiable

w.r.t. σ and τ, respectively. The partial derivatives are bounded in a neighbor-
hood of θ.

Assumption 3.3. xijk, ni, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ p and
N/λmin�XtV−1

ψ X� are bounded.

In addition, we assume the following.

Assumption 3.4. Model �3
1� is AI4, and maxl �CN�l� = o�1�.

The AI4 condition implies that there exists w.p. → 1 REML estimator ψ̂
which is consistent and asymptotically normal [Jiang (1996)]. Note that, by
Jiang (1997), such a REML estimator can be identified. Define ĉα (0 < α < 1)
the same way as in Section 2, where ψ̂ is the REML estimator and β̂ given by
(1.7).

Theorem 3.1. Under Assumptions 3
1−3
4� P�χ̂2 > ĉα� −→ α asN →∞.

Proof. The procedure is similar to proof of Theorem 2.1. First assume the
existence of lim=N and show (2.8) (withN replaced bym). We defer the details
to the corresponding part in proof of Theorem 4.1. The first term in (4.5) can be
expressed as

∑m
i=1 ηN�i, where ηN�i = n−1/2∑M

k=1 λ�N��k
∑ni

j=1�1�yij∈Ek�−pijk�θ��,
and the second term in (4.5) = dt

NωN + ωt
NBNωN − E�ωt

NBNωN� + oP�1�.
Write dN�i� = �dN�l�l∈Si

, and BN�i� i′� = �bN�l�l′ �l∈Si�l
′∈Si′ . Then, d

t
NωN =∑m

i=1 d
t
N�i�ωN�i� and ωt

NBNωN =∑m
i�i′=1ω

t
N�i′�BN�i′� i�ωN�i�. Thus,

λt�n−1/2Tt
NξN� =

m∑
i=1

YN�i + oP�1��(3.3)



1150 J. JIANG

where

YN�l = ηN�i − dt
N�i�ωN�i� − �ωt

N�i�BN�i� i�ωN�i� − tr�BN�i� i���

−2
[∑
i′<i

ωt
N�i′�BN�i′� i�

]
ωN�i�


Let �N�i = σ�ωN�i′�� i′ ≤ i�. Then �YN�i��N�i�1 ≤ i ≤ m� is an array of
martingale differences. The following facts will be used to complete the proof,
where c represents a constant, and uN�i� = �uN�l�l∈Si

with uN�l defined as in
the proof of Theorem 4.1:

(i) E�dt
N�i�uN�i��4 ≤ c�dN�2�dN�i��2;

(ii) E�ζi−Eζi�4 ≤ c��BN�2+�BN�2t4N��BN�i� i��2, where ζi = ut
N�i�BN�i� i�

uN�i�;
(iii) E�dt

N�i�uN�i�BN�i′� i�uN�i� − E · · · �2 ≤ c�dN�2�BN�i′� i��2;
(iv) E�BN�i′i�uN�i��ζi − Eζi� − E · · · �2 ≤ c��BN�2 + �BN�2t2N��BN�i′� i��2.

We also use Lemma 3.1 below which is an extension of Lemma 5.1 of Jiang
(1996).

The rest of the proof is exactly the same as the corresponding part of Theo-
rem 2.1 once we establish the boundedness of elements of =N and their partial
derivatives. However, it can be shown that, under Assumptions 3.1–3.4, the
elements of =N are bounded, and their partial derivatives w.r.t. components
of θ are bounded in a neighborhood of θ. See Jiang (2001b) for details. ✷

Lemma 3.1. Let B = �Bij1�i>j�� be a block lower triangular matrix. Then
�BtB� ≤

√
2�Bt +B��B�


We now consider a simple example.

Example 3.1. Consider a balanced one-way random effects model: yij =
µ + αi + εij, i = 1� 
 
 
 �m, j = 1� 
 
 
 � l, where the αi’s are i.i.d. ∼ F with
density σ−1f�·/σ�, the εij’s are i.i.d. ∼ G with density τ−1g�·/τ�, and the α’s
and ε’s are independent. Suppose that Assumption 3.1 is satisfied, and that
the second derivatives of p11k�θ� = Pθ�y11 ∈ Ek� w.r.t. θ are bounded in a
neighborhood near θ. In addition we assume that 1 ≤ k < M and 2 ≤ l ≤ L for
some M and L. Then, Assumptions 3.2 and 3.3 are satisfied. Assumption 3.4
is satisfied, because the model is balanced, unconfounded, and with positive
variance components [see Jiang (1996)]. Therefore, the conclusion of Theorem
3.1 holds.

4. Multiple random effect factors. Finally, we consider the mixed lin-
ear model (1.1) with s (s ≥ 2) random effect factors. Suppose that there is a
multiple index i such that the components of (1.1) can be expressed as

yi = xt
iβ+

s∑
r=1

zr�i�i�r�αr�i�r� + εi�(4.1)
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where i = �i1� 
 
 
 � iq� iq+1�, 1 ≤ ir ≤ mr, 1 ≤ r ≤ q and 1 ≤ iq+1 ≤ ni1�


�iq
.

