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SOME STRASSEN-TYPE LAWS OF THE ITERATED
LOGARITHM FOR MULTIPARAMETER
STOCHASTIC PROCESSES WITH
INDEPENDENT INCREMENTS!

By MiICHAEL J. WICHURA

»

University of Chicago
For processes with independent increments and multi-dimensional
time parameters, analogues of Strassen’s version of the law of the iterated

logarithm are proven using standard large-deviation and truncation tech-
niques. Applications to empirical processes are included.

1. Introduction. In 1964 Strassen introduced the following striking form of
the law of the iterated logarithm. Let X = (X(f)),», be a standard Brownian
motion process. For each n > 3, let H, be the random function defined on
[0, 1] by setting H,(s) = X(ns)/(2n log log n)* for each 5. Then with probability
one, the sequence (H,) is relatively compact in the uniform topology on CJ0, 1],
and its limit points coincide with the class of absolutely continuous functions
which vanish at 0 and whose derivatives lie in the unit ball of Ly([0, 1]) under
Lebesgue measure. Using the Skorokhod imbedding theorem, Strassen also de-
duced the corresponding law for the partial sums of independent identically
distributed random variables with zero means and finite variances.

In this paper we discuss Strassen-type laws of the iterated logarithm for pro-
cesses with independent increments and multi-dimensional time parameters.
Since the Skorokhod imbedding theorem is not available in this context (cf.
Pyke (1972) Section 8), we develop all our results by making use of large-devia-
tion techniques due to Kolmogorov (1929), and truncation techniques due to
Hartman and Wintner (1941)and Feller (1968). In conjunction with an imbedding
theorem involving Poisson processes, our theorems yield a Strassen-type law of
the iterated logarithm for empirical processes. This law in turn has a whole
family of corollaries, including Finkelstein’s (1971) result.

Our main results are stated in Section 2. Some spade work for the proofs is
done in Section 3; the proofs themselves are given in Sections 4, 5, and 6.

We conclude this section by establishing some notation and terminology. Let
g be a positive integer, and put T =[0, c0)?. A point ¢ in T is written ex-
plicitly as (t®, - . -, #?), or simply (#*); ¢ denotes the point ¢ such that ¢ = ¢,
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1 < p < q. For points ¢, u in T, |t| denotes ], ,<, !, and tu denotes the point
(tYu®, ..., 1 2u?). AnintervalinTisa recté.ngle, all of whose sides are parallel
to the coordinate axes. [a, b] denotes the interval [, ., [a®’, b®]; a is its lower
left corner, b its upper right corner.

Each ¢ in T determines 2¢ quadrants

Qx() ={ueT: t"Ru?, 1 <p=q}

as R varies over the 2¢ g-tuples (R,, - - -, R,), in which each R, is one of the
relations < and >. D(T) denotes the space of real-valued functions x on T
such that

(1.1)  xi(f) = lim,_, .o x(u) exists for each of the 2¢ quacrants Q = Qg(?)

(1’2) x(t) = xQ(s,...,s)(I)

for each ¢ in T, and
(1.3) x(f) = 0  whenever any coordinate of ¢ equals 0.

The increment, x(A), of x in D(T) over a subinterval 4 of T is the gth differ-
ence of x around the corner points of 4 (e.g., for ¢ = 1 and 4 = [a, b], x(4) =
x(b) — x(a)). Similarly, the jump, J(x) of x in D(T) at the point ¢ in T is the
gth difference of the 2¢ limits x,,; in other words, J,(x) is the limit of x(A) as
the diameter of A4 tends to 0, with 4 varying among intervals having ¢ as an
interior point.

U, denotes the unit cube [0,1]. L, = {te U,: min, . #» = 0} is the lower
boundary of U,. Suppose that v is a measure on the Borel subsets of U, and that
x and y are two real valued functions on U,, such that y is integrable with respect
to . x is said to be the indefinite integral of y, and y the derivative of x, with
respect to v, written -

x=20), or equivalently, y = (%), ,
if
x(t) = $10,07 Y(S)v(ds) forall ¢t in U,.
When v is Lebesgue measure, the dependence on v is suppressed and we write, e.g.

(1.4) x= ), y=%.

L,(U,, v) denotes the set of y’s which are square-integrable with respect to v;
Ly(U,)is Ly(U,, v) when v is Lebesgue measure. Z(U,) denotes the space of func-
tions x on U, which satisfy (1.1) and (1.2); it is to be noted that x ¢ Z(U,) is not
required to satisfy (1.3).

T is partially ordered by stipulating that s < ¢ if and only if s < ¢ for each
p. This partial ordering applies also to N,, the set of points in T all of whose
coordinates are positive integers.

The indicator function of a set A is written /,. 2 denotes Lebesgue measure,
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on whatever domain is pertinent at the time. For ¢ > 0, log ¢ and log, ¢ =
log (log c) have their usual meanings except near 0; we take log ¢ (resp. log, ¢)
to be 1 over [0, ) (resp. over [0, e°)).

2. Statement of results. THROUGHOUT THIS SECTION, X = (X(1)),.,
DENOTES A PROCESS, DEFINED ON SOME PROBABILITY SPACE
(Q, 22, P), SUCH THAT (i) THE INCREMENTS OF X OVER DISJOINT IN-
TERVALS ARE INDEPENDENT, (ii) EACH X(f) HAS ZERO MEAN AND
FINITE VARIANCE, AND (iii) ALL SAMPLE PATHS OF X LIE IN D(T).

We are interested here in the almost sure sample path behavior of X as ¢
“grows large.” Let t,, n > 1, be an increasing éequence of pointsin 7. To keep
track of the “history” of X up to time ¢,, put 0,2 = Var (X(¢,)) and define a
random function H, on U, by

2.1) H, (1) = X(u1,)/(20,} 10g, 0, .

Let
K ={A: g, y(ndr < 1}

be the class of functions on U, which are indefinite integrals (cf. (1.4)) of func-
tions in the unit ball of L,(U,) under Lebesgue measure. Let d denote the uni-
form metric for functions on U,; thus d(x, y) = SUp,cp, [X(#) — y(u)| = [|x — |l
The following is the simplest of several theorems, each of which asserts that
(under appropriate conditions) almost all sample points w in Q have the property
that the functions H,(+)(w), n = 1, eventually resemble only functions in K, and
repeatedly resemble each x in K:

THEOREM 1. Let H, be defined by (2.1). If X has stationary increments, and if

(2.2) g, — oo and A [ R
then

(2.3) P({lim sup, d(H,, K) = 0}) = 1
2.4) P(N,ex {liminf, d(H,, x) =0})) = 1.

This result contains that of Pyke (1972) for the standard Brownian motion
process on T3 it applies equally well, e.g., to a mean-centered homogeneous
Poisson process. The requirement in (2.2) that ¢,> = Var (X(z,)) not tend to in-
finity too fast is not needed for (2.3), but is for (2.4) (for example, when X is
the standard Brownian motion process in univariate time (¢ = 1), d(H,, 0) — 0
wplfort, =0, =e" n>1). In view of the compactness of K (see Section
3), (2.3) and (2.4) are equivalent to the statement that wp 1 the sequence (H,)
is relatively compact and has K as its set of limit points. Also, (2.3) implies
that the H,’s are uniformly bounded and asymptotically equicontinuous; it
follows that the discrete sequence (t,) can be replaced by any increasing family
(f9)9>o Of points in T for which Var (X(t,)) tends continuously to co as 6 1 co
(cf. Lemma 4.4 below).
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In order to state analogues of Theorem 1 in the case of non-stationary incre-
ments, we shall have to make the structure of the process X more explicit. In
doing so, we will call upon the following lemma, which can be proved along the
lines of Doob (1953) page 415:

LeEmMa 2.1. Let S be a countable subset of T such that min, s® > 0 for each s
in S. Let (§,),.s be a family of independent random variables having zero means and
finite variance; suppose moreover that

ZaeBnS Var (ea) < oo

for every bounded subset B of T. Then there exists an independent-increment pro-
cess B = (E(1)),.r, defined on the same probability space as the §,’s, such that

(@) P{E(t) = X16.}) = 1, for each t in T and each enumeration (S,),z, of
the points of S in [0, t],

(b) the sample paths of E lie in D(T).

