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NON-ANTICIPATIVE REPRESENTATIONS OF
EQUIVALENT GAUSSIAN PROCESSES!

By G. KALLIANPUR AND H. O0ODAIRA

University of Minnesota

Given two equivalent Gaussian processes the notion of a non-anticipa-
tive representation of one of the processes with respect to the other is
defined. The main theorem establishes the existence of such a representa-
tion under very general conditions. The result is applied to derive such
representations explicitly in two important cases where one of the processes
is (i) a Wiener process, and (ii) a N-ple Gaussian Markov process. Radon-
Nikodym derivatives are also discussed.

1. Introduction. Let (X(), P)and (X(7), Q), (0 < t < 1) be equivalent Gaussian
processes given on some space (R, %) which are quadratic mean continuous,
have zero mean functions and covariance functions I', and I',. The term
“equivalent” is here used in the sense that the probability measures P and Q are
mutually absolutely continuous with respect to the o-field <+ generated by the
random variables (X(f)).

By a representation of (X(r), P) in terms of (X(#), Q) we mean a family of
random variables (Y(¢)) (0 < r £ 1) on Q such that

(1.1) Y(1), Q)

is a quadratic mean continuous Gaussian process with zero mean and covariance
I',, and for each ¢

(1.2) Y(1) € L(X; 1)

where L(X; 1) is the linear space of the process (X(7), Q). (The precise defini-
tions of terms and notation used here are given in Sections 3 and 4.) When
(X(n), Q) is a standard Wiener process the following representation for all
(X(1), P) equivalent to it was given by Shepp (1966).

(1.3) Y()) = X()) — §5[55 M(s, u) dX(w)] ds

where M(s, u) is a square integrable kernel related to I',. From the point of
view of statistical or engineering applications a drawback of this representation
is that in order to find Y() from (1.3) we need to know all the values of X(s),
(0 < s < 1). It is desirable to obtain a representation which involves only the
values (X(s), 0 < s < 1), i.e. the “present and past” but not the “future” values
X(s) (s > 1). Just such a representation has recently been given by Hitsuda
(1968). Such a representation will be called non-anticipative (see Section 4).
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REPRESENTATIONS OF EQUIVALENT GAUSSIAN PROCESSES 105

The main purpose of this paper is to establish the existence of non-anticipative
representations in the most general case. This is done in Section 4 and is based
on the fundamental work of Gohberg and Krein on the factorization of operators
of the form 7 —.T where T is Hilbert-Schmidt ([2] Chapter IV). In Sections §
and 6 we apply the general theorem to derive non-anticipative representations
when (X(7), Q) is, respectively, the non-standard Wiener process (thus incidentally
obtaining an alternative proof of Hitsuda’s result) and a Gaussian N-ple Markov
process. The problem of the Radon-Nikodym derivative is considered in Sec-
tion 7. The possibility of using Gohberg and Krein’s ideas in this connection
was raised by Kailath (1970) who has formally derived Hitsuda’s result using
the result of [2]. (See comments at the end of Section 5.)

The following remarks form the starting point of our investigations which,
we hope, put our problem in its most general setting. Starting from a given
representation (Y(¢), Q) and using the necessary and sufficient conditions for
equivalence obtained in Kallianpur and Oodaira ([5], 1963), (see Theorem 4.2
below), it is easy to verify that (1.1) and (1.2) imply the existence of a bounded
linear operator F on L(X; 1) with the following properties: For every ¢

(1.4) Y(t) = FX(1),
(1.5) S = F*F,

S being the operator in L(X; 1) corresponding to the operator S of Theorem 4.2,
so that § = 7 — T where T is Hilbert-Schmidt and 1 is not a point of the spec-
trum of T. Conversely, if F is an operator on L(X; 1) satisfying (1.5) then
(Y (1), Q) where Y(¢) is defined by (1.4), is a representation of (X(¢), P) in the
sense of (1.1) and (1.2). Thus every representation of (X(r), P) uniquely cor-
responds (the uniqueness is easily seen) to a factorization of S (or S) of the type
(1.5). What we intend to do is to pick out the particular factorization that cor-
responds to the non-anticipative representation. That such a factorization exists
is not obvious a priori and that is where Gohberg and Krein’s theory of special
factorization enters into the picture in a natural fashion. Before considering it
in Section 4 we discuss some basic ideas and results in the next section.

2. Factorization of self-adjoint positive invertible operators. Let H be a separable
Hilbert space. A family of orthoprojectors = = {P} is called a chain if for any
distinct P,, P, ¢ &, either P, < P,or P, < P,, where P, < P, means P.H c P,H,
i.e., P,P, = P,P, = P,. We shall write P, < P, if either P, < P,or P, = P,. A
chain z is said to be bordered if # 50, I. The closure of a chain r is the set of
all operators which are the strong limits of sequences in z. The closure of a
chain is again a chain and if a chain coincides with its closure, it is said to be
closed. A pair (P-, P*) of orthoprojectors in a closed chain = with P~ < P* is
called'a gap of r if for any P e r either P < P~ or P > P*, and the dimension
of P* — P-, i.e., dim [P*H © P-H], is called the dimension of the gap (P~, P*).
A chain is said to be maximal if it cannot be enlarged, or, equivalently, if it is
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bordered, closed and its gaps (if any) are one-dimensional. A chain r is called
an eigenchain of a bounded linear operator 4 on H if PAP = AP for all Pe x.