Here we allow ni1�


�iq
to be 0, which means no observation for the cell. Thus,

the total number of observations N = ∑m1
i1=1 · · ·

∑mq

iq=1 ni1�


�iq
. Furthermore,

suppose
s∑

r=1
zr�i�i�r�αr�i�r� =

a∑
r=1

zr�i�irαr�ir
+

s∑
r=a+1

zr�i�i�r�αr�i�r��(4.2)

that is, i�r� = ir, 1 ≤ r ≤ a. We assume that i�r� = �ir�1� 
 
 
 � ir�dr
� with dr ≥ 2,

and �ir�l�1 ≤ l ≤ dr� ⊂ �ir�1 ≤ r ≤ b�, a + 1 ≤ r ≤ s, where a ≤ b ≤ q, and
b > 1. Intuitively, αr, 1 ≤ r ≤ a correspond to random main effects, while αr,
a+ 1 ≤ r ≤ s correspond to (random) interactions and nested random effects.
For example, in the model yijk = µ+ti+uj+vij+wik+eijk, ti and uj are main
effects, vij is an interaction, wik is a nested effect, and eijk is an error. Finally,
suppose αr = �αr�i�r� � (i�r� ranges according to the above), where the αr�i�r� ’s are
i.i.d. with mean 0, variance σ2

r , and continuous distribution Fr = Fr�· �σr�,
1 ≤ r ≤ s; ε = �εi� (i ranges according to the above), where the εi’s are
i.i.d. with mean 0, variance τ2, and continuous distribution G = G�· �τ�; and
α1� 
 
 
 � αs� ε are independent. Although not every mixed linear model (1.1) can
be expressed as (4.1), the latter does cover most mixed linear models that are
used in practice. We are interested in testing the following hypothesis:

H0 	 Fr�·�σr� = F0r�·�σr�� 1 ≤ r ≤ s and G�·�τ� = G0�·�τ�
(4.3)

Let Ek, 1 ≤ k ≤ M be defined as in Section 2. Consider

Nk =
∑
i

1�yi∈Ek� = #�i 	 yi ∈ Ek�� 1 ≤ k ≤ M


Define ξN as in Section 2. Similarly, let Pi�θ� be the M × �p + s + 1� matrix
whose �k� r� element is

∂

∂θr
�Pθ�yi ∈ Ek�� =

∂

∂θr

∫
· · ·
∫
�G�ck − ηi�u��τ� −G�ck−1 − ηi�u��τ��

×dF1�u1�σ1� · · ·dFs�us�σs�
(1 ≤ k ≤ M�1 ≤ r ≤ p + s + 1), where θj = βj, 1 ≤ j ≤ p, θp+1 = φ and
θp+1+j = γj, 1 ≤ j ≤ s; u = �u1� 
 
 
 � us� and ηi�u� = xt

iβ+∑s
r=1 zr�i�i�r�ur. Let

HN = I−1N p�N�−1∑
i

Pi�p+ 1� p+ s+ 1��θ�t�

IN = b�ψ�V−1
ψ XQ−2

N

∑
i

Pi�1� p��θ�t�

where Pi�c� d��θ� represents the matrix consist of the c� 
 
 
 � d columns of
Pi�θ�. Furthermore, let P′

i�j�c� d��θ� denote the matrix �∂/∂θj�Pi�c� d��θ�, 1 ≤
j ≤ p+ s+ 1. Note that the �k� r� element of P′

i�j�1� p��θ� is
∂2

∂θj∂θr

∫
· · ·
∫
�G�ck − ηi�u��τ� −G�ck−1 − ηi�u��τ��

×dF1�u1�σ1� · · ·dFs�us�σs��
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where 1 ≤ r ≤ p; and the �k� r� element of P′
i�j�p + 1� p + s + 1��θ� has the

same expression but p+1 ≤ r ≤ p+s+1. Let the rows of HN be numbered as
0� 
 
 
 � s, and denote the rth row of HN by Ht

N�r. Also, let I
t
N�l be the lth row

of IN, 1 ≤ l ≤ L, where L = N+∑s
r=1mr. Write ηi = yi−εi, dk�ηi� = P�yi ∈

Ek�α� = G�ck − ηi�τ� − G�ck−1 − ηi�τ� and ζk�i = E�dk�ηi��α�1�� − Edk�ηi�,
where α�1� = �αr�1≤r≤a. Let Sr�l� = �i 	 ir = l�, and S�l� = Sr�l−

∑
r′<r mr′ �, if∑

r′<r mr′ + 1 ≤ l ≤∑r′≤r mr′ , 1 ≤ r ≤ a (m0 = N). Let K = N+∑a
r=1mr and

hN�l =
( ∑
i∈S�l�

E�ζk�i�ωN�l�
)
1≤k≤M

1�N+1≤l≤K� −ωN�lIN�l

−ω2
N�l

s∑
r=0

Vr�γ�l�l
φ1�r=0�pr�N�HN�r


Let HN =∑L
l=1 Var�hN�l�; RN = �rN�r�r′ �0≤r�r′≤s, where

rN�r�r′ =
∑L

l=1Vr�γ�l�lVr′ �γ�l�l
φ1�r=0�+1�r′=0�pr�N�pr′ �N� 


Define =N as in Section 3 (right below the definition of RN therein). It can be
shown that, with RN defined here, IN−RN is nonnegative definite (although
this may not be true for the RN defined in Section 3). Again, it is possible
to obtain a “closed-form” expression for =N [see Jiang (2001b) for details]. On
the other hand, it is often more convenient to compute =N by a Monte-Carlo
method.

DefineTN andDN as in Section 2. Also, Let�1 = ��i� i′� 	 i�r� = i′�r� for some
a+1 ≤ r ≤ s�;�2 = ��i� i′� 	 ir = i′r� ir′ = i′r′ for some 1 ≤ r� r′ ≤ a� r �= r′�; and
Hi�k�r�ur� =

∫ · · · ∫ G�ck−ηi�u��τ�
∏

t�=r dFt�ut�σt�. The following assumptions
are similar to Assumptions 3.1–3.4, but somewhat more general.