() J(E)=O0foralltgsS, and P{J(E) =§&}) = 1 foralltes,

(d) E(E(f)) = 0 and Var (E(t)) < oo forall tin T.

We will refer to the process E in Lemma 2.1 as the partial sum process formed
from the &.’s; it is, of course, only unique up to an almost sure equivalence.
Our assumptions about the sample path and moment properties of X imply that
for each ¢ in T, the limits X,  (cf. (1.1)) can be taken in the sense of L,(P)
convergence (cf. Doob (1953) page 108), and thus that the jump J,(X) has zero
mean and finite variance. Let

(2.5) A = {teT: Var (J,(x)) > 0}

be the “fixed discontinuity” set of X. The J,(X)’s with ¢ in A are independent
random variables and

(2.6) D ienna Yar (J(X)) < oo -

for any bounded subset B of 7. Thus we can use Lemma 2.1 to form a partial
sum process Y from the variables J,(X), re A. We will call Y the partial sum
component of X. Now put Z= X — Y. Zis a process with independent incre-
ments which

(a) is independent of Y,

(b) has sample paths in D(T), and for which

(c) J(Z)y=0wp 1,

(d) E(Z(t)) = 0 and Var (Z(t)) < oo
for all ¢+ in T. It follows (e.g., by using the techniques of Gikhman and
Skorokhod (1969) Chapter 6) that all the increments of Z have infinitely di-

visible distributions, so we may call Z the infinitely divisible component of X. Let
IT be the Lévy measure associated with Z, defined on the Borel sets of T X R' by

I(A4) = E(Xier L((1, I(2)))) 5
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and for measurable B C T let I, be the measure defined on the Borel sets of
R' by

2.7) I,C) =II(B x C).

IT,(C) is just the expected number of jumps of Z which occur at times in B and
which lie in C. Write II, for IIy ,;. The log characteristic function of Z() can
be written in the form

(2.8) log E(e%2®) = — {32 + §ruo (€5 — 1 — il&)II(dE)

where v, is the variance of the Gaussian component of Z(rf). The variance of
Z(¢) itself is v, + (.., §*I1,(d5).

We are now going to give extensions of Theorem 1 under conditions similar
to those used by Kolmogorov (1929), and by Hartman and Wintner (1941). In
each case, we will require the variance structure of X to be homogeneous in
the limit, in the sense that

(2.9) lim,_., Var (X(t, A))/o,? = (A)

for each interval 4 c U,. To illustrate this condition, suppose that ¢ = 1 and
that X is constructed in the usual way from the partial sums S, of independent
random variables by setting X, = S, for ¢ in [Var (S,), Var (S,,)), n = 0 (S, = 0).
Then (2.9) is satisfied if we take ¢, = Var (S,) and assume that (2.2) holds.

For the “Kolmogorov” version of Theorem 1, we impose bounds on the mag-
nitude of the jumps of X. Write ||J(X)||.. for the usual essential supremum of
J(X), and ||IL||, for inf {6 > 0: IL,{§: |§| = b} = 0}. Recall that A is defined
by (2.5).

THEOREM 2. Let H, be defined by (2.1). Suppose that (2.2) and (2.9) hold,
and that

(2.10) SUPese, tea [V X)llw/0n = 0(1/(l0g, 0,7)%)
2.11) SUP.y,, |1 TLel|w/00 = [1IL,||o/o, = 0(1/(log, 0,7)?)
asn— oco. Then (2.3) and (2.4) hold.

If X is a pure partial sum process, then Theorem 2 gives us a Strassen-type
law of the iterated logarithm corresponding to Kolmogorov’s classical result. If
X is purely Gaussian, then (2.10) is vacuous (A is empty) and (2.11) is trivially
satisfied (II, = O for all ¢ in T), so we get an extension of Pyke’s result. The
hypotheses of Theorem 2 can be modified so as to make applicable various
convergence rate results for the central limit theorem (cf. Chover (1966) and
Tompkins (1971b)).

Now put F, =0, ] and set F, =[0,1,] — [0, ¢,_,] for n = 1; note that
2imsn Fm = [0, ¢,]. Let I, be defined by (2.7). A “Hartman-Wintner” type
truncation scheme and Theorem 2 lead to the following result, in which con-
straints are imposed on the large jumps of X:
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THEOREM 3. Let H, be defined by (2.1). Suppose that (2.2) and (2.9) hold, and
that there exists a positive number 6 and a positive measure A\ on [, oo] such that

(2.12) Tieryns PAVD| 2 ¢}) < Var (X(F,)A(le, o))
(2.13) L, (& : 6] = ¢} < Var (X(F)A([e, o))
forallc = dandalln = 1, and

(2.14) § EA() = FA(D, 00)) + 2 §7 EA((E, 00)) d < oo

Then (2.3) and (2.4) hold.

When X has stationary increments, (2.12) is vacuous, and (2.13) and (2.14)
hold for any 6 > 0 with A defined by

A(fe, ) = (I ([e, 00)) + Ty ((— o0, —c]))/Var (X(U,)

(¢ = 9); (2.14) is satisfied because of our assumption of finite variances. Thus
Theorem 1 is a special case of Theorem 3. In view of (2.14), condition (2.12)
is only slightly stronger than the bound resulting from Chebychev’s inequality.
When the partial sum component Y of X has only finitely many jump points
(s in A) in each F,, condition (2.12) can be replaced by the pair

(2.15) lim inf, ¢,2/N, > 0
(2.16) P{[V(X)| = ¢}) £ A([¢, ) forall ¢>=d andall tel;

here N, denotes the number of points ¢ in [0, 7,] N A. Conditions (2.2) (2.9),
(2.14), (2.15), and (2.16) are essentially those used by Hartman and Wintner for
their classical law. The last three of these conditions are satisfied, e.g., if Ais
a lattice and if the J,(X)’s for t€ A are independent and identically distributed
(with zero means and finite variance).

The above results yield limit theorems for various functionals of the H,’s.
Most of these are based on the following lemma, which is analogous to the so-
called mapping theorem in weak-convergence (cf. Billingsley (1968) page 34):

LEMMA 2.2. Let (Q, B, P) be a probability space, let S and S’ be metric spaces,
and let C be a compact subset of S. Let (3¢,) be a sequence of mappings from Q
into S such that for P-almost all @ in Q, the sequence (5¢,(w)) is relatively compact
in S and has C as its set of limit points. Let (®,) be a sequence of functions from
Q X Sinto S, and let ® map Sinto S'. Let G be the set of sample points @ in Q
such that

(2.17) D, (v, x,) — D(x)

whenever x, € range (¢ ,(w)), xeC, and x,— x. Suppose that Ge <& and
P(G) = 1. Then for P-almost all w, the sequence (D, (w, 5Z,(w))) is relatively
compact in S’ and its limit points coincide with the compact set C' = ®(C); more-
over, if (@, (0, £, (w))) is a subsequence which converges to a point y in C', then
the distance between ¢, (w) and the set {x € C: ®(x) = y} tends to zero.
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The statement of Lemma 2.2 simplifies somewhat if the ®@,’s are nonrandom,
i.e., do not depend on w. Here are some consequences of Theorems 1, 2, and
3, each of which follows from Lemma 2.2. In each case we suppose that the
conclusions (2.3) and (2.4) in Theorem 1 are known to hold.