Let = be a closed chain. A partition { of 7 is a chain consisting of a finite
number of elements {P; < P, < --. < P,} of = such that P, = min,., P and
P, = max,., P. Let F(P) be an operator function defined on = and having as its
values bounded linear operatorson H. Fora partition{ = {P, < P, < .-+ < P}
of 7, define

S©) = Z;;l F(PJ._,)APj s APj =P, —P,_,.
An operator A is called the limit in norm of S({), denoted by
2.1) A = (m)§, F(P)dP,

if for any ¢ > 0 there exists a partition {(¢) of = such that, for every partition
€ L), |ISE) — A|| < e. If the limit of S({) exists, we shall say that the integral
(2.1) converges. The integral

B = (m) §, dPF(P)
is defined analogously.

The dual z* of a chain « is a chain consisting of all orthoprojectors of the
form Pt =1 — P, Per. If zis an eigenchain of an operator A4, then the dual
chain z* is an eigenchain of the adjoint operator 4*.

By a special factorization of an operator A4 along a chain = we mean the rep-
resentation of A4 in the form
(2.2) A=+ X)D(I + X_),
where X, and X_ are Volterra operators (i.e., completely continuous operators
with the one-point spectrum 4 = 0) having = and = as eigenchains respectively,
D commutes with all Pe =, and D — I is completely continuous.

The factors 7 + X, I + X_ are invertible, and if A4 is invertible, so is the
factor D. If an invertible operator 4 admits a special factorization relative to
a maximal chain z, then the factorization is unique, and from the uniqueness it
follows that if a self-adjoint invertible operator 4 = 4* has such a factorization,
then X, * = X_and D* = D.

The following theorem is a special case of Theorems 6.1 and 6.2, Chapter 1V,
Gohberg-Krein [2]. We denote by .5 the class of all Hilbert-Schmidt operators
on H.

THEOREM 2.1. Let « be a maximal chain. Then, for every operator T € &, such
that each of the operators I — PTP, P ¢ r, is invertible, the integrals

2.3) X, = (m)\,(I — PTP)"'PTdP,
X_ = (m)\,dPTP(I — PTP)~!

converge in norm, and the operator A = (I — T)™* has a special factorization (2.2)
along n with X, X_, D — I € &, and

24 D=1+ 3, = PO = P TP = 1)(P;* — Py7),
where {(P;~, P;*)} is the set of all gaps in the chain x.
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For the convenience of the reader it is perhaps worth pointing out that the deduc-
tion of this result from the above-mentioned theorems of Gohberg and Krein is
based on the fact that if 7 ¢ .~ then the integral (m) §, PT dP converges in uni-
form norm (in fact, in Hilbert-Schmidt norm) and belongs to .&4,. The verifica-
tion is simple and is a part of the proof of Theorem 10.1, Chapter I of [2].

LemMma 2.1. LetTe S, IfI —Tis self-adjoint, positive and invertible, then,
for any orthoprojector P, I — PTP is invertible.

The proof is immediate as can be seen from the following inequality.

(I = PTPYf, [y =< — Pf, [ + I = T)Ff, Ff)
= |l = PfIP + |IZ — THEfP
= ||(I = PfII* + SUPfI* = eI A
where c is some positive constant, (., +) and ||+|| are the inner product and the
norm of H, and ¢,* = min (1, ¢?).
LeMMA 2.2. If a self-adjoint, positive, invertible operator A has a special factori-

zation (2.2), then the factor D is self-adjoint, positive and invertible.

ProoF. We need only to prove the positive definiteness of D. Since / + X,
I 4+ X_ are invertible,

Df, fy =<+ X)) Ad + X)7fs /5
Set (I + X_)"f ='g. Then
Df, [ =< + X,)7'Ag, (I + X_)g)
=+ X )*(I + X,)7'49, 9)
=L+ X)) + X,)7'49, 9)
= (A9, 9>
>0.

LemMA 2.3, If Vis a Volterra operator ¢ S, with © as an eigenchain, then the
operator W = (I + V)= — I is also Volterra € &, and has & as an eigenchain.

Proor. That W ¢ .7 follows immediately from the relation
(2.5) W4+ V+VW=0.

Since V and I 4+ W are permutable, we have (cf. [6] page 426)
Tyayw =Ty * Tryw

where r, denotes the spectral radius of 4, i.e., the radius of the smallest closed
disk centered at 0 which contains all the spectrum of 4. By assumption r, = 0,
SO 7y yw = 0, ie., ¥V 4+ VW is Volterra. Hence, from (2.5), W is Volterra.
Since 7 4+ W is the resolvent at 1 of the operator —V,

W= Y=, (=),
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the right-hand side converging in norm. It is readily verified that, for Pe x,
PV"P = V*P for any n. Hence we have PWP = WP.

From Theorem 2.1 and Lemmas 2.1-2.3 we have the following theorem.

THEOREM 2.2. LetS = I — T with T € 7, be a self-adjoint positive and invertible
operator. Then S and S~ have the factorizations along any maximal chain = = {P}

S={+ W_)D\I + W,)
$ = (I+ X,)D( + X_),
where
(a) W, W_, X,, X_are Volterra operators € &, X,, X_ are given by (2.3),
the integral converging in norm, andl + W, = (I + X, )", I + W_= (I + X_)7,
(b) W,, X, have = and W_, X_ have n* as eigenchains,
(c) W, *=W_and X * = X_,
(d) D is a self-adjoint, positive and invertible operator given by (2.4), and
(¢) D —1Ie*, DP = PD forall Per.

3. Chains of orthoprojectors associated with a Gaussian process. Let {X(1), r¢
[a, b]} be.a Gaussian process defined on a probability space (Q, =7, Q) with
E, X(t) = 0 and covariance function ' (s, ), where [a, b] is taken to be either a
finite closed or an infinite interval. For the sake of simplicity we assume that
[0, 1] c [a, b]. Throughout the paper we make the following assumption:

3.1 {X(r)} is continuous in quadratic mean (q.m.) .