Assumption 4.1. Eα4r�i�r� < ∞, Eα2r�i�r� > 0, 1 ≤ r ≤ s and Eε4i < ∞, Eε2i >0.

Assumption 4.2. The integral
∫ · · · ∫ G�ck − ηi�u��τ�

∏s
t=1 dFt�ut�σt� is

twice differentiable w.r.t. components of θ, the integrals
∫
Hi�k�r�ur�Hi′�k′�r�ur�d

Fr�ur�σr�,
∫ · · · ∫ uc

rG�ck − ηi�u��τ�
∏s

t=1 dFt�ut�σt�, c = 1�2 are differentiable
w.r.t. components of θ, where i� i′ ∈ S�l� for some N + 1 ≤ l ≤ K; and∫
uλ
rdFr�ur�σr�, 1 ≤ r ≤ s and

∫
vλdG�v�τ�, λ = 3�4 are differentiable w.r.t.

σr, 1 ≤ r ≤ s and τ, respectively. The partial derivatives are bounded in a
neighborhood of θ.

Assumption 4.3. The following are bounded: n−1∑a
r=1
∑mr

l=1 �Sr�l��2,

n−1/2
∥∥∥l�N�−1∑

i

Pi�1� p��θ�t
∥∥∥�

n−1/2
∥∥∥p�N�−1∑

i

Pi�p+ 1� p+ s+ 1��θ�t
∥∥∥�(4.4)
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where l�N� = diag�lj�N��1 ≤ j ≤ p� satisfies �l�N�−1QN� ∨ �Q−1
N l�N�� =

O�1�, and, with Pi replaced by P′
i�j (1 ≤ j ≤ p + s + 1), (4.4) are bounded

in a neighborhood of θ. Furthermore, the following are o�1�: n−1�N + ��1� +
��2��, n−1/2 max1≤r≤amax1≤l≤mr

�Sr�l��, and n−1/2N��minr pr�N��−2+
�minj lj�N��−2�.

Assumption 4.4. Model �4
1� is AI4, and maxl �CN�l� = o�1�.

Assumption 4.3 specifies orders of quantities that may increase with N,
including that of n = n�N�. To see that these are reasonable assumptions,
consider the following special case of model (4.1): Suppose that mr, b < r ≤ q
and ni1�


�iq

are bounded. Note that only mr, 1 ≤ r ≤ b are associated with the
numbers of levels of the random effects. Furthermore, suppose that mr →∞,
1 ≤ r ≤ b at the same rate, that is, mr ∼ mr′ , 1 ≤ r �= r′ ≤ b. Let m be
their common rate. Then, it is easy to show that N ∼ mb, ��1� = O�m2b−2�,
��2� ∼ m2b−2, and, typically, �Sr�l�� ∼ N/m ∼ mb−1. Furthermore, according to
Jiang (1996), under regularity conditions, p0�N� ∼ mb/2, and pr�N� ∼ √

mr,
so pr�N� ∼ m1/2, if 1 ≤ r ≤ a, and pr�N� ∼ mdr/2, if a < r ≤ s. Also,
under regularity conditions, l�N� = O�√N� = O�mb/2�. Thus, if one chooses
n such that n ∼ m2b−1, these assumptions are either obvious or satisfied
under regularity conditions, such as AI4. The latter implies that there exists
w.p. → 1 REML estimator ψ̂ which is consistent and asymptotically normal
[Jiang (1996)]. Such a REML estimator can be identified, according to Jiang
(1997). Define ĉα (0 < α < 1) the same way as in Section 2, where ψ̂ is the
REML estimator and β̂ given by (1.7).

Theorem 4.1. Under Assumptions 4
1−4
4� P�χ̂2 > ĉα� −→ α asN →∞.

Proof. Again, the procedure is similar to proof of Theorem 2.1. First,
assume that the limit (2.7) exists, and show (2.8) holds with N replaced by
n. In the following, c represents a positive constant that may have different
values at different places. For any λ ∈ RM, write λ�N� = TNλ. Then,

λt�n−1/2Tt
NξN� = n−1/2λt�N�ξN

= n−1/2
M∑
k=1

λ�N��k�Nk − EθNk�(4.5)

−n−1/2
M∑
k=1

λ�N��k�Eθ̂Nk − EθNk�


To make the rest of the proof easier to follow, we break it into several
steps, each presented in the form of a lemma, all under the conditions of
Theorem 4.1.
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Lemma 4.1.

n−1/2
M∑
k=1

λ�N��k�Nk − EθNk� =
a∑

r=1

mr∑
l=1

ηN�r�l + oP�1��(4.6)

where ηN�r�l =
∑M

k=1 λ�N��kn−1/2∑
i∈Sr�l�E�ζk�i�αr�l�. ✷

Proof. If we define δk�i�0 = 1�yi∈Ek� − P�yi ∈ Ek�α�; δk�i�1 = dk�ηi� −
E�dk�ηi��α�1��; and δk�i�2 = ζk�i −

∑a
r=1 E�ζk�i�αr�, then,

Nk − EθNk =
2∑

j=0

∑
i

δk�i�j +
a∑

r=1

∑
i

E�ζk�i�αr�ir
�
(4.7)

Note that E�ζk�i�αr� = E�ζk�i�αr�ir
�. Given α, the δk�i�0’s are independent. Thus,