I. Wpl,

limsup, H,(1) = 1;
moreover, for large n, H,(1) is near 1 iff H, is near the function
u— |u| melU).
II. Wpl,

lim sup, § |(H,(u)| du = (1/3%)¢ and lim sup, (§ H,(u)? du)t = (2/7)?;
moreover, for large n, ||H,||, is near (1/3%)¢ iff |H,| is near the function

= Jispsa @1 — (1 — u®)?)
and ||H,||, is near (2/z)? iff |H,| is near the function

# = Ilispsq (8/m)? sin ((=/2)u) .
In general, for any a > 1, the almost sure lim sup, of ||H,||, is the gth power
of the corresponding value in the univariate case (Strassen (1964) page 219) and
the nonnegative function in K that delivers this value is a “product” function,
each of whose components is the corresponding function in the univariate case
(Strassen (1964) page 221).

II. Let g,, n = 1, and  be finite signed measures on U,. Suppose that p,
converges weakly to y, in the sense that p,(f) — p(f) for all continuous real-
valued functions f on U,; this is the case if, e.g., one has (i) z,([0, ¢]) — «([0, u])
for all continuity points u € U, of p, and (ii) sup,, ||£,/|.. < oo (here || ||.. denotes
total variation). Condition (ii) is also necessary (cf. Royden (1963) page 171 and
256). Wp 1, we have

(2.18) lim sup, § H, dp,, = (§ M(u)* du)* = || M|,
where M is the function defined on U, by

M(u) = p([u, 1)) ;

moreover § H, dp, is near ||M||, iff H, is near the indefinite integral of M/||M||,.
These conclusions even hold for random p,’s which converge weakly to » wp 1.

This result has obvious applications to Riemann-integral type functionals of
the H,’s. Another class of limit theorems arises when the sample paths of the
H,’s are of bounded variation (see Gikhman and Skorokhod (1969) for necessary
and sufficient conditions relative to the infinitely divisible component of X). In
this case we can define a (random) measure 7, on the Borel sets of U, by stipu-
lating that 7,([0, #]) = H,(u) for all ue U,. Define M, on U, by M,(u) =
#a([u, 1]). Fubini’s theorem implies that § H, dy, = § M, dy,, and so (2.18)
becomes

(2.19) lim sup, § M, dy, = ||M]], .
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For example, suppose that ¢ =2 and that &, ,, j, k = 1, are (independent)
random variables such that the process X with

X(5: 1) = Zisonsi§in
satisfies the hypotheses of one of the above theorems, with ¢, taken to be the

point (n,n) e T, for n > 1. Then for any function M of bounded variation on
U,, (2.19) (with M, = M for all n) implies

(220 lim sup,, 33; c<n M(j[n, k[n); 4/(20,* log, 0,1)} = || M]|,

wp 1. The univariate version (¢ = 1) of (2.20) extends a series of results due
to Gal (1951), Stackelberg (1964), Gaposhkin (1965), and Tompkins (1971a). It
is easy to go on to give a Strassen-type version of (2.20).

The above results have all dealt with the sample path behavior of the process
X as the time parameter ¢ grows large along a fixed sequence. It is natural to
ask what happens if ¢+ simply grows large, without any restrictions. The two
theorems below deal with the situation in which ¢ tends to infinity in the sense
that each coordinate of r tends to infinity. In this connection, we shall write
lim,_, for lim,;)_e;<,5,- Consider the random process, H,, te T, defined on
U, by
(2.21) Hy(u) = X(ut)/(2q0,* log, g,%)}

(0> = Var (X(#))). Comparing (2.21) with (2.1), one sees that ¢, in (2.1) has
been replaced by ¢, the manner of indexing H has been changed, and, most im-
portant, a factor of g* has been introduced into the normalizing constants. The
following theorems show that under conditions somewhat more stringent than
those used above, the H,’s are wp 1 relatively compact as t — co and have K as
their limit points.

Here is the analogue of Theorem 2:

THEOREM 4. Let H, be defined by (2.21). Suppose that

(2.22) lim,_, o2/ exists and is finite and positive
(2.23) tim, .., ((10ga [£}/|1])* SUP,<yises [Ms(X)]|e = O
(2.24) lim, .., ((1og, [f)/}¢[)*|TL,|l.. = 0.

Then

(2.25) P({lim,_,, sup,,,d(H,, K) = 0})
=1 = P(N,ex {lim,_ inf,,, d(H,, x) = 0}) .

The conditions of Theorem 4 are met when X has stationary imcrements; thus
for standard Brownian motion on T, Theorem 4 gives a Strassen-type version
of Zimmerman’s (1972) law of the iterated logarithm. Condition (2.22) is a
somewhat more stringent version of (2.9); we point out though that the process
used to illustrate (2.9) statisfies (2.22) as well. It is important to note that
Theorem 4 would no longer be valid were the limits on 7 to be taken simply as
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|f| — oo, instead of as each coordinate of ¢ tends to co. To see this, take ¢ = 2
and let X be Brownian motion. If (¢,) is a sequence of points in T such that
|£,| — oo sufficiently slowly while the corresponding first coordinates 7, — co
sufficiently rapidly, then lim sup H, (1)/(|t,| log, |t,])} = oo wp 1, in view of the
near independence of the standard normal random variables X(z,)/(|t,))}, n = 1.
This example suggests, and it is indeed the case, that Theorem 4 remains in
force when all the passages to the limit on ¢ are taken as |f| — co while min, [¢?|
remains bounded away from 0. Under this kind of limiting procedure, Orey and
Pruitt (1973) have established the strong (i.e., integral-test) form of the law of
the iterated logarithm for Brownian motion on T (actually, Orey and Pruitt deal
with the path behavior near 0; a time inversion gives the corresponding result
near oo).

Foreachkin N, put C, = {teT: k» — 1 < t» < k®;1 < p < q}. Theo-
rem 4 and a modification of Feller’s (1968) truncation scheme lead to

THEOREM 5. Let q = 2, and H, be defined by (2.21). Suppose that (2.22) holds
and that there exists a number 0 > 0 and a positive measure A on [d, oo) such that

(2.26)  max(Tiecyns PV Z ), T8 6] = ) < A(lc, o)
forallc = 6 and all k in N, and

(2.27) §5 (6 logr §)/log, & A(d€) < oo .

Then (2.25) holds.

To put this result in perspective, let V,, ke N,, be a family of i.i.d. random
variables, and define a process 2" on N, by setting

7)) = Xz Vi
When ¢ > 2, Theorem 5 and Lemma 5.1 below imply that
(2.28) P({lim sup, | 7(k)|/(|K| log, [k])* < oo}) = 1

holds if and only if

(2.29) E(V,)=0  and E((V,2log®* |V ])/log, | Vi]) < oo .
However, when ¢ = 1, (2.28) is known to be equivalent to '
(2.30) E(V;)=0  and E(V)) < o

(cf. Strassen (1966) or Feller (1968)). A glance at (2.29) and (2.30) shows why
one needs ¢ = 2 in the statement of Theorem 5. The difference between the
cases ¢ = 1 and ¢ > 2 arises primarily because it is in precisely the latter case
that one can deduce the finiteness of E(¥,?) from (2.29). By way of comparison,
it is of interest to note that there is no such discontinuity with regard to ¢ in
the strong law of large numbers; Smythe (1973) has shown that lim, 2 (k)/|k| = 0
wp 1 if and only if E(V,) = 0 and E(|V,|log?* |V}]) < oo .

