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A CONVERGENCE THEOREM FOR EXTREME VALUES
FROM GAUSSIAN SEQUENCES!

By Roy E. WELsCH
Massachusetts Institute of Technology

Let {Xn,n=0, +1, +2, - - -} beastationary Gaussian stochastic process
with means zero, variances one, and covariance sequence {r»}. Let M, =
max {X, --+, Xu} and S, = second largest {Xj, ---, X»}. Limit properties
are obtained for the joint law of M, and S, as n approaches infinity. A
joint limit law which is a function of a double exponential law is known
to hold if the random variables X; are mutually independent. When M,
alone is considered Berman has shown that a double exponential law holds
in the case of dependence provided either r,logn—0or 377 re? < oo. In
the present work it is shown that the above conditions are also sufficient
for the convergence of the joint law of M, and S.. Weak convergence

roperties of the stochastic processes Min¢) and Sa:) with 0 <a <1 < oo
are also discussed.

1. Introduction. This paper extends and simplifies a theorem obtained by the
author in Section 4 of [5]. The reader is assumed to have some acquaintance
with those results.

Let {X,,n=0, +£1, +2, ...} be a discrete parameter stationary Gaussian
stochastic process, characterized by expectation, and covariance function,
respectively:

(1.1) E(X,) =,0,
E(X;Xi1,) =41

n

Iy =, 1.
This paper treats some of the limit properties of the random variables

M, = max{X,, ---, X,},

n

S, = second largest {X,, ---, X,}.

n

A double exponential limit law is known to hold for M, if the random variables
X, are mutually independent, that is r, =, 0, n = 0. Berman [1] has shown that
the same law holds in the case of dependence provided either

(1.2) r,logn—0, or
(1.3) Ziar < oo

The author [5] has shown that the processes {M,,,;, S;,.;}, properly normalized,
and with 0 < @ < 1 < oo, converge weakly in the Skorohod space D*[a, co) when
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the Gaussian sequence is strong-mixing and
(1.4) r,logn = O(1).

The limit law is the same as that which occurs in the independent case.

Condition (1.4) is weaker than (1.2) but we imposed the strong-mixing con-
dition. In many cases strong-mixing is difficult to verify and it is natural in view
of Berman’s work to see if the weak convergence results mentioned above hold
when the strong-mixing assumption is dropped and just (1.2) or (1.3) is assumed.
The purpose of this paper is to show that this is, in fact, true. The reader is
referred to [6] for some examples of why it is of interest to consider the joint
distribution of M, and S,. A more extensive discussion of the maxima of sta-
tionary Gaussian processes is contained in [3].

2. Some properties of Gaussian distributions. Let (r;;) be a k X k symmetric
positive definite matrix with 1’s along the diagonal, and let ¢,(x,, - - -, x;; r

i)
1 < i < j £ k) be the k-dimensional Gaussian density function with mean vector
0 and covariance matrix (r;;); ¢, is a function of the x’s and the k(k — 1)/2 pa-
rameters r,;. Define:

(2.1)  Oue,d,a, {ry}) = Cwdx, oo o dx,y §5dx, 2 ndx,,, - (0L dx,
X P(Xps « ooy X {rig)) -

The integral from d to oo will always be on the ath dummy variable and we
assume that 0 < ¢ < d.

LEmMMA 1. If r;; = r;; then

20
(2.2) —fz_k =0 T §a (X X € Xy Xy, € Xy v Xy)
Bl

X T jen,521 9%;

when h + a, | #+ a, h #+ 1, and

00
(2'3) an = - S‘—w T Sc—oo ¢k(x1’ sy Xl d’ Xagrs * 9 Xj_10 € Xpyqy =0y xk)

al
X Hj*a,j*l dxj
with a corresponding expression when h %= a and | = a.
Proor. A complete proof is contained on page 481 of the paper by Slepian

[4]. Only the essential ideas will be given here. The k-variate Gaussian density
is given in terms of its characteristic function by

Pl -5 X {rig)) = §2wdty - §20 dty exp [iZx;1; — J2ri;0,05]
From this expression it is easy to see that

0, 09, L
or,; 0x;0x; ]2t

ij
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which allows integration over x; and x;, giving (2.2) and (2.3) and completing
the proof of Lemma 1.

If the upper limits of integration in (2.2) are replaced by (co,..--, co) then
the value of the integral is increased. Now integrate k — 3 variables from — oo
to 4 co to obtain

(2.4) aan (2 d, a, {r}) < §5 dules ¢ x5 S(h, 1, @) dx,
T
where
1 T Tha
Z(h, 1, a) =, (rlh 1 r,a> .