E
(∑

i

δk�i�0

)2
= E�E��· · ·�2�α��
=∑

i

E�var�1�yi∈Ek��α�� ≤ N/4

(4.8)

If i�r� �= i′�r�, a + 1 ≤ r ≤ s, then, given α�1�, δk�i�1 and δk�i′�1 are independent,
hence Eδk�i�1δk�i′�1 = E�E�δk�i�1�α�1��E�δk�i′�1�α�1��� = 0. It follows that

E
(∑

i

δk�i�1

)2
= ∑

�i�i′�∈�1

E�δk�i�1δk�i′�1� ≤ ��1�
(4.9)

If ir �= i′r, 1 ≤ r ≤ a, δk�i�2 and δk�i′�2 are independent, hence Eδk�i�2δk�i′�2 = 0.
If ir = i′r but ir′ �= i′r′ , 1 ≤ r′ ≤ a, r′ �= r, then, given αr, δk�i�2 and δk�i′�2 are
independent, hence Eδk�i�2δk�i′�2 = E�E�δk�i�2�αr�E�δk�i′�2�αr�� = 0. It follows
that

E
(∑

i

δk�i�2

)2
= ∑

�i�i′�∈�2

E�δk�i�2δk�i′�2� ≤ c��2�
(4.10)

(4.6) then follows by combining (4.7)–(4.10) and Assumption 4.3. ✷

Note that the sequence �ηN�r�l�1 ≤ r ≤ a�1 ≤ l ≤ mr� can be expressed
according to the order of S�l� as �ηN�l�N+1 ≤ l ≤ K�, where ηN�l is a function
of ωN�l. Let ηN�l = 0 if l ≤ N or l > K.

Lemma 4.2.

λt�n−1/2Tt
NξN� =

K∑
l=N+1

ηN�l − dt
NωN −ωt

NBNωN

+E�ωt
NBNωN� + oP�1�(4.11)

=
L∑
l=1

YN�l + oP�1��
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where BN = BN�n−1/2HNTNλ�, BN�µ� = ∑s
r=0 µrVr�γ�/φ1�r=0�pr�N�;

dN = n−1/2INTNλ; and YN�l = ηN�l − dN�lωN�l − bN�l�l�ω2
N�l − 1�

−2�∑l′<l bN�l�l′ωN�l′ �ωN�l.

Proof. By the Taylor expansion and the conditions, it is easy to show that

n−1/2
M∑
k=1

λ�N��k�Eθ̂Nk − EθNk�

= n−1/2λt�N�

(∑
i

∂

∂θt
pi�θ�

)
�θ̂− θ� + oP�1�


(4.12)

Let ut
N = n−1/2λt�N��

∑
i�∂/∂ψt�pi�θ��P−1

N , vtN = n−1/2λt�N��
∑

i�∂/∂βt�pi�θ��Q−1
N .

Then, by (5.23) of Jiang (1998), we have the asymptotic expansion [note that,
under the conditions, both �uN� and �vN� are O�1�]:

n−1/2λt�N�

(∑
i

∂

∂θt
pi�θ�

)
�θ̂− θ�

= ut
NPN�ψ̂− ψ� + vtNQN�β̂− β�(4.13)

= dt
NωN +ωt

NBNωN − E�ωt
NBNωN� + oP�1�


(4.11) then follows by (4.5), (4.6), (4.12) and (4.13). ✷

It is easy to show that

σ2
N = E

( L∑
l=1

YN�l

)2
=

L∑
l=1

var�ηN�l − dN�lωN�l − bN�l�lω
2
N�l� + 2

∑
l�=l′

b2N�l�l′(4.14)

= λtTt
N=NTNλ −→ λtDλ


So, if λtDλ = 0, then by (4.11), (4.14),

λt�n−1/2Tt
NξN�

P−→ 0 = �λtDλ�1/2ξ�(4.15)

where ξ ∼ N�0�1�. We now deal with the case λtDλ > 0.

Lemma 4.3. Suppose that λtDλ > 0. Then,

L∑
l=1

YN�l

d−→ N�0� λtDλ�
(4.16)

Proof. Let tN = ��BN� ∨ �dN��−δ, where 0 < δ < 1/2. Then, YN�l =
Y

�1�
N�l +Y

�2�
N�l, where

Y
�1�
N�l = ηN�l − bN�l�lUN�l −

(
dN�l + 2

∑
l′<l

bN�l�l′uN�l′

)
uN�l�
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Y
�2�
N�l = −bN�l�lVN�l − 2

(∑
l′<l

bN�l�l′vN�l′

)
uN�l −

(
dN�l + 2

∑
l′<l

bN�l�l′ωN�l′

)
vN�l�

UN�l = �ω2
N�l − 1�1��ωN�l�≤tN� − E�ω2

N�l − 1�1��ωN�l�≤tN��

VN�l = ω2
N�l − 1 − UN�l; uN�l = ωN�l1��ωN�l�≤tN� − EωN�l1��ωN�l�≤tN� and vN�l =

ωN�l − uN�l. Given the conditions, it is easy to show, as in the proofs of The-
orem 5.2 of Jiang (1996) and Theorem A of Jiang (1998) (hereafter, PTT),

that
∑L

l=1Y
�2�
N�l

L2

−→ 0. Note that the conditions imply that �dN� → 0 and

�BN� → 0. On the other hand, for a suitable array of σ-fields, �Y�1�
N�l�1 ≤

l ≤ L� is an array of martingale differences. By Theorem 3.2 of Hall and
Heyde [(1980); see the remarks therein following the theorem], to show that∑L

l=1Y
�1�
N�l

d−→ N�0� λtDλ� we need to verify three things: (i) maxl �Y�1�
N�l�

P−→ 0;