Theorems 4 and 5 imply almost sure limit results for various functionals of
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the H,’s. The general form of these derived results is given by the “net” version
of Lemma 2.2. In particular, applications I, II, and III above carry over with
obvious modifications to the present setting.

We turn now to a consideration of the law of the iterated logarithm for em-
pirical distribution functions. Let x be an arbitrary probability measure on U,

and let V,, V,, - .. be independent U -valued random vectors, each with distri-
bution p. Define processes Y, on U, by
(2'31) Yn(u) = I[O,u]( Vn) H
and set
Sn = ZmSn Ym .

Define H,* on U; x U, by

(2.32) H,#(s, u) = (Staor(#) — ESpu(#))/(2n l0g, n)t
= [nS)(Fian(4) — F(w))/(2nl0g, n)* ,

where F, = (1/k)S, is the sample empirical distribution function based on

Vi, -+, V,, and F is the distribution function of x. H,* takes values in
(U, x U,). Let
(2.33) v=2xp

be the product of Lebesgue measure on U, and ¢z on U,. Let K* denote the set
of functions x in Z(U, x U,) for which there exists an % in Ly(U, x U, v)
such that

(2.34) x =S (X)
(2.35) {x*dv < 1
(2.36) x(s,1) =0 forall s in U;.

Then we have

THEOREM 6. Let H,* be defined by (2.32). Wp 1 the sequence (H,*) is relatively
compact (with respect to the uniform metric d) and its limit points coincide with K*.

Theorem 6 is not a direct consequence of our earlier results, because the Y,’s,
though independent and identically distributed, are not real-valued. To prove
Theorem 6 we will imbed (S,) in a suitable Poisson process on [0, c0) X U,,
make use of (a variant of) Theorem 2, and then use Lemma 2.2. We note that

H,(1, +) = n(F, — F)/(2nlog, n)},

so Theorem 6 (with ¢ = 1 and F continuous) stands in the same relation to
Finkelstein’s (1971) law as Strassen’s (1964) law does to the classical law of the
iterated logarithm. For some related results, see Kiefer (1971) and Miiller (1970).
Here are some applications of Theorem 6.

IV. Let D, = sup,.y, |F.(#) — F(u)| be the Kolmogorov—-Smirnov distance
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between F, and F. Put

(2.37)  (p) = SUPyey, [F(u)(1 — F())]* = sup,e o [(A(1 — p(A)]F,

where 22 denotes the class of all intervals in U, which contain the point 0; if
F is continuous, c(y¢) = 4. Let %, be the class of 4’s in % which realize the
supremum in (2.37), and let S“(x) be the class of functions x in Z(U, X U,) of
the form

(2.38) x(s, u) = sd(u)
where ¢ is the indefinite integral, relative to x, of the function (I, — p(A))/c().
for some 4 in &%,. When g = 1 and p is the uniform distribution on U, there

is just one x in S4(y); the corresponding ¢ is linear on [0, 1] and on [, 1], with
¢(0) =0, ¢(3) = 4, and ¢(1) = 0. In general, we have

(2.39) lim sup, nD,/(2n log, n)t = c(x)

wpl. For ¢ =1 and F continuous, (2.39) goes back to Smirnov (1944) and
Chung (1949); Pyke (1971) conjectured that (2.39) holds for arbitrary F. Kiefer
(1961) has (2.39) for ¢ = 1 and F continuous. Our result gives the added infor-
mation that, when # is large, nD,/(2n log, n)! is close to ¢(y) iff H,* or —H * is
close to the set SA(p).

We may strengthen (2.39) as follows. Let .Z2* be the class of all intervals in
U,. Then wp1

(2.40)  limsup, Sup,. 4. (n[F,(A) — p(A4)|/(2n logyn)* — [p(A)(1 — (4))]) = 0.
This extends a series of results due to Cassels (1951), Phillip (1969), and Zaremba
(1971); see also Phillip (1971).

V. Our next application of Theorem 6 has as a corollary a Strassen-type ver-
sion of (2.39). Let I' be a (semi-) norm on Z(U,) which is majorized by the

uniform norm || ||. For example, I' may be the uniform norm itself, or the L,
norm x — (§ |x(#)|°x(du))/* (a = 1). Define processes H," on U, by
(2.41) H,(s) = T'(H,(s, +)) -

Put ¢ (p) = sup {I'(w): we W}, where W, consists of the functions w in Z(U,)
for which there exists a w in L,(¢) such that

w= W), §y#dp=1, and w(1)=0,

Then wp 1, (H,T) is relatively compact with respect to the uniform metric and
its limit points coincide with the set

(2.42) K ={ze Z(U):z=0 and z = _#(z) for some function
z satisfying § 2%(§) d§ < ¢’ (p)} .
We note that when I' = || ||, ¢;(¢) = ¢(x), defined by (2.37), and
H,"(s) = [ns]Dy,,;/(2n log, n)?
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(se U;). Most of the applications which Strassen (1964) gives for his theorem
carry over with trivial changes to the present context. For example for each
6 in [0, 1], the proportion of m’s < n for which

mD, [(2m log, m)} = fc(y)
has an almost sure lim sup on 7 equal to 1 — exp(—4(6~* — 1)) .

3. Preliminaries. We begin by discussing some properties of the set K. We
shall make use of the following terminology. For each p < ¢, let % be a
finite partition of [0, 1] into left-closed, right-open intervals (adopt the conven-
tion of always closing up the interval containing 1), and let % = {[], 4,: 4, €
P, 1 < p < q) be the corresponding “rectangular” partition of U,. Let xe
Z(U,) be a function which vanishes along the lower boundary L, of U,. Define
x,, to be the indefinite integral (cf. (1.4)) of the function Y, ., (x(4)/A(A4)) ,.
For each 4 in %, x_, and x coincide on the corner points of 4, and at each
inner point of 4, x_, is an average of the values of x at the corner points.

Now suppose that x in K is the indefinite integral of ¥. From the Cauchy-
Schwarz inequality

(3.1) |§5 %(x) du| < [A(B)](§ 5 X*(u) du)?
holding for Borel subsets B of U, it follows that
(3-2) [Ix]] = sup, [x(u)| = 1

(3.3)  @,(x) = sup {|x(w) — x()]: 4 — 17| < 5,1 < p < g} < (g0}
for 6 > 0, and
(3.4) (X Ml = § X @) du = 3 4c ., x(AP/A(A) < § X*(w)du < 1,

for each rectangular partition %" of U,. Relation (3.4) is crucial in the proof
of the “lower class” result (2.4).

Next suppose x € Z(U,) vanishes on L,. Let % be a rectangular partition
of U,. Since the function x_ /||x,||, is in K, (3.2) implies

(3.5 d(x,K) =d(x,x,) + d(x,, K) < 2max,. , wy(x) + ([x. |l — D*;

here

Wa(X) = SUp,. 7 |x(#) — x(,4)]
(4 denotes the lower-left corner of 4, and 4 the closure of 4). Relation (3.5)
is the basis for the proof of the “upper class” result (2.3).