For 0 < ¢t <1, let L(X; 1) be the closed linear subspace spanned by X{(z),
0 < 7 < tjof L¥(Q, 57, Q), and let P(1) be the orthoprojector defined on L(X; 1)
with range L(X; r). We are interested in a maximal chain containing the chain
(P(1),0 <t < 1} (or {P(r), 0 <t < 1)).
‘Let
L(X; t4) = N> L(X5 9)
and

L(X; t —) = the smallest closed linear space containing all L(X;s), s<¢t.

Obviously L(X;0) ¢ L(X;0+) and L(X;t —) C L(X; 1) c L(X; t+) for t > 0.
It is also easy to verify that L(X; t—) = L(X; r) for all 0 < r < 1. Since by the
assumption (3.1) the Hilbert space L(X; 1) is separable, the set of discontinuities
D = {te[0, 1]V L(X; t) # L(X; t+)} is at most countable. Let P(z,4) be the
orthoprojector with range L(X; t;+) for ;€ D. The closure of the chain {P(z),
0 < ¢ < 1} consists of {P(f), 0 < ¢+ < 1} and {P(1;+), t;e D}. If D+ @@, it has
gaps (P(1;), P(1;+)), t;€ D. If the dimension of gap (P(t;), P(t,+)) is n; > 1,
we write the space (P(t;4) — P(t;))L(X; 1) as the orthogonal sum of one-dimen-
sional subspaces L(j, i):

(P(t;+) — Pt))L(X, 1) = 513, D L(Jj, i) -
Let J(J, k) be the orthoprojector with range Y;*_, @ L(/, {). Now consider the
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family of orthoprojectors # consisting of 0, {P(r), 0 < 1 < 1}, {P(1;4), t; € D}
and {P(t;) + Q(j, k), k=1,...,n; — 1,t;,e D}. Itisclearthat#isa chain and
maximal.

REMARK 1. A maximal chain containing the chain {£(r), 0 < r < 1} is obvi-
ously not unique, in general. If the dimension of gap (B(1,), P(1;+)) is > 1,
we may take different orthoprojectors J(j, k).

REMARK 2. The gap (P(0), P(0+)), if it existsand P(0) # O, is special. Instead
of filling in the gap (P(0), P(0+)), we may insert any set of orthoprojectors
{0(j)sj=0,1, -+, n} such that Q(0) = 0, Q(n) = P(0+) and dim (Q(j) —
0(j — 1)) = 1. The maximal chain thus obtained will suffice for our purposes.
In other words, we need only a maximal chain # containing {P(r), 0 < ¢t < 1}.

As we shall see the space L(X; 0+ ) is of particular interest. It can be trivial,
can be n-dimensional (1 < n < o), or even infinite dimensional.

ExaMpLE 1. If {X(r), 0 < t < 1}is a Wiener process, then L(X; t4) = L(X; 1)
for all €0, 1], i.e., D = @. If X(0) = 0, i.e., if {X(r)} is the standard Wiener
process, the chain 7 = {P(r), 0 < r < 1}is maximal. However, if X(0) = 0, the
chain 7 = {0, P(t), 0 <t < 1} is maximal and has a one-dimensional gap
(0, B(0) = P(0+)).

ExAMPLE 2. Let {X(r),a <t < b} be an N-ple Gaussian Markov process,
where a < 0, b = 1 (see Section 6). Then L(X;t+) = L(X; t) for all t¢ (0, 1]
and the space L(X; 0+ ) is N-dimensional.

Let ¢ denote the congruence (isometric isomorphism) from L(X; 1) onto the
reproducing kernel Hilbert space (RKHS) H = H(I',) with reproducing kernel
To(s, 1), 0 <5, 1 £ 1, such that ¢X(1) = Ty(+, 1), 0 < 1 < 1. We note the fol-
lowing relation between subspaces of L(X; 1) and of H.

Let ;

Fy={feH|f(s) =0,0=s <1}
and
M(t) = HQ F(1), the orthogonal complement of F(t) .
LeEMMA 3.1. ¢[L(X; )] = M(r).
ProoF. Let fe F(r) and § = ¢~Yf. Then, for all s € [0, ¢],

0 =f(s) = {f(+) T+, 95 = (£ X))
where (., ), (-, +) denote respectively the inner products of H and L(X; 1).
Hence £ | L(X; 1), and thus fe F(r) if and only if ¢='f e L(X; 1) © L(X; t). This
is equivalent to the assertion of the lemma.
Let P(f) denote the orthoprojector on H with range M(r). Then P(r) = ¢P(1)¢".
If # = {P} is a maximal chain containing {P(r), 0 < r < 1}, then, obviously,
the chain = = {¢P¢-'} is maximal and contains {P(r), 0 < t < 1}. We shall
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consistently use the following notation. If A is any linear operator on H, 4
denotes the operator on L(X; 1) given by 4 = ¢~'4¢.

4. Non-anticipative representations of equivalent Gaussian processes. Let <%
denote the o-field generated by the random variables {X(7),0 < ¢ < 1}. Let P
be another probability measure on (2, £2) such that {X(),0 <t <1, P}isa
q.m. continuous Gaussian process with E,X(r) = 0 and covariance function
s, 0. ({X(),0 <1t <1, Q) is, by assumption, a q.m. continuous Gaussian
process with E, X(f) = 0 and covariance function I'y(s, 7).) Assume that P and
Q are equivalent, i.e., mutually absolutely continuous relative to 7.