For T 1

al

We note that if the limits of integration in (2.3) are replaced by (oo, - .., o)
then

@5) 2| < pie, i) = @01 — rayexpl =L + )]

Since {X,} is a stationary process, r;; is a function of the difference j — i, i < j;
we write r,_, = r;;. The function P, is defined as

i = T
Pyc,d,a,r, -, r) = 0uc, d, a, {r;))
and the partial derivatives are given by the chain rule as
AP, Jor; = ¥, _4_; 00,/0r, .
Let the sequences {a,} and {b,} be defined as

(2.6) a, = (2logn)~t

b, = (2log n)t — 4(2log n)~#(loglog n + log 4r) .
It is known (Cramér, page 374) that whenr, =, 0, n = 0
lim, ., P{M, < a,x 4+ b,} = exp(—e*) =, G(x)

for all x.
Both (1.2) and (1.3) imply that r, — 0; therefore, there exists a positive number
0 such that '
sup, |r,l =90 < 1.

Define: d(n) = sup,., |7ls 4. = [7*], 6, = 0([9,/2]) where 0 < 8 < (1 — 9)*/2(1 +
20)%. Clearly (1.2) implies that

(2.7) lim
(2.8) lim

o(n)logn =0, and
o,logn =0.

n—oco

3. Convergence theorems. In this section we extend Berman’s results to the
joint laws of M, and S§,.
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THEOREM 1. Let {X,,n =0, +1, £2, ...} be a stationary Gaussian sequence
satisfying (1.1). If

then

lim,_,r,logn=20

lim,_ , P{M, < a,x+b,,S,<a,y+b,}
= GN1 + log[G(x)/G(]}  y<x
= G(x) y=x.

The following two lemmas will be needed in the proof. For convenience let
¢, =a,y+ b,and d, = a,x + b,, and to avoid technical details we will assume
that n is so large that ¢, > 0.

LEMMA 2. Assume that the conditions of Theorem 1 are satisfied and
7. = (1 — 36, — 9)/(1 4 20)
where n is so large that (1 — 29, — d) > 0. Then

(3‘1) limn—vm n2[1 - (D(bnrn)]¢2(cn’ Cus 5n) Z?;tll,ﬁl |r:i| =0
and
(3’2) limn—voo n1+p[l - (D(bn ?n)]¢2(cn’ cn’ 575) Z?;tlln-)-l |r:i| = 0

where ©(+) is the standardized Gaussian distribution function.

Proor. Berman [1] as part of the proof of his Theorem 3.1 has shown that

(3.3) lim,_., ngy(c,, €, 0,) 520 4 lrsl = 0.
To prove (3.1) and (3.2) we note that
3.4) I — P(x) < (27) tx~t exp(—x?/2) x>0,
3.5) b, =2logn — loglogn 4 O(1), and
(3.6) b, = (2logn)t 4 o(1).
Therefore

nl — ®b,7,)] = O(1)-exp((1 — 7, logn)

exp[((1 — 7,2)/2) log log n] + o(1)

Since 1 — > =4,-0(1) and 9, logn — 0, n[1 — ®(b,7,)) is bounded and (3.1)
follows from (3.3). Similarly

nil — ®(b,7,)] = O(1)-exp[(8 — 7.°) log n]
T exp (1 — 7./2) og log ] + o(1)

and (3.2) follows because 8 < 7,*and 1 — 7,2 > 0 for sufficiently large n.
LeEMMA 3. If the conditions of Theorem 1 hold and y < x, then
(3.7) ra|Pu(Cpsdy,ayry, oo yr,) — Po(ca,dy,ayry, ooy, 0,00, 0)| 0.

qn’ b
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Proor. By the law of the mean, there exist numbers r; between 0 and r;,
i=gq,+ 1, ..., n— 1, such that
n(cn’ ns Xy Ty ooy rn 1) — Pn(c,n, ns Xy Fiy * 0y rqn’ O, ceey 0)

— Za g, t1 J(aPn/ara)(cm s Ay Ty o0 ey rq,”,’ r;”_,,l’ tt ryi—l)

and therefore the sum in (3.7) is less than

et D5z a Tl 2uoa=g 1(00,/0r,)(Cas dys @, 11y -+ -, Tawr Taniy =7 Tnmt)l -
We now consider three cases:

(i) I = a or k = a (both cannot occur),

(ii) |/ —al > q./2and |1 — a| > q,/2,
(iii) |l — a| < ¢,/2 or |h — a| < ¢,/2 (both cannot occur), & + « and [ +# a.