(ii)
∑

l�Y�1�
N�l�2

P−→ λtDλ; and (iii) E�maxl�Y�1�
N�l�2� is bounded. By PTT, it is easy

to show (i) and (iii), so it remains to show (ii). Let ZN�l = ηN�l −Y
�1�
N�l. Then,

L∑
l=1

�Y�1�
N�l�2 =

L∑
l=1

η2
N�l − 2

L∑
l=1

ηN�lZN�l +
L∑
l=1

Z2
N�l
(4.17)

By PTT, it can be shown that

L∑
l=1

Z2
N�l =

L∑
l=1

var�dN�lωN�l + bN�l�lω
2
N�l� + 2

∑
l�=l′

b2N�l�l′ + oP�1�
(4.18)

Also, we have ηN�lZN�l =
∑3

j=1 t
�j�
N�l, where t

�1�
N�l = ηN�l�dN�luN�l + bN�l�lUN�l�,

t
�2�
N�l = 2�· · ·��ηN�luN�l−EηN�luN�l� and t

�3�
N�l = 2�· · ·�EηN�luN�l. Here · · · repre-

sents
∑

l′<l bN�l�l′uN�l′ . We have

E

(∑
l

�t�1�N�l−Et�1�N�l�
)2

=∑
l

var�t�1�N�l�

≤
(∑

l

Eη4
N�l

)1/2{∑
l

E�dN�luN�l+bN�l�lUN�l�4
}1/2

≤c

(
n−2

a∑
r=1

mr∑
l=1

�Sr�l��4
)1/2{

�dN�2+��BN�∨�dN��2�1−2δ�
}1/2

=o�1��

E

(∑
l

t
�2�
N�l

)2

=4
∑
l

E�···�2var�ηN�luN�l�
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≤ c

∑
l

(∑
l′<l

b2N�l�l′

)2


1/2(∑
l

Eη4
N�l

)1/2

≤ c�BN�
(∑
l′<l

b2N�l�l′

)1/2(
n−2

a∑
r=1

mr∑
l=1

�Sr�l��4
)1/2

= o�1�
and, by the proof of Theorem 5.2 of Jiang [(1996), top of page 272], letting
B = �bN�l�l′1�l>l′��, v = �EηN�luN�l�,

E

(∑
l

t
�3�
N�l

)2

≤ c�Bt +B� · �B� · �v�2

≤ c�BN�
(∑
l′<l

b2N�l�l′

)1/2 (
n−1

a∑
r=1

mr∑
l=1

�Sr�l��2
)

= o�1�

Therefore, we have

L∑
l=1

ηN�lZN�l =
L∑
l=1

Et�1�N�l + oP�1�

=
L∑
l=1

cov�ηN�l� dN�lωN�l + bN�l�lω
2
N�l� + oP�1�


(4.19)

Finally, it is easy to show that
∑

l�η2
N�l − Eη2

N�l�
L2

−→ 0, thus,

L∑
l=1

η2
N�l =

L∑
l=1

var�ηN�l� + oP�1�
(4.20)

(ii) then follows by combining (4.17)–(4.20). Therefore, (4.16) follows.
By (4.11), (4.16) and recalling (4.15) for the case λtDλ = 0, we have, for

any λ,

λt�n−1/2Tt
NξN�

d−→ �λtDλ�1/2ξ�(4.21)

where ξ ∼ N�0�1�. It follows by the arbitrariness of λ that n−1/2Tt
NξN

d−→
N�0�D�.

The rest of the proof is exactly the same as the corresponding part of Theo-
rem 2.1 once we establish the boundedness of elements of =N and their partial
derivatives. The verifications of the latter are very similar to those in the pre-
vious proofs [see Jiang (2001b) for details]. ✷

Again, we consider a simple example.

Example 4.1. Consider a two-way random effects model with crossed clas-
sification: yij = µ+ ui + vj + eij, i = 1� 
 
 
 �m1, j = 1� 
 
 
 �m2, where the ui’s
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are i.i.d. ∼ F1 with density σ−1
1 f1�·/σ1�; the vj’s are i.i.d. ∼ F2 with density

σ−1
2 f2�·/σ2�; the eij’s are i.i.d. ∼ G with density τ−1g�·/τ�; and u, v and e

are independent. Suppose that the fourth moments of the random effects and
errors are finite, and σ1, σ2 and τ are positive; and the second derivatives of
p11k�θ� w.r.t. θ are bounded in a neighborhood near θ. Furthermore, suppose,
for simplicity, that m1�m2 → ∞ such that m1 ∼ m2. Then, it is easy to show
that Assumptions 4.1 – 4.3 are satisfied with n = �m1m2�3/2. Note that, by
Jiang (1996), the model is AI4, because it is balanced and unconfounded with
positive variance components, hence it is easy to show that Assumption 4.4
is satisfied. Furthermore, it can be shown that n−1Ht

N�IN −RN�HN = o�1�,
hence =N ∼ n−1HN.