A non-anticipative representation of a Gaussian process with respect to another
is defined as follows.

DerINITION. The process {X(f), 0 < + < 1, P} has a non-anticipative represen-
tation with respect to {X(r), 0 < + < 1, Q} if there is a Gaussian process {Y(¢),
0 <t £ 1, Q}, having zero mean and I, for its covariance, with the following
property:

4.1 Y(r)e L(X; 1) foreach te]0,1].

REMARK. (4.1) implies L(Y; 1) C L(X; 1) for te [0, 1].

We shall now prove the following main theorem.

THEOREM 4.1. Every Gaussian process {X(1), 0 < t < 1, P} which is equivalent
to a given Gaussian process {X(t), 0 < t < 1, Q} has a non-anticipative representation
with respect to{X(1),0 < t < 1, Q}. The processes are assumed to be q.m. continuous.

The proof is based on Theorem 2.2. and the following necessary and sufficient
conditions for equivalence of P and Q (cf. [5]).

THEOREM 4.2. Gaussian measures P and Q are equivalent if and only if T , defines
an operator S on the RKHS H(T',) with the following properties:

@) Tp(e, ) =8Ty(e, ) for0 =t = 1,

(b) S is a bounded, self-adjoint, positive operator,

() T=1- S¢S,

(d) 1¢a(T), the spectrum of T.

ProoF ofF THEOREM 4.1. Consider a maximal chain = in H(I';) described in
the preceding section. Applying Theorem 2.2 to the operator S defined in
Theorem 4.2, we have

S=(I+WHAI +W,),
where A = D-!. The operator A is self-adjoint and positive. Since D commutes
with all P e =, we have A*P = PA? for all Pern. If we write

F=AI+W,)
then
S = F*F,

because F* = (I + W_ *)A} = (I + W_)At.
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Consider now the operator F on L(X; 1) corresponding to F:

(4.2) F=AI+Ww,).
Define

Y(t) = FX(1), te[0,1].
Since F is a linear operator on L(X; 1), {¥(1),0 < t < 1, Q} is Gaussian. Fur-
thermore, E,Y(r) = 0 and

E Y(s5)Y(1) = (FX(s), FX(1)

= (FTy(+, ), FT (¢, 1))

= (STy(+,8), To(+5 D)

= (Tp(+, 9), FQ(" )

= FP(S, I) .

Thus {Y(#), 0 < ¢ < 1, Q} is a Gaussian process with zero mean and covariance
function I' (s, ). We have also for each r¢ [0, 1],

Y(1) = Ad(1 4+ W) X(1)
= AT + W, )P()X(1)
= MP()(I + W, )P@)X(1)
= P()Ay(I + W, )B(1)X(1)
= P(nY(1).
This shows that Y(¢r) € L(X; ). The proof of the theorem is complete.
We have shown that the non-anticipative representation Y(r) is given by
(4.3) Y(1) = AT + W) X(1) .
We are indebted to Yu. A. Rozanov for the remark that the representation
(4.3) can be cast in the form
(4.4) Y(1) = X(t) + GX(1)
where G is a Hilbert-Schmidt operator in the space L(X; 1) such that for each ¢
(4.5) GL(X;1) S L(X; 1) .

This is easily deduced from Theorems 2.2 and 4.1 as follows:
Write G = F — I. From (4.2) we have

(4.6) G =6, + G,
where G, = At — I'and G, = AiW,
Now

G, = D% — D%) = D% + DI — D).

Hence it follows that G, is Hilbert-Schmidt (i.e. belongs to ), self-adjoint and
that G, P = PG, for all P ¢ #. Since W, belongs to & and has # as an eigenchain
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and since At is a self-adjoint operator with # as an eigenchain we conclude that
G, = AW, belongs to & and has # as an eigenchain. This proves the assertions
(4.4) and (4.5).

In fact, we can strengthen the above remark and show that (4.6) yields a de-
composition of the non-anticipative Hilbert-Schmidt operator G into the sum of
two such operators G, and G, where G, is Volterra. That G, is Volterra follows
from the fact that the Volterra operator W, and the bounded self-adjoint operator
At have the maximal chain # for a common eigenchain. For if (13", P*) is any
gap of # we have

(P+ — MW (P+ — P-) = Ay(P+ — P-)W (P* — P-) = 0.
From Theorem 5.1 of Chapter I of [2] it follows that AiW, has a triangular

representation and is therefore, of course, a Volterra operator. The triangular
representation is given by

4.7) Aiw, = . PA dP
where
(4.8) A= Aw,) — Arw,)* = Aiw, — W_A+.

Let us recall that # is a maximal chain containing the orthoprojectors P(r)
(0 < 1 < 1) defined in Section 3. Since P(1)X(¢) = X(¢) it follows from (4.7) that
(4.9) G, X(t) = \; PHdPX(1) = \; PHAPP()X(1) = \; PHdPX(1)
where 7, is the chain {P e #: P < P(f)}. The last step in (4.9) is easily verified
from the definition of the operator integral.

We thus arrive at an alternate and perhaps more interesting version of
Theorem 4.1.

THEOREM 4.3. Every Gaussian process {X(t), 0 < t < 1, P} (satisfying the condi-
tions stated at the beginning of the section) which is equivalent to a given Gaussian
process {X(t), 0 < t < 1, Q} has a non-anticipative representation Y(t) given by
(4.10) Y(1) = X(1) + (At — D)X(1) + §:, PHdPX(1) .