Finally, we observe that the converse to (3.4) holds; if x e Z(U,) vanishes on
L, and if x, is in K for all rectangular partitions %, then x is in K. This may
be proved by showing that x is the indefinite integral of L,-limit (cf. Doob (1953)
page 319) of the martingale (%, ),.,, Where %7, is the partition of U, obtained
by taking each &7 ® to be {[(i — 1)27",i27"): 1 < i < 2*}. It follows that K is
closed and therefore compact by (3.2), (3.3), and the Arzela-Ascoli theorem.

The following fluctuation inequality is taken from Wichura (1969):
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LeEMMA 3.1. Letne N, and let (W,),.<, be a g-dimensional array of independent
random variables with O means and finite variances. Put S, = 3,... W, and set
M, = max, ., |S,.|. Then

(3-6) P({M, = 2%a}) < (1 — (o/a)’)*P({|S,| = a})
for all a such that @* = ¢* = Var (S,).

In the sequel, we will make use of the obvious generalization of (3.6) to
(separable) processes with a continuous (as opposed to discrete) time index. For
some related inequalities see Kiefer (1961), Cabaifia (1972), Pyke (1971), and Orey
and Pruitt (1973).

The following large deviation result will be sufficient for our purposes. For
related, and more extensive, results see, e.g., Feller (1943) and (1969),
Statulevicius (1966), and Bahadur (1971).

LeEMMA 3.2. Let (a,) be a sequence of positive constants tending to co. Let (S,)
be a sequence of random variables whose cumulant generating functions (cgf’s)

C.: £ — log (E(exp(CS.))
( € RY) satisfy

3.7 Cl)=1+o0()

uniformly for |{| < 2a,, as n — co. Then

(3-8) P({S, = a,}) = exp[—(})a.}(1 + o(1))]
as n— oo.

Proor. Let C, be the cgf of the distribution, Q,, of S, — a,. Let z, be the
root of the equation C; (¢) = 0 and put p, = —C, (7,). Set r,’ = C{ (0) and
let Q,* be the distribution whose cgf is given by C, .({) = C, ({[ra + 7.) —
Co,(74). According to the argument on page 5 of Bahadur (1971),

(3.9) log (P({S, = a,})) = —(1 + o(1))p,
provided 7,7, = o(p,) and no subsequence of (Q,*) converges weakly to the
distribution degenerate at 0. Using (3.7), it is easily checked that ¢, ~ a,,
Pn ~ @2, 1,' — 1, and Cg ({) — 1 for all {, so Q,* converges weakly to the
standard normal distribution. Consequently, (3.8) follows from (3.9). []

We will make use of Lemma 3.2 to prove

LEMMA 3.3. Suppose that the hypotheses of Theorem 2 hold. Let (A),.,, be a
finite collection of disjoint subintervals of U,, and let (0,),., be a unit vector (so

2402 =1). Then for any 8 > 0,
(3:10)  P({Zseu 0. X(1,A)(0(A(4))}) 2 (2810, 0,))) = (log 7,7~ H+ow%

ProoOF. Write X = Y 4 Z as the sum of its partial-sum and infinitely-divisi-
ble components, as in Section2. Let A€ %, and let C, and C, be the cgf’s of

Y, =Y, D[(0,(A(4)Y) and  F, = Z(t, 4)/(o.(X(A))})
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respectively. In view of Lemma 3.2, it suffices to show
(3.11) CL O +CL@)=1+0()

uniformly for {’s which are O((log, s,%)?).
The cgf of Z(t, A) is (cf. (2.8)) given by

Crga(8) = Wt APCY2 + §epo (6 — 1 — COIT, ,(d8) ,

where II, , is defined by (2.7), and v.? is the variance of the Gaussian component
of Z. Thus

C7.0) = (0”4 A)) V(1. A) + §¢00§" xp(EE[au(A(A))H)IL,, 4(8)) -

By (2.11), II, , gives measure 0 to §’s of magnitude exceeding o(1)(s,/(log, 5,%)%),
so we have

(3.12) C2.(C) = (9.°4(A))™" Var (Z(t, A))(1 + o(1))

as n — oo, uniformly for |{| < b(log, ¢,%)t (b fixed, but arbitrary).

Now consider C, . Put A, =An 1,4 and set Uy, = J(X)/(s,(A(A))?) for
tin A,. By (a) of Lemma 2.1, 7/, = 3%, U,,.» wp1 for any fixed enumera-
tion (f,),z, of the points of A,. Each U,,, has mean 0, and by (2.10) we have

B, = SUD;ea,, [[Uinlloo = o(ll(logﬂ onz)*)

as n — co. Let M,,, be the moment generating function of U,,,. By expanding
M,,, M;,, and M}/, in power series and dominating terms of the form E,U,.,|’
by Var (U,,,)B, ™ for j > 3, one easily finds that

(3.13) €. (0) = (0, 2A(A)) Var (Y(z, A)(1 + o(1))

uniformly for || < b(log, ¢,”)}. Adding (3.12) and (3.13), and using (2.9) we
get (3.11). 1

4. Proof of Theorems 2 and 4. (a) Proof of Theorem 2. We first prove the
upper class statement (2.3), along the following lines. Consider (3.5), with x
replaced by H,; we would like to guarantee that with probability 1 the right-hand
side is small for all large n. Along any ‘“‘geometric” subsequence, the first Borel
Cantelli lemma allows us to deduce that the second term is eventually small for
any % (Lemma 4.1) and that the first term is eventually small provided .o is
fine enough (Lemma 4.2). It then remains only to note (Lemma 4.4) that there
is enough continuity in the mapping n — H, to deduce (2.3) from the corre-
sponding statement for geometric subsequences.

Proceeding to the details, let ¢ be a positive number, (slightly) greater than 1.
Using (2.2), find indices n, such that o} = Var (X(1,,)) ~ ¢*as k — co. For each
integer m > 1, let .97, be the rectangular partition of U, with each &7, ®» =
{[¢ — 1)/m,ijm): 1 < i < m}, and put H,,,, = (H,),, .

LeMmA 4.1. For each m, lim sup, ||}'Ink;m||, <lwpl
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Proor. It suffices to show that

“4.1) limsup, 3., 04 X(%, A)/((0,,(2(4)})(2 log, 7} )}) < 1

wp 1 for each unit vector (6,),.,,. But (4.1) follows easily from Lemma 3.3
and from the first Borel Cantelli lemma. []

Lemma 4.2. Wp 1, lim sup,, lim sup, max,. . w,(H,)=0.

ProoF. Letm =1, Ae %7,. Letu* (resp. ,u) be the upper-right (resp. lower-
left) corner point of 4, and put L, = [0, 44] — [0, ,«]. By (2.9) we have
o,”* Var (X(t,u*) — X(t, ,u)) — A(L,); note that
(4.2) HL,) < gjm .

Lemmas 3.1 and 3.3 imply that for each ¢ > 0,
P({max,., w(H,) = 2%}) < 4m(log g,?) ™/

holds for all large n. Lemma 4.2 now follows from the first Borel Cantelli
lemma. []

Lemma 4.3. Wp 1, lim sup, d(H,,k, K) = 0.
Proor. This follows from (3.5) and Lemmas 4.1 and 4.2. ]
Lemma 4.4. Wpl,limsup, max,,_ .<., d(H,, H,,) < (¢} — 1) + (q(c — 1/c))t.