5. Remarks and discussion. In the previous three sections we have as-
sumed that p, the dimension of β, is fixed. It follows, by an argument of
subsequences (see the last paragraph in the proof of Theorem 2.1) that the
same results hold if p is bounded but not necessarily fixed. Furthermore, it
is possible to extend the results to the case in which p may increase with the
sample size N. However, it is necessary that p increase at a slower rate than
N because, otherwise, the asymptotic behavior of our goodness-of-fit test may
change. A similar feature has been noticed by Mammen (1996), who studied
the asymptotic behavior of empirical process of residuals in linear models with
i.i.d. errors [i.e., (1.1) without the α’s] when the dimension of the covariates
[i.e., p in (1.1)] goes to infinity with the sample size, say, n. It was shown that,
in such a case, the asymptotic expansion of the empirical process of the resid-
uals has an extra term which is of the order p/

√
n [Mammen (1996), Theorem

1]. Thus, if p/
√
n does not go to 0, the asymptotic behavior of the process is

changed and, as Mammen noted, using a goodness-of-fit test developed under
fixed p may lead to wrong rejection with high probability of the true error
distribution. However, if p/

√
n → 0, the asymptotic expansion of the process

remains the same, therefore the goodness-of-fit test should still apply.
The techniques we use allow us to extend the previous results to the case

p → ∞. First, the AI4 condition does not require that p is fixed or bounded
[Jiang (1996)]. Second, the asymptotic results in this paper remain valid under
similar restrictions to Mammen (1996) on the rate at which p → ∞. For
example, Theorem 2.1 remains valid if p/

√
N → 0. See Jiang (2001b) for

more details.
The normalizing constant n in (1.4) is chosen such that it equals to N

for the case of linear regression, it is m for the case of single random effect
factor, and it satisfies Assumptions 4.2 – 4.4 for the case of multiple random
effect factors. It is clear that the choice of n is not unique. For example, if
n satisfies these conditions, so does 2n, with = replaced by �1/2�=. Although
this provides flexibility, it also creates uncertainty about what n to use in
practice, especially in the case of multiple random effect factors. Therefore,
in the following we propose a choice of n that in many cases either uniquely
determines n or at least narrows the choices. Note that there are a number
of integers that contribute to the total sample size N, for example, m, l in
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Example 3.1, and m1, m2 in Example 4.1. Usually, n is a function of these
integers. We require that n depends on these integers in a way that is as simple
as possible. In particular, no unnecessary constant is allowed in the expression
of n. We call such a choice of n a natural choice. A natural choice of n can be
found by examining the leading term in the expression of HN + FN, where
FN = 2Ht

N�IN −RN�HN (see the definition of =N in Section 3). For example,
in Example 3.1, it can be shown that HN+FN = ml2�Var�h1�+o�1��. Thus, a
natural choice for n is ml2 (not, e.g., 2ml2 or ml2 + 1). Similarly, in Example
4.1, a natural choice for n is �m1m2�3/2.

One question that is often associated with χ2 goodness-of-fit tests is how to
choose the number of intervals (or cells) M and the cutoff points ck, 1 ≤ k ≤
M− 1. Studies on this problem can be traced back to Mann and Wald (1942).
One criterion for choosing the optimal M and cutoff points is to maximize
the power of the test at certain alternative [e.g., Borovkov (1977), Rayner
(1982), Kallenberg, Oosterhoff and Schriever (1985)]. Strictly speaking, when
the underlying distribution involves unknown parameters, the theory of such
a χ2 test with the optimal M and cutoff points is more complicated than it
might appear. To see this, suppose that one choosesM and ck’s by maximizing
the power of the test at a certain alternative, and the alternative distribution
involves θ, a vector of unknown parameters. It is easy to see that the optimal
choice may depend on θ, that is, M = M�θ� and ck = ck�θ�, 1 ≤ k ≤ M�θ� − 1.
Since θ is unknown, it is customary to replace it by θ̂, an estimator, as in the
χ2 test, so that M = M�θ̂� and ck = ck�θ̂�, 1 ≤ k ≤ M�θ̂� − 1. But by doing so,
the asymptotic distribution of the test may change, and it is not clear if it is
still a weighted χ2.

This is exactly the situation that we are dealing with. A theoretical inves-
tigation of this problem will be left for future study, but here we would like to
give some thoughts on how to choose the number of cells for our goodness-of-fit
test in practice. Note that our goal is to provide a goodness-of-fit test for check-
ing distributional assumptions about the random effects and errors, and, as
in many applications of mixed linear models, no specific alternative is given.
In other words, we are mainly interested in omnibus rather than directional
tests [e.g., Rayner and Best (1989), Section 1.1]. Therefore, the first thing we
want to make sure is that the test has the right size. In fact, in many cases,
a test with the right size also have greater power, in general, than one with
smaller-than-expected size. (For example, at 10% level, a test with size 0.10
is often more powerful than one with size .07.) Of course, the choice of cutoff
points may also make a difference. One option is “equal probability intervals,”
but this will again make the ck’s dependent on θ. In addition, as pointed out
by Lehmann [(1999), Section 5.7], the equiprobable intervals are mainly for
convenience. They are not optimal even for the classic Pearson’s χ2-test (1.3).
Thus, to avoid complexity, we shall consider “equal length intervals.” More
specifically, let �A�B� be an interval that is expected to cover the yi’s (con-
sidered as random variables) with high probability. Then, given M, the cutoff
points are ck = A + �k/M��B − A�, 1 ≤ k ≤ M − 1. We now consider the
choice of M. First, to ensure good power M should not be too small, because,
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roughly speaking, the less cells one has the more difficult it is to distinguish
two distributions. On the other hand, if there are too many cells, the size of
the test may become a problem. This is because the asymptotic distribution of
the test is based on a M-dimensional central limit theorem (CLT). It has been
found that, when an M increases with n, the sample size involved in the CLT,
the latter may break down. Senatov (1980) studied this problem, and showed
that, to ensure the CLT, it is necessary that M/n1/5 → 0 [this can be derived
from Theorem 1 on page 747 of Senatov (1980), where the author used k in-
stead of M]. Although Senatov’s result is for the i.i.d. case, a similar problem
is expected to occur in the current situation. Therefore, we propose n1/5 as an
upper bound for M, where n is the natural choice of n that appears in our
M-dimensional CLT (i.e., Theorem 3.1 and 4.1; see the previous remark for the
natural choice), and n = N in Theorem 2.1. In conclusion, the best strategy is
to choose M as large as possible but not to exceed this upper bound, that is,
M = �n1/5�, where �x� means the largest integer ≤ x. In the next section we
shall consider a simulated example, in which the thoughts given here will be
tested.