If we know more about the nature of the (X(r), Q) process it is reasonable to
expect a more ‘“concrete” representation for the operator G, leading to an explicit
evaluation of A* and the replacement of the last term in (4.10) by an expression
involving conventional stochastic integrals. We investigate this question in the
following sections and obtain explicit forms for Y(¢) for some important special
cases.

5. Non-anticipative representation of a Gaussian process equivalent to a Wiener
process. Suppose that {X(r), 0 <t < 1, Q} is a Wiener process with EX(r) = 0,
E(X(r) — X(0))* = t and EX*(0) = ¢* = 0. Then

| Ty(s, 1) = EX(5)X(1)
(5.1) = ¢* + min (s, 1)
= §ox(s, Wx(t, wp(dp)
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where
x(t,u) =1 if 0gsugt

=0 if r<u<gl
and the measure y assigns point mass ¢* at ¥ = 0 and is Lebesgue measure over
(0, 1]. (5.1) implies that there is an isometric isomorphism from H(I';) onto
L*([0, 1], ) which sends ['y(-, 1) to (¢, u), and any element fe H(T',) is repre-
sented in the form
f(0) = §s fwudu) = £(0) + § fiw) du
with f e L*([0, 1], ). Correspondingly, there is an isometric isomorphism ¢ from
L(X; 1) onto L¥([O0, 1], z) such that 6X(r) = (¢, u) and, for any § e L(X; 1), we
have
52 ¢ = f10) + §if ) dBw),
where B(u) = X(u) — X(0) and f = 6¢.
It is easy to see that
OIL(X; ] = (fe L0, 1], 1) | f(s) = 0 ae. p for 1 < s<1}.
The chain = = {0, P(t) = 0P(1)6-*, 0 < ¢ < 1} is maximal and P(r) € = is charac-
terized by
(53) Py = f)(t, u) -
We shall denote by A the operator on L*([0, 1], i) corresponding to an operator
A on L(X; 1) (or A on H(T,)), L*[0, 1], z) being a representation of H(I',).

LEMMA 5.1. Let K(u, v) be the kernel in L*([0, 1] x [0, 1], # X p) corresponding
to a Hilbert-Schmidt operator K on L*([0, 1], u). If the chain = is an eigenchain for
K, then

K@u,vy =0 ae. pgxpu for u>wv

and if, in addition, K is Volterra and ¢* > 0,

K(0,0)=0.
Proor. Since, by assumption,
KP(r)f = P()KP(1)f, 0<r<1,
for /e L*([0, 1], p), it follows from (5.3) that
(5.4 §¢K(u, v)f(v)p(dv) =0 ae. p for u>t.

Hence we have

§a §6 K(u, v)(1 — x(t, )x(t: F@)F (v)(dp)p(dv) = O
for all 0 <r<1 and for any f, §eL*[0, 1], #). Let f(u) = x((a, b], u) =
2(b, u) — y(a, u) and g(v) = x((c, d], v) = x(d, v) — x(c, v). Then, for either
b < cora <d,

§3 § (1 — 2, v))K(u, v)x((a, 8], w)x((c, d], V)p(dp)p(dv) = 0.
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Since the family {y((a, 6], u)x((c, d], v) with b < ¢ or a = d} spans L¥([0, 1] x
[0, 1], Lebesgue measure), we have

(1 — x(u, v))Ku,v) =0 ae. pxp for u,v=0 if ¢*=0

. for u,v>0 if ¢*>0,
i.e.,

Ku,v) =0 a.e. p for u>v=0 if 6*=0
for u>v>0 if ¢2>0.
In the case o> > 0, setting = 0 in (5.4), we immediately obtain
K(u,0) =0 a.e. pu for u>0.
Finally, if ¢* > 0, we have, for f(v) = x(0, v),
Kf = K(0, 0)o*f

and hence, if K is Volterra, K(0, 0) = 0, for otherwise K(0, 0)¢* would be a
nonzero eigenvalue. The proof is complete.

LEMMA 5.2. Let T(u, v) be the L*([0, 1] X [0, 1], » X p) kernel corresponding
to the Hilbert-Schmidt operator T = I — S. Then for f e L¥([0, 1], p),

(5.5) AYf(u) = [1 — o*T(0, 0)}/(0)  with 1 — 6®T(0,0) >0 for u=0
= f(u) for 0<u<l.
Proofr. The only possible gap is (0, P(0) = P(0+)), andso D = I 4+ P(0)[(/ —
P(0)TP(0))~* — I]P(0). Direct verificationshowsthat A = D' = I — P(0)TP(0).
From (5.2) it follows that
Af(u) = [1 — a*T(0,0)]/(0) if u=0
= f(u) if o<u<l.
Hence we have (5.5). If ¢* > 0, then 1 — ¢’T(0, 0) > 0, because A is positive.
Consider now
0Y(t) = AY(I + W ,)0X(1) = AYI + W )x(1, ») .
Applying Lemma 5.1 to the Volterra operator W, we have
T+ Wox(ts +) = x(t +) + S Wi(e, v)x(t, v)p(dv)
=x(t, ) + i W (-, v)dv,

where W, (u, v) is the Volterra kernel (i.e., W, (u, v) = 0 a.e. x for u > v and

W,(0,0) = 0if¢* > 0)in L*([0, 1] X [0, 1], # X p) correspondingto W_. Hence,
by Lemma 5.2,

Y (r)(u) = [1 — &*T(0, 0)]¥{1 + §; W (0, v) dv} for u =0

= x(t u) + ¢ W, (u, v) dv for O<ux<gl.
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Taking £ = Y(r) in (5.2), we thus obtain the non-anticipative representation
Y(t) = [1 — o*T(0, 0)]4{1 + & W, (O, v) dv}X(0)
(5.6) + 3t u) dB(u) + §} 55 W, (1, v) dv dB(w)
=[1 — o*T(0, 0)]}{1 + §¢t W (O, v) dv}X(0)
+ B() + §o{§¢ W.(u, v) dB(u)} dv,
where W (u, v) is a Volterra kernel in L*([0, 1] x [0, 1])and 1 — ¢*T(0, 0) > O.
The non-anticipative representation of Gaussian process equivalent to the standard
Wiener process. If, in particular, X(0) = 0, i.e., if {X(r),0 <t < 1, Q} is the
standard Wiener process {B(f), 0 < t < 1, Q}, then (5.6) becomes
Y(1) = X(0) + §o {§¢ W, v) dX(u)} dv.