Proor. Let n,_; <n<n,. Put g, = ((d},log,a: )/(s,’log,0,%)* and let a,
be the point in U, whose pth coordinate is a” = ¢,”[t, 1 < p < ¢q. Then

H,(u) = B, H, (a,u)

for all u in U,. It follows from (2.9) that min, a,” = ¢! — (¢ — 1) provided
k is sufficiently large. Lemma 4.4 now follows from Lemma 4.3 and inequalities
(3.2) and (3.3). O

LemMma 4.5. Wp 1, lim sup, d(H,, K) = 0.
Proor. This follows by combining Lemmas 4.3 and 4.4, and lettingc | 1. [
We turn now to the proof of the lower class statement (2.4). Since
N.cx {liminf, d(H,, x) = 0} = Nz {lim inf, d(H,, x;) = 0}
for any countable dense sequence of points x; of K, it suffices to show that
4.3) l.minf, d(H,,x) =0
wp 1 for any x in K satisfying
4.4 X, < 1.

Roughly speaking, the plan is to get d((H,),, x.,) frequently small along suitable
geometric subsequences using the second Borel Cantelli lemma (Lemma 4.6),
and then to use equicontinuity considerations (here we need the partition % to
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be fine) to deduce (4.3) (Lemma 4.7). The program has to be modified a little
so as to make the second Borel Cantelli lemma applicable.

Suppose then that x in K satisfies (4.4). Let c be a (large) positive integer, and,
using (2.2), find indices n, such that ¢; ~ (c?)*as k — co. Put

4.5) B,=U,U,..x[0,2[c)x U,_,C U,;
condition (2.9) implies that the point
(4'6) (t:t’,:)_llt:ti;:)lgqu € Bc

for all large k. Let %7, be the rectangular partition of U, obtained by taking
each 7, ® = {[(i — 1)/c,ifc): 1 i< c}. Put & *={4e.¥,: A does not
intersect B }.
LeEMMA 4.6. For each 6 > 0, lim inf, max,. , .|H, (4) — x(4)| < 6 wp 1.
Proor. Fix d, and put

G, = Nucsw {|Ha (A) — x(4)| = 0}
By (4.6), the G,’s (with k large) are mutually independent events, and so the
lemma will follow provided '

4.7 T PG) = T [Laec o PAH, (4) — x(4)| = ) = oo
Using Chebychev’s inequality to handle the terms in the product for which
|x(4)| < 8, and Lemma 3.3 to handle the other terms, one finds that, for any
given ¢ > 0,
P(G,,) = 2—1(10g g:k)—z,4<z(A)3/z<A>><1+e)

for all large k. In view of (4.4) and (3.4), it follows (upon choosing ¢ sufficiently
small) that (4.7) holds. []

Lemma 4.7. For each 6 > 0, liminf, d(H, , x) < 2(g/c)* + ¢% + 2(q(2/c))}
wp 1.

Proor. Let ue U, and let ¢ be the lower-left corner point of the element of
¥, containing #. Then H, (x) can be written in the form

an(u) = (Hﬂk(u) - an(t)) + ZAe se*, 4cl0,t] an(A) + SF H.”k;c(s) ds
where F = F(u) is a sum of elements of .%7,, each of which lies in B,. A similar

decomposition holds for x, and so the desired bound follows from (3.1), (3.3),
and Lemmas 4.1, 4.5, and 4.6. []

LemMma 4.8. Wp 1, lim inf, d(H,, x) = 0.
Proof. This follows from Lemma 4.7. []

In view of (4.3), Lemmas 4.5 and 4.8 yield Theorem 2.

(b) Proof of Theorem 4. The proof of Theorem 4 is similar to that of Theo-
rem 2. Lemma 3.2 is actually valid when stated for arbitrary nets, and so under
the conditions of Theorem 4, the conclusion (3.10) of Lemma 3.3 is valid with
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t, replaced by ¢, and ¢, by ¢,>. The role of the points ta,» k = 1, in the proof
in part (a) above is taken over by the “exponential grid” (z,),. np» Where now ¢,
is defined to be the point (c*, - .-, ck). In the analogues of Lemmas 4.1, 4.2,
and 4.6 one uses the fact that for each j in N,

Zk;j,kezvq (k1 + 0+ kq)—pq
converges if 8 > 1, and diverges if 8 < 1.

S. Proof of Theorems 3 and 5. (a) Proof of Theorem 3. We begin by intro-
ducing a Hartman-Wintner type truncation scheme which will put us in the
domain of applicability of Theorem 2. Let v — 6(v) and v — ¢(v) be any two
positive functions of v in (0, o), related by the identity

(5.1) B(v)/v* = &(v)](log, )} ,

and satisfying ¢(v) | 0 and 0(v) T c0 as v 1 0.

Write X as the sum of its partial sum component Y and infinitely-divisible
component Z, as in Section 2. Let Z* be the process obtained from Z by first
removing, for each n = 1, all jumps J,(Z) which occur at (random) time points
t in F, and which exceed 6(,’) in magnitude, and by then centering to zero
means. Then (cf. Gikhman and Skorokhod (1969) Chapter 6) Z* is a D(T)-
valued process with independent increments, whose Lévy measure IT* satisfies
(by construction) IIf {¢: €] = 6(s,?)} = O for all n = 1. Moreover, Z*() has
mean 0 and finite variance for each ¢.

For each ¢ in AN F, put JXX) =J/(X) — E(J/(X)), where J/(X) =
J( X)) syx1s000,21- Then for all ¢ in A, Var (J,*(X)) < Var (J,(X)), and so in
view of (2.6) we can use Lemma 2.1 to construct a partial sum process Y* out
of the J,*(X)’s (r € A).

Put X* = Y* 4 Z*; then Y* and Z* are respectively the partial-sum and in-
finitely-divisible components of X* (in particular, J,(X*) = J,*(X) wp 1, for
each rin A). Let H,* be defined in terms of X* in the same way H, was ob-
tained from X:

H,*(u) = X*(t,u)/(20,** log, 0,*?)}

(v e U,) with ¢,** = Var (X*(t,)). Theorem 3 is proved by using Theorem 2 to
show that (2.3) and (2.4) hold H, replaced by H,*, and by then showing that
the function ¢ appearing in (5.1) can be chosen to decrease to zero so slowly that
d(H,, H,*) — 0 wp 1. The argument for this is similar to Stout’s (1970) version
of the Hartman-Wintner proof, and will be omitted.

(b) Proof of Theorem 5. One consequence of the “divergence” half of the
following preliminary lemma is that (2.28) implies (2.29):

LEMMA 5.1. Let L be a random variable, and set | = E((L*log~*|L|)/log, |L|).
If | < oo, then

Ziken, PAIL] = C(k| log, [k])H}) < oo
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forallL > 0. Conversely, if ]l = oo, then

Likengrzi PUIL| 2 C(|k| log, [k[)}) = oo
forall{ > 0andalljin N,.
ProoF. Forany ¢ > 1, the Lebesgue measure of {re T: |t| < ¢, t = 1} is easily
shown to be
J-(=1)y Helog™7 )f(qg — ) + (= 1)
using Fubini’s theorem and induction on ¢. This and standard methods give
the lemma. []

We now turn to the proof of the main result. To alleviate the notational
burden, we shall assume that X is a pure partial sum process; the general case,
in which the infinitely-divisible component of X does not vanish, is handled by

the technique used in the proof of Theorem 3 in part (a) above. We rescale X
so that (2.22) becomes

(5.2) limg?/|t| = 1.
Following Feller (1968), we introduce several truncation levels in order to get
into the range of applicability of the ‘“Kolmogorov” type Theorem 4. Put
a(s) = dst(log, s)~!
B(s) = dsi(log, )
7(s) = osi(log, 5)* .