In the first case (2.5) applies and

a=1 2452 qn+1| :1| Dilh=jl=aorh=a |aQn/arhl| < 2n¢y(c,, €, 9,) Z; T+l |rj|
which goes to 0 with n by (3.3).
For the second case we use (2.4) so that

90, | -

arh,

= Sd ¢3(cn’ cn’ xa’ 2 (h l a)) dX

where Z'(h, I, @) contains some primed elements. Now we compute the condi-
tional distribution of x, given the first two variates, represented here by c, (cf.
Cramér, page 314). Thus

S;o” ¢3(cn’ c'n’ xa; 2,(}1’ 1’ a)) dxa - ¢2(C’Ib’ cn’ rhl)(l - (I)((d'n - ltj’ﬂ)/o‘n))
with (suppressing the primes on the elements of X’)
M = Co(Mha + Tia) /(1 + 74)
0,0 = (1 —riy — rle — Fig + 2P e 1) [(1 — 13
By assumption
(3.8) Max ([Fhals [Fials Fal) < 0,

and using this fact we obtain

provided n is taken so large that 1 — 34, > 0. Summarizing we have

n

a=1 2u5= q,,+1| .1| Dii—he Foll—al>q,/2 h—al>q,/2 |aQn/arhl|
= 1 — D(b, 7,)]P(Cns Cus 0,) 2052 qn+1 |75

where 7, = (1 — 34,)/(1 + 24,). Applying (3.1) completes the proof.
The third case is similar to the second one except (3.8) is no longer satisfied.
But either |r,| < 4, or |r,| < d, and, of course, |r,| < J,. Conditioning as
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before and recalling that ¢, = [#°] we obtain for large n

2:1 ;L;;n+l |rj| Zl—h=.7',Il—aléqn/2,|h—al_§qn/2 |6Q~n/arhl|
é n1+ﬁ[1 - (D(bn ?n)]¢2(cn’ cn’ 5%) Z?;lqn+l |r_7'|
where 7, = (1 — 36, — 0)/(1 4+ 20). This converges to 0 because of (3.2).

Proor oF THEOREM 1. When y > x, Berman’s result applies so we consider
y < x. Then

P{M'n, é a'n,x + bn’ Sn é an.y + bn}
(3.9) = PM, < ¢} + N (PX, > XiSc, 1 <i<ni+a)
—PX,>d; X, <c,1<i<n,i#a}).

The first term in (3.9) converges to G(y) by Berman’s result. Each term in the
sum of (3.9) is of the form treated in Lemma 3. Hence we need only find the

limit of
(310) :=1Pn(cmcma’r1’“‘9rq%90s"‘,0)

— P (c,ydyayry, -oyr, ,0,...,0).

a4,
This can be accomplished by using the proof developed in [5] for a strong-mixing
sequence. For each n we are essentially considering a Gaussian sequence which
is g,-dependent. If

n— nt-# 12
pn e 77,1*'—1—219 , kn = n 8

then

(a) k%—>oo,pn—> %)
(b) n/k,p,—1,n=k(p,+ q,)

and we split the sequence of n random variables into k, blocks of p, random
variables separated by k, blocks of ¢, random variables. Since ¢,/n = n~* — 0
it is easy to show that only the blocks of size p, need to be considered. These
blocks may now be treated as independent of each other because r, ., r, . -
are all equal to zero in (3.10). In order to complete the proof as outlined in [5]
we must verify that
limnﬂw kn Z?gIl (pn - j)P{Xl > cn’ Xj+1 > c’n} - O M

This can be accomplished by using the mean-value theoremon P{X, >c,, X;,, >c,}
as a function of r;. The details are contained in the proof of Theorem 3 of [5].

Theorem 1 may also be proved when ], r,* < co. Only minor modifications
of the proof given above are required.

4. Concluding remarks. The weak convergence results of Theorem 2 of [5] are
also valid. The convergence of the finite dimensional distributions of (M,,; —
b,)/a, and (S,,,; — b,)/a, can be proved in manner similar to that given above.
Even if just the one-dimensional process M,,,; is considered, it is necessary to
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verify the convergence of the second maximum since this is an essential part of
the tightness proof given in Theorem 2 of [5]. We are able to use that tightness
proof in this case because it depends on the form of the limit law for S, and not
on the strong-mixing property.
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