This formula has been obtained by Hitsuda (1968) using martingale theory and
Girsanov’s theorem, and also formally by Kailath (1970) using Gohberg-Krein’s
results.

6. Non-anticipative representation of Gaussian process equivalent to an N-ple
Gaussian-Markov process. Suppose that the process {X(7),a <t < 5,0} (a < 0 <
1 < b) with E, X(t) = 0 has the representation of the form

X(1) = §L F(t, u) dB(u) ,
where {B(u), a < u < b} is the standard Wiener process,

F(t,u) = 2551 /5(09,(4)
and {f;(n)}, {9,(u)} satisfy the following conditions.

(@) f;(neC"'a,b],j=1,.--, N, and det (f,(t;)) # O for any choice of N
distinct indices {¢;},

(b) g;(u) e L*([a,b] N (—oo,t])forallt < co,j=1, .-, N,and{g,}islinearly
independent,

(c) o*or*F(t, u)|,., =0, k=0,1, ..., N—2, o¥-'/or"-'F(t, u)|,_, # O on
[a, b].
Then, for 0 <t < 1, we have

(6.1) X(0) = Zinfi(m; + Sox(t, w)F (1, u) dB(u) .
where

7 = §0.9,(8) dB() , j=1,2, -, N.
Let C be the covariance matrix of »;,j=1,2, ..., N, and let H, be the N-
dimensional space consisting of column vectors a with inner product (a, 8) =
a*Cp, * denoting the transpose. From the assumptions (a)—(c) it follows that
the family of functions {y(z, u)F(z, u), 0 < = < r} spans the space L0, ] for
each 0<r < 1. Then (6.1) implies that there is an isometric isomorphism ¢
from L(X; 1) onto the space H, ® L’[0, 1] such that

0X(5) = {(f;(1); x(t, wE(t, w)} e Hy ® L7[0, 1]
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and any element § € L(X; 1) has the representation

(6.2) €= Zia;m; + i e(u) dB(u)

where @ = (a,, - -+, ay)* € Hy; ¢ € L’[0, 1] and 6§ = {a; ¢}. Just as in the pre-
ceding section, the operator on H, @ L’[0, 1] corresponding to an operator 4
on L(X; 1) will be denoted by A.

Since [L(X; 1)] = Hy, ® L0, ] for 0 < r < 1, we have L(X;1+) = L(X; f)
forall 0 < r < 1, and O[L(X; 0+)] = H,. Thus the chain # = {0, P(0+), B(¢),
0 <t < l}isclosed. It has an N-dimensional gap (0, P(0+)). Let H, j=0,
1, ..., N, denote the subspaces of H, consisting of vectors of the form (a,, - - -,
@;, 0, - .., 0)*. Define the orthoprojectors Q;, j =0, 1, -.., N,on H, ® L0, 1]
with range H;. Then the chain 7 = {0 = Q,, Q,, - - -, Qy_;, Qy = P(O+), P(1),
0 <t < 1}, where P(r) = 6P(1)6-", is maximal, all gaps (Q;_,, Q,) being one-
dimensional. Q;, P(r) are characterized by

(6.3) Q,[Hy® L0, 1]] = H,, j=0,1,..., N,
‘ P()[Hy ® L0, 1]] = H, @ L0, 1] .
It is convenient to use the following matrix form for linear operators K on
H, ® L0, 1]. We shall write

K — [Kll KIZJ
Ky Kyl
where K, is an operator on Hy, i.e., an N X N matrix, K,, an operator from
L*[0, 1] into H,, which may be represented in the form of a column vector
(K(i, v)), Ky an operator from H, into L*[0, 1], which may be written as a row
vector (K(u, j)), and K,, an operator on L0, 1]. If we write an element 4 =

{hy; b} e Hy, ® L0, 1], b, e Hy, h,e L*[0, 1], as a column vector, then KA is ob-
tained by the usual multiplication rule.

LEMMA 6.1. Let K be a Hilbert—Schmidt Volterra operator on H, ® L*[0, 1] having
7 as an eigenchain. Then,

(i) K, = (k;;) is a Volterra matrix, i.e. k;; = 0 for i > j,

(i) Ky = (K@, j)) =0 a.e.

(iii) Ky(u, v) = 0 a.e. foru > v,
where Ky,(u, v) is the L*([0, 1] X [0, 1]) kernel corresponding to K,,.