Note that for each k in N,, § < a(|k|) < B(|k|) < r(|k|). For simplicity, write
J, for J(X). For each k in N, and each rin A n C,, set

J = JtI(IJtISa(IkI)) ’ Jr=J' - E(Jt’)
/' = JtI(a(|k|)<IJt|§ﬂ(|kl)) s Jt** = Jt” - E(Jt”)
Jtnl — Jtl(p(|k|)<l-7t|) ’ Jt*** — Jt”, _ E(Jt’”) .

Use Lemma 2.1 to construct, on the same probability space on which X is de-
fined, partial sum processes X* (resp. X**) corresponding to the J,*’s (resp. J,**’s)
for e A. Define X*** by means of the equation X = X* - X** | X*¥*; yxx*
then serves as the partial sum process associated with the J,***’s, t ¢ A. For each
te T, define H* on U, by

H*(u) = X*(ut)[(2q|t| log, |#])? .
To prove Theorem §, it suffices to show that wp 1,

(5.3) the net (H,*),. , is relatively compact as  — oo and has X as
its set of limit points,

(5.4) lim, .., sup,<, [X**($)|/7(l1)) = 0, and
(-9) lim, ., sup,g, |X***(s)|/r(|f)) = 0.
LEMMA 5.2. (5.3) holds.
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Proor. For each k in N,

IVar (X(Ck)) - Var (X*(Ck))| é 2 ZtecknA S(IJ;I;a(IkI)) Jta é 2 S::(Ikl) E’A(df)

by (2.26). (5.3) follows easily from (2.27), (5.2), and Theorem 4.0
For the next three lemmas, we make use of the following notation. Choose
and fix a moderately large integer §. For each k in N, set

t, = (0%, - -, O%), 7, = (0F171, ..., O%7Y) .

Partition 7 into intervals B,, k € N,, such that, for each k, ¢, is the upper right
corner of B,.

LeEmMA 5.3. (5.4) holds.
Proor. For each k in N, put
M, = sup, |[X**(4)| ,

where the supremum is taken over all subintervals 4 of B, having the same
lower left corner point as B,. Then for all ¢ in B,,

X0 = Xz M; -
We will show below that for any given ¢ > 0,
(5.6) P({M, = ¢r(|t,]) for infinitely many k in N,}) =0.

Given this, there exists an almost surely finite random variable G, such that for
all kin N, and all ¢ < ¢,

(-7 X)) = e Ziser(t0) + C. -
As ¢ is arbitrary, (5.4) follows easily.

Using the first Borel Cantelli lemma, Lemma 3.1, and the 4th moment form
of Chebychev’s inequality, argue (as in Lemma 5.1 of Feller (1968)) that (5.6)
holds provided

Dreny BULDT™ (%) Ziespon Statepnsivissasem )

is finite. That this sum in fact converges is a consequence of the following lemma
(which is similar to Lemma 5.2 of Feller (1968)). []

LEMMA 5.4. Let g < h be two numbers in [—1, }], and put a(s) = ds(log, s)°,
b(s) = dst(log, s)*. Let p > 1. Then (2.26) and (2.27) imply

(5-8) Dkeny (108 1) P16 ™ Zienyna Statiegnsizussagm ) < o0 .
Proor. We make use of the estimate
Siasivgsn /i = @P({[J,] = a)) + 2 §LEP({V.| = €} d€ .
In view of this and (2.26), (5.8) will hold provided
(5.9 § (X meaiomse mi~10™(log, O™~ )A(d€) < oo
(5.10) § (2., (6))E logr §)/(log, §)°A([§, 00)) dE < 0,
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where _Z, denotes the interval [a(6™), b(@™+7)], m = 1. Because of the presence
of the exponential factors ™, the sum in (5.9) is of the same order of magnitude
as the last term, which is itself 0(£? log?~ £/log,* £) as § — co. Thus (2.27) im-
plies (5.9). Moreover, the number of m’s for which _# contains § is on the
order of log, & as § — oo and so (2.27) implies (5.10) because o > 1. [I

LEMMA 5.5. (5.5) holds.

Proor. For each k in N,,

(511)  Zieopna B = Zieopns Susnzparm Vel = §5iuy §A(dE) < o0

by (2.26). Consequently, we can define a D(T)-valued, independent-increment
process R = (R(?)),., by setting

Ry = X** + Jocrees E(U) 5
for each fixed enumeration (s,),., of the points of A in [0, ],
R, =X li)
wpl. Lete > 0and put N,(¢) = {ke N,: B(|k|]) < er(|k|)}. For ke N(e) and ¢
in C, n A, set

V,= JtI(ﬁ(Ikl)<|J'tISer(|kl)) s W, = Jtl(er(|k|)<|.lm .

Since P({ W, # 0 for some ¢in C, n A} < A([¢y(|k|), =)), the “convergence” half
of Lemma 5.1 implies that wp 1 only finitely many of the intervals C,, k € N (e),
contain a nonzero W,. To get bounds on the V,’s, put

F,={V,# 0 for at least two #'s in B, n A}
for each k e N,(¢). Chebychev’s inequality and (2.26) imply that

P(F) = (|t B72(I7il) § E2A@E))(B7(7il) Zeespna Siciepnsivpiseraeen J7)
and so Lemma 5.4 implies that wp 1 only finitely many F, occur. Because
|V,| < er(|k|) for all ¢ in B, N A, we arrive at (5.7) with X** replaced by R (and
with a new G,). As ¢ is arbitrary, this proves
lim, .., sup,<, [R(s)|/7(|1]) = O

wp 1. Thus to get (5.5) we need only show
Diesneen E(D (1K)
tends to 0 as k — oo through N,. But this follows from (5.11) because
Zis BN S50 €M) < #2071 i (ufa -+ - Jo) 7 = 2997w k]
where £? = § §2A(d€). 0

6. Proof of Theorem 6 and its corollaries. (a) Proof of Theorem 6. Let p* be
the marginal of ¢ on the pth component, U,, of U, = U, x --- x U;. We give
the proof of Theorem 6 first in the case that each p® is the uniform distribution.



292 MICHAEL J. WICHURA

Let N = (N(5, #)),c[0,e,ucv, € @ Poisson process with mean function (s, u) —
E(N(s, u)) = sF(u), where F is the distribution function of x. Let

(6.1) <, <, <3<+

be the (random) s-coordinates of the jump-times of N. The differences 7, — 7, _,,
n = 1, are independent random variables, each exponentially distributed with
mean 1. Also, the differences N(z,, «) — N(z,_;, »), n = 1, are independent
random processes, each having the same distribution as Y, (cf. (2.31)). Thus
we may and will represent the sequence (S,),., by (N(z,, +)),»:; under this repre-
sentation the definition of H,* (cf. (2.32)) becomes

(6.2) H,“(s, u) = Z(t(,,), u)/(2n log, n)}
(se U,ueU,), where

Z(s, u) = X(s, u) — F(u)X(s, 1)
with
X(s, u) = N(s, u) — E(N(s, u)) = N(s, u) — sF(u)

(5€[0, ), ue U,).
LEMMA 6.1. For n > 1, let H,* be defined on U, x U, by
H, *(s, u) = X(ns, u)/(2n log, n)} .