Sometimes a “nonstandard” problem may be converted into a standard one
by making transformations. We illustrate this by an example. Suppose that
yij = xt

ijβ + αi + εij, i = 1� 
 
 
 �m, j = 1� 
 
 
 � d, where xij is a known vector
of covariates, β is an unknown vector of regression coefficients; the random
effects α1� 
 
 
 � αm may not be i.i.d., but the εij’s are. Suppose that one is inter-
ested in checking the distribution of the errors. This problem is not standard
in the sense that the random effects are not i.i.d. (and hence, in particular,
do not have a common distribution), and that one is only interested in check-
ing the distribution of the errors. Let yi = �yij�1≤j≤d, Xi = �xt

ij�1≤j≤d and
εi = �εij�1≤j≤d. Then, the model can be written as yi = Xiβ+1dαi+εi, where
1d is the d-dimensional vector of 1’s. Let a = �aj�1≤j≤d be a nonzero vector
such that a· =

∑d
j=1 aj = 0. Then, we have zi = wt

iβ + ηi, where zi = atyi,
wi = Xt

ia and ηi = atεi. Thus, the problem reduces to checking the distri-
bution of the ηi’s, and the result of Section 2 may be applied. However, some
components of β may not be identifiable using the reduced model. Also, by
using the reduced model, the information about the random effects α is lost.

Why cell frequencies? The test statistic is in the form

n−1
M∑
k=1

(∑
i

�ψk�yi� − Eθ̂ψk�yi��
)2

�

where ψk�yi� = 1�yi∈Ek�. This raises the question: why does ψk�·� have to be
chosen this way? Although the choice of ψk�·� may not be unique, the point
is that the expectation Eθψk�yi� has to be “sensitive” to the distributions of
the random effects and errors. For example, ψk�yi� = yi is not a good choice,
because Eθψk�yi� = xt

iβ, which has nothing to do with the distributions of the
random effects and errors. Therefore, the choice of ψk�·� cannot be arbitrary
either.
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To obtain the critical values of the test one needs to compute the eigenvalues
of =̂ = =�θ̂�. In practice, it is often straightforward to evaluate =̂ by Monte-
Carlo method. For example, in Section 2,

=̂ = N−1
N∑
i=1

̂Var�hN�i�

≈ N−1
N∑
i=1

L−1
L∑
l=1

�h�l�
N�i − hN�i��h�l�

N�i − hN�i�t

= L−1
L∑
l=1

N−1
N∑
i=1

�h�l�
N�i − hN�i��h�l�

N�i − hN�i�t�

where h
�l�
N�i is hN�i with θ replaced by θ̂, εi by el, and yi by xt

iβ + el, hN�i =
L−1∑L

l=1 h
�l�
N�i and e1� 
 
 
 � eL are i.i.d. random variables generated from

F0�· �σ̂�.
Suppose that one applies our goodness-of-fit test and it rejects the null hy-

pothesis. What should one do then? The first thing one can do is to be cautious
when making inference about the model. As mentioned in Section 1, distri-
butional assumptions are important to the analysis of mixed linear models.
On the other hand, not all parts of the inference about a mixed linear model
depend equally heavily on the distributional assumptions. For example, as-
suming that p is bounded, then consistency of the REML or ML estimators
of the fixed effects and variance components does not rely on a normality
assumption. Although asymptotic normality of these estimators also does not
depend on normality, the asymptotic covariance matrix may be different when
normality does not hold [Jiang (1996, 1998)]. Finally, even in a large sample
situation, prediction intervals for a mixed effect depend heavily on the distri-
butional assumptions (see the second paragraph of Section 1). Thus, even if
the goodness-of-fit test rejects the null hypothesis, one should still be confi-
dent about the point estimators, if the sample size is large. One may still use
results such as confidence intervals and p-values for the fixed parameters,
provided that the asymptotic covariance matrix is modified by estimating the
kurtoses of the random effects and errors [see Jiang (2001a)]. As for predic-
tion of the mixed effects, one may still use point predictors such as EBLUP,
because its justification does not require normality. However, one should not
use a prediction interval for a mixed effect, if it is based on a rejected dis-
tributional assumption; and one should not use a Prasad-Rao approximation
formula for MSE of EBLUP (see Section 1), if the normality assumption is
rejected. Furthermore, one may work on finding distributions that fit the data
better. For example, sometimes there is indication that the distribution of the
random effects may be heavy-tail. Then, a t-distribution might fit better than
a normal one. Of course, whatever new distributions one proposes also need
to go through the same goodness-of-fit test.
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Finally, although in this paper we consider REML estimators of the param-
eters, the same asymptotic results hold for MLE as well, provided that p is
bounded. This is because, when p is bounded, the ML and REML estimators
are asymptotically equivalent [see Jiang (1996)]. In particular, the REML es-
timators and MLE have the same asymptotic covariance matrix, and the same
asymptotic expansion (4.13) holds when the REML estimator of θ is replaced
by the MLE.