Proor. By assumption,

(6'4) QnKQn = KQ” ’ n = 0, l, 2, LN N,
and
(6.5) P(t)KP(1) = KP(1), 0<t<l,

Let h = {a; 9} € Hy @ L[0, 1], where a = (a;, - -+, @y)* € Hy and ¢ € L[0, 1].
Then, from (6.3) and (6.4),

QyKQyh = (K, a; O} = KQyh = {K, a; Kya}.
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Hence K,, = 0, which is (ii). Also

KQ,h = {(Zj-1 kija;); X3 K(u, ja,)
= {(X3=1 ki @;); 0}
and
Q. KQ.h = {(Zjar kyyays ooy Tiorkaja;, 0, -0, 0)%; 0}

Thus 337_, k;;a; = 0 for i > n. Taking a =e; = (d;;),j =1, -+, N, we have
k;; = 0 for i > j. We have also k,; = 0 for all j, for otherwise e, would be an
eigenvector with non-zero eigenvalue k,,. (iii) follows by the same argument
as in the proof of Lemma 5.1, using (6.5) and taking & = {0; ¢}.

From the lemma we see that the operator W _ is of the form

W, = |:W11 Wl:]
0 W,

where W, is a Volterra matrix (w;,) with w,, = 0 for j > k and the kernel
W(u, v) of W, is a Volterra kernel.
Now the operator At is given in the following form.

LEMMA 6.2.
At = ¥¥, (d,/d;_)NQ; — Q;-)+U—Qu>

where dy =1, d;, >0, j=1,2,..., N, are the principal minors of the matrix
(I — Ty), Ty, being the N X N matrix as the component of the operator T.

Proor.
D=1+ 270Q; — Q! — Q;TQ)™ — 11(Q; — Q;-0)
=1—=0y+ 27.(Q; — Q-0 — Q;TQ,)™Q; — Q;.) -
Now
I'—0Q;7Q; =1-Q; + Q,I(j) — T(j)Q;,

where /(j) is the j X j identity matrix and T(j) = Q,;TQ; regarded as a j X j
matrix. Hence we see that

(I —Q;TQ)' =1—Q; + Q,(I(j) — T(j))Q;
and
D=1-0y+ ZY.(Q; — Q;-0U() — T()™NQ; — Q,-0) -

Regarding now Q; — Q;_, as a j X j matrix with (j, j)th element = 1 and all
other elements = 0, we have

. D=171-— QN + Z;’v=l(dj—l/dj)(Qj - Qj—l) .
Therefore

A=D"'= =1 (d;fd;_)(Q; — Qi) + 11— Qy
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and
At = =1 (di/dj—l)é(Qj —Q;,.)+1—-0Q,.

Thatd; > 0,j=1,2, ..., N, follows from the positive definitenessof $ = I — T.
In the matrix form At can be represented as

bl
0 1

where A, is the diagonal matrix with diagonal elements (d;/d;_,)}.
Thus we have

AT + WS (0); x(t, u)F (2, w)}
= {(d;/d;_ )M f5(0) + Ziina wi [ult) + §6 W), V)F(1, v) dv];
2t W E (1, u) + §5 Wa(u, v)x(t, v)F(2, v) dv}
and hence, from (6.2),
‘ Y(r) = AT + W) X(r)
(6.6) = Xi=¢(0n; + §5 F(t, u) dB(u)
+ §5{§5 Wa(u, v) dB(u)}F(t, v) dv,
where
(1) = (d;ld; )HS(1) + Ziojawi [ut) + S W), v)F(1, v) do},
Wu(j,v)eL0,1],j=1,2,..-, N,

and W(u, v) is a Volterra kernel in L([0, 1] x [0, 1]).
REMARK. (6.6) may be written in the form

(6.7 Y(1) = R75b,()X70(0) + §§ F(t, u) dB(u)
+ S(t) {Sg W (4, ) dB(")}F(f, v)dv,

where X7(0) are the derivatives of X(r) at # = 0. (6.7) may be obtained directly
using a different maximal chain containing {P(r), 0 < 1 < 1}.

7. Radon-Nikodym derivatives. Hitsuda [3] showed also that if {X(r), 0 < ¢+ <
1, Q} is the standard Wiener process and if a Gaussian measure P is equivalent
to Q, then the Radon-Nikodym (RN) derivative dP/dQ is given by

(7.1)  dP|dQ = exp {§q ({¢ k(u, v) dX(u)) dX(v) — % §; (§3 k(u, v) dX(u))* dv}

where k(u, v) is a Volterra kernel in L*([0, 1] x [0, 1]). In [4] Kailath derived
the above form of RN derivative from Shepp’s result [8] using a certain identity
for Carleman-Fredholm determinants. In this section we shall obtain a similar
form of RN derivatives for the case considered in Section 5.

First we note that, for any equivalent Gaussian measures P and Q correspond-
ing to general Gaussian processes {X(7),0 < r < 1, P} and {X(1),0 <t < 1, Q}
with E, X(t) = E, X(t) = 0 and covariance functions I',, I'y, the RN derivative
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dP[dQ is given by
A;
1 — 2

X7}

where {1,} are the eigenvalues of the operator T = I — S on the RKHS H(I'y)
defined in Theorem 4.2 and X; = ¢~%¢;, ¢, denoting the eigenfunction corre-
sponding to 2; (cf. e.g. [7]).