Then wp 1 the sequence (H,*) is relatively compact (with respect to the uniform
metric (d) and its limit points coincide with

K* ={7.0): Sopx0, Vv = 1},
where v = 4 x p (cf. (2.33)).

Proor. This follows from a slight modification of the proof of Theorem 2.
For ¢,, use the point (n, 1) e U, x U,, n = 1. Incondition (2.9), replace the role
of Lebesgue measure on U, by v on U, x U,. In Lemma 3.3, use the fact that
for any G, II; puts all its mass at the point 1. The assumption that ¢ has uni-
form 1-dimensional marginals implies that (4.2) (with 2 replaced by v, and ¢ by
g + 1) is valid. In Lemma 4.4, use the fact that the functions in K* are equi-
continuous with respect to their first argument (s e U;). Finally, replace B,, as
defined by (4.5), by [0, 2/c) x U,. [

LEMMA 6.2. Forn = 1, let H ** be defined on U, x U, by
H,**(s, u) = Z(ns, u)/(2nlog, n)t = H, *(s, u) — F(u)H, *(s, 1) .

Then wp 1, (H,**) is relatively compact and its limit points coincide with K* (defined
by (2.34), (2.35), and (2.36)).

Proor. For x in Z(U, x U,), define ®(x) = £ in Z(U, x U,) by
X(s, u) = x(s, u) — F(u)x(s, 1) .
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Since @ is continuous (with respect to the uniform metric), it suffices by Lemma
2.2 to show that K* = ®(K*). Suppose then that x is in K*. Clearly £ satisfies
(2.36). Also, since

(8, 1) = Sesagzu (€5 1) — (§ X(E, Op(d)))v(d€, dn) .

X is the indefinite integral, relative to v, of the function £ whose section at
se U is

Eo =% — o Iy D, s
where (., ), denotes the inner product of L,(U,, ); thus (2.34) holds. Finally,
(2.35) is satisfied because X is just the projection of x in LU, x U,, v) onto the

subspace of functions z such that (z,, Iy,», = 0 for all s in U,. This proves that
®(K*) c K*; the opposite inclusion is immediate.

LEMMA 6.3. Let H * be defined by (6.2). Then wp 1, (H,*) is relatively compact
and its limit points coincide with K*.

Proor. We can write Z(t,,;, #) as Z(n(z,./n), #). The strong law of large
numbers implies that max,, |r,/n — k/n| — 0 wp 1, while Lemma 6.2 implies
that the H, **’s are asymptotically equicontinuous with respect to their first
argument (s € U;). Thus Lemma 6.3 follows from Lemma 6.2. []

This proves Theorem 6 under the assumption that ¢ has uniform 1-dimensional
marginals. For the general case, let F, be the distribution function of the mar-
ginal of x on the pth component, U,, of U,, and let G, be the inverse of F,,
defined by

G,(a) = inf{b: a < F,(b)}
(ae U)). Define &: U, — U, by
B, -, w®) = (Gu), -, Gy(u?) .

We can find (using an easy extension of the univariate procedure) a probability
¢* on U, having uniform 1-dimensional marginals and inducing ¢ via & (i.e.,
p = p*Z"). Let (V,*),., be independent U,-valued random vectors, each having
distribution g#*. Then we may and will represent the sequence (V) by (Z(V,*)).
Since a < F (b) iff G,(a) < b, the definition of H,* (cf. (2.32)) under this repre-
sentation becomes
H,”F(S, ll) = I{"n#*(s’ "7-(14)) ’
where & : U, — U, is given by
T, -, w) = (FE®), -, Fy(u)).
For x in Z(U, x U,), define ®(x) = £ in Z(U, x U,) by
x(s, u) = x(s, F(u)) .

Since @ is continuous (with respect to the uniform metric) Theorem 6 will be
completely proved once we establish

LemMA 6.4. K* = O(K*).
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Proor. Let x be in K**. Then
X(8, 4) = Sesanssrn Xe()e*(dn) d€

= Sese (Y1000 (F(0))%e(dn)p*(d)) d€

= Yexa (Vo) (FE(Re | F = ) p*(dn)) &

= Sese (Sesu E(¥e | & = p(d0)) d§
where E(x;| & = ) is the conditional expectation (defined on the target space
of &) of %, in Ly(U,, p*) with respect to the mapping &. Since

VE(% | & = 0Ym(dl) < § xe(n)'p*(d)
the Ly(v) norm of the mapping (&, {) — E(%;| ¥ = {) cannot be greater than the
L,(v*) norm of x. Thus (2.34) and (2.35) hold for %, and (2.36) is immediate.
This proves ®(K**) C K*; the opposite inclusion is easily established (check that
y in K* is the image of x in K**, where X.(y) = y:(&¥(7))). [

(b) Proof of IV, Section 2. Letxbein K*. By (2.36) we have {5 (%, Iy >, d€ =0
for all s in U,, so (%, qu>y = 0 for almost all £. Now let 4 be in .Z2 (notation
of IV). Then

1<% Typeasl = |§ Ches L €|
= |§ KXo Ly — p(A)), 4|
= §Xellullla — (A, €
= (A = p(ANAE (1%, )
= (A1 — p#(A))* -
This gives (2.39) (use sup, |x(1, #)| = sup,. , [<X, Iy x4).|)- A similar argument
yields (2.40).

(c) Proof of V, Section 2. Here it suffices to show that K,» is the image of
K* under the (continuous) mapping @ : x — X, where % in Z(U,) is defined by
X(s) = I'(x,)

(se U) (cf. (2.41) and (2.42)).

First suppose that 4 is in K;*. Choose (using the compactness of W,) a w in

W, such that I'(w) = c;(¢). Define x in 2(U, x U,) by
X(s, u) = (b(s)ec())w(w) -
Then x is in K#, and ®O(x) = b.

Next suppose that x is in K*; we have to show that ®(x) is in K#. Let

5, < 8,in U,. Then '
IT(x,) — Tl = Txy — %) = T(§ oy fe(+) 4€) 5
where f(u) = §,<, X:(7)(dn). We will show below that
(63) F(S(al..vz]ff df) = S(sl,ag] I‘(fé) dg .
Accepting this for the moment, we get
TG = D)l = Sy [1%ell T (fe/ 1%l ) 26
= CF(/I) S(al,sgl ”xé”# dé
= ()82 — S)*(Seap.ug %117 d€)* -
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A martingale argument like that used in Section 3 to prove that X is closed now
implies that @(x) is in K».

It remains to establish (6.3). Let %7, k > 1, be a nested sequence of rec-
tangular partitions of U, x U, such that the mesh size of .97, tends to 0 as
k — co. Let ,% be the conditional expectation of x relative to the partition .o,
and the measure v, and let ,f, be defined in terms of ,% in the same way f, is de-
fined in terms of x. Using the sublinearity and positive homogeneity of T, it is
easy to see that

(6.4) DS oy s 4€) = Soapap TSe) 6 -

Martingale theory implies that ,x converges to x in L,(v), therefore also in
Ly(v), and so §, ,,.f; dé converges, with respect to the uniform metric on
2(U,), to §, .,1f:d§. Since T' is continuous, the left-hand side of (6.4) tends
to the left-hand side of (6.3). On the other hand, by the assumption that T is
majorized by the uniform norm [|||, we have |T'(f;) — T'(.f;)| < T'(fe — +fe) <
Ife = ofill < 1% — Xellzy ThUsT(f) — T(f.) in Ly(U,, d§), and so the right-
hand side of (6.4) converges to the right-hand side of (6.3).
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