6. Simulations. In this section, we consider simulations associated with
the one-way random effects model of Example 3.1. It is also a simple case
of the nested error regression model mentioned in Section 1, which has been
used in small area estimation.

The sample size configuration considered in all simulations is m = 400
and l = 4. We intentionally make l small to mimic the small area situation.
The true parameters are chosen as µ = σ = τ = 1
0. Two testing problems
are considered. The first is to test a normal hypothesis, that is, H0: F =
G = normal; the second is to test a nonnormal hypothesis, namely, H0: F =
G = logistic. In each case, the size of the test based on the simulations is
reported. In addition, in each case, the simulated power of the test at two
alternatives are reported. The alternatives for the normal case areH1: F = t3,
G = normal; H2: F = G = t3; and those for the nonnormal case are H1: F =
NM�−1
8�2
2� 
45�, G = logistic; H2: F = NM�−2�3� 
4�, G = logistic, where
NM�µ1� µ2� p� represents a mixture ofN�µ1�1� andN�µ2�1� with probability
1−p and p, respectively. As can be seen that the alternatives get away from
the null as the index increases, and, in particular, in the nonnormal case, the
alternatives are asymmetric and the asymmetry increases as p gets away from
1/2. All distributions are suitably scaled so that they have variances specified
above. The nominal level of the test is chosen as α = 
10. The parameters are
estimated by REML method.

According to our discussion in Section 5, the best M, the number of cells
for the test, is chosen as �n1/5�, where n = ml2, that is, M = 5. This M is
compared with its nearest neighbors, that is, M = 4 and M = 6. The interval
�A�B� is taken as �−4�6�. The asymptotic covariance matrix = is computed by
the Monte-Carlo method with L = 10�000 (see the eighth paragraph of Section
5; note that here hN�i = h1, ∀i). The critical values of the test are obtained by
the method described in Section 2. Finally, our goodness-of-fit test is compared
with the test of Jiang, Lahiri and Wu (1998) obtained through data-splitting.
All the results reported are based on 1000 simulations. In Table 1 and Table 2,
GOFT refers to our goodness-of-fit test, while JLW to the test of Jiang, Lahiri
and Wu (2001).

Both tests appear to have approximately the right size for all cases of M.
The “best choice” of M for GOFT (= 5) seems to work well–it has the greatest
power in all cases. Our goodness-of-fit test appears to be more powerful than
the test of Jiang, Lahiri andWu (1998), which, of course, is also expected. What
might be a little surprising is that the power changes so dramatically even
though there is a small change in M. This leads to our concluding remark.
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Table 1
Size and power for the normal case

M=4 M=5 M=6
Hypothesis GOFT JLW GOFT JLW GOFT JLW

H0 .092 .078 .104 .090 .088 .088
H1 .309 .230 .895 .627 .767 .637
H2 .405 .249 1.000 .743 .997 .726

Table 2
Size and power for the nonnormal case

M=4 M=5 M=6
Hypothesis GOFT JLW GOFT JLW GOFT JLW

H0 .087 .089 .098 .091 .093 .097
H1 .224 .081 .993 .833 .473 .406
H2 .735 .279 .997 .908 .894 .684

In addition to the rules we give in Section 5 about choosing M, in practice, to
avoid choosing an M with particularly low power, it is always a good idea to
run a small experiment, just as what we do in this simulation, to gain some
experience. The estimated parameters, whose consistency does not rely on the
distributional assumption being tested [Jiang (1996, 1998)], may be used as
the true parameters in such an experiment. Of course, this is only necessary
when the null hypothesis is not rejected, and one is concerned with the power
of the test against certain alternative which one has in mind.
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Kallenberg, W. C., Odsterhoff, J. and Schriever, B. F. (1985). The number of classes in chi-
squared goodness-of-fit tests. J. Amer. Statist. Assoc. 80 959–968.

Lange, N. and Ryan, L. (1989). Assessing normality in random effects models. Ann. Statist. 17
624–642.

Lehmann, E. L. (1999). Elements of Large-Sample Theory. Springer, New York.
Mammen, E. (1996). Empirical process of residuals for high-dimensional linear models. Ann.

Statist. 24 307–335.
Mann, H. B. and Wald, A. (1942). On the choice of the number of intervals in the application of

the chi-squared test. Ann. Math. Statist. 13 306–317.
Moore, D. S. (1978). Chi-square tests. In Studies in Statistics (R. V. Hogg, ed.) 66–106. Math.

Assoc. America, Washington, DC.
Neyman, J. and Scott, E. (1948). Consistent estimates based on partially consistent observations.

Econometrika 16 1–32.
Pierce, D. A. and Kopecky, K. J. (1979). Testing goodness of fit for the distribution of errors in

regression models. Biometrika 66 1–5.
Portnoy, S. (1984). Asymptotic behavior of M-estimators of p regression parameters when p2/n

is large. I. Ann. Statist. 12 1298–1309.
Prasad, N. G. N. and Rao, J. N. K. (1990). The estimation of the mean squared error of small-area

estimators. J. Amer. Statist. Assoc. 85 163–171.
Rayner, J. C. W. (1982). The choice of class probabilities and number of classes for the simple χ2

goodness of fit test. Sankhyā Ser. B 44 28–37.
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