Suppose now that {X(r),0 < ¢ < 1, Q} is a Wiener process (see Section 5).
Then, because of the isometric isomorphism between H(I'y) and L*([0, 1], p),
{2,}and {p,} can be taken to be the eigenvalues and eigenfunctions of the operator
T e &, on L([0, 1], ¢), and

X; = ¢;(0)X(0) + §5 ¢;(u) dB(u) .
Let U be the Fredholm resolvent operator of T at 1, i.e.,
T+U(I-=T)=1

and let U(u, v) be the corresponding kernel. (We shall denote by A(u, v) the
L*([0, 1] x [0, 1], # x p) kernel corresponding to an operator 4 € &; on L¥([0, 1],
#).) Then the kernel U(u, v) has the expansion

(7.2) dP/dQ = lim, T[7_, (1 — 2;)"*exp {—% 25

U ) = B W)

We define the double integral {} §3 H(u, v) dX(u) dX(v) for any symmetric kernel
H(u, v) € L([0, 1] X [0, 1], £ X ) by
§6 §o H(u, v) dX(u) dX(v)
= H(0, 0)[X*(0) — ¢*] + X(0) §j H(u, 0) dB(u)
+ X(0) § H(0, v) dB(v) + §} 1 H(u, v) dB(u) dB(v),

where the last term is the usual 1td’s double Wiener integral. This double in-
tegral is quite similar to the usual one and we have
4;

(X = 1) = 5 U, ©) dX() dX(2) -

lim, »7_,

Let §,,(4) denote the Carleman-Fredholm determinant of an operator 4 € &, i.e.,

04(2) = I [(1 — 22,(4)) exp (42,(A))] »

where 1,(4) are the eigenvalues of 4. If A4 is Volterra, then, by definition,
d,(4) = 1. Since

. A;
tim, T30 (1 = ) exp {—3 Xy -2}
J

= lim, H?=1[(1 * 7 ijz)exp{_l iz}T

= [0s(=D]*,
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(7.2) can be written in the form
(1.3) dP/dQ = [8,(—1)]* exp {—} § § U(u, v) dX(4) dX(v)} .
We have, by Theorem 2.2,
I+U=S8"'=(+X,)D{I + X_).
Define the operator V' by '
I+ V=(0+ X))+ X).
Then the operator
U—V=(I+X)D-DH{I+ X))
is 0 or one-dimensional according as X(0) = 0 or X(0) + 0, because
D — I = P(O)[(I — P(0)TP(0))~* — I1P(0)
and
U—V=PO)I + X, )D— DU+ X_)P(O).
We apply the following relation to U and V (see [1] page 172): if 4, Be &, and
A — B is nuclear, then, for 4 such that (/ — 14)~! exists,
0,4(2) = 05(A)[Dp,4(A)] " exp {Atr (4 — B)},
where Dy, ,(4) is the perturbation determinant of 4 by B — 4, i.e.,

Dy () = TI5-: (1 — vy

and {v;} denote the eigenvalues of the operator A(B — A)(I — A4)~'. Then we
have
Bu(—1) = 8y(= D[ Dyu(— D] exp {—tr (U — V)]
Since the eigenvalue of the one-dimensional operator U — V {(for the case
X(0) # 0) is 6°T(0, 0)/(1 — ¢°T(0, 0)), which is easily found by applying Lemma
5.1to X, and X_ = X, *,
tr (U — V)= (U — V)(u, u)p(du)
= (U - 7)0,0).s
a’T(0, 0)
1 — 6®T(0, 0) ’

and the eigenvalue of the one-dimensional operator (U — V)S is ¢°T(0, 0), and
hence
D,y(—1) = 1 — ¢*T(0, 0) .

Furthermore, from the identity (see [1] page 169): for 4, Be &, and I — C =
(I — A)(I — B),

3.(1) exp {tr (4B)} = 3,(1)35(1) ,
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it follows that
O,(—1) = exp{—tr (X, X))}.
Thus we have

(4 [(=DP = (1 =T, 0) exp {1 T eTo)
X exp {—} tr (X, X.)}.
Now consider
§3 §4 Uu, ) dX(u) dX() = §3 53 (U — V)(u, v) dX(u) dX(v)
+ 5358 (X, + X)(u, v) dX(u) dX(0)
+ §o §o (X4 X_) (4, v) dX(u) dX(v) .
Since (U — V)(u, v) = 0 a.e. p X p for (u, v) # (0, 0), the first term is

7(0, 0)

(U = V)0, 0[X*(0) — 0] = ~ xx0) — T, 0)

— a*T(0, 0) 1 — ¢’T(0, 0)
The second term can be written as the iterated integral
2 §0{§5 Xy (u, v) dX(u)} dX(v)
using properties of stochastic integrals and noting that X, (0, 0) = X_(0, 0) = 0
if 6> > 0. The third term is equal to
55 {85 X (1, v) dX()pu(dv) — tr (X, X)),
which follows easily from the definition of the double integral. Therefore we.
have
exp{—4 §i §s Uy, v) dX(u) dX(v)}
1 T(0, 0) 1 a*T(0, 0)
7.5 = ex {—ﬁ——_—XZO}ex {__}
(7-3) PImr T wr0,0) VP12 T— o100, 0)
X exp [—§5{§5 X (u, v) dX(u)} dX(v)
— 3 G {58 X, (4, v) dX(0)}(dv)] exp {} tr (X, X)) .
Substituting (7.4) and (7.5) in (7.3), we obtain the following form for the RN
derivative.

_ 1 T(0, 0)
dP/dQ = (1 — a*T(0, 0))-* ex {______’ xzo}
40 = (1 = a'T(0, ) exp | b X0)

X exp [—§o{§5 X\ (u, v) dX(u)} dX(v)

— 3 5o {15 Xi(u, v) dX(u)}1(dv)] .
In [8] Shepp has derived the RN derivative for the more general case when X(r)
is a so-called “free” Wiener process. Our method is different and, we feel, can
be used to deduce his result in its full generality.
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Note added. After this paper had been submitted the authors learned from

Professor T. Kailath that he and Dr. D. Duttweiler have also obtained Theorem
4.1 of this paper. They also derive a general likelihood ratio formula and consider
several applications from the engineering standpoint.

(1
2]
3]
(4]
(3]
(6]
(7
(8]
9]
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