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Let X(f) be a right continuous temporally homogeneous Markov pro-
cess, T; the corresponding semigroup and A the weak infinitesimal genera-
tor. Let g(¢) be absolutely continuous and r a stopping time satisfying

E(\§lg(n)dt)y < oo and  Eu§§|g’(0) dt) < o
Then for f e 2(A4) with f(X(#)) right continuous the identity
Eog(2)f(X(2)) — gO)f(x) = Ex(§§ ¢'(s)f(X(5)) ds) + Ea(§§ 9()Af(X(s)) ds)

is a simple generalization of Dynkin’s identity (g(f) = 1).
With further restrictions on f and ¢ the following identity is obtained
as a corollary:

— k-
E(fX@0) = fio + Th} S0 Eatebafx)

—1)n-1
" ((n—) pyy Ex()q urtAnf(Xw) du)

These identities are applied to processes with stationary independent
increments to obtain a number of new and known results relating the
moments of stopping times to the moments of the stopped processes.

0. Introduction. In [7] W. J. Hall proved identities of the form
E(X(r))") = XN Xt ali E(e*X(2))

for processes with stationary independent increments. For n = 2 these identities
are a simple consequence of a natural extension of Dynkin’s Identity E(f(X(r))) —
f(x) = E(§; Af(X(s)) ds). In attempting to apply this method of proof for n > 2,
we were led to the identity

EXEN) = () + Tizt {5 A7)

—1
+ % E,(§; u*= A*f(X(x)) du)

(which we later discovered also appears, in work of Has’minskii [8] and Helms
[9]) and to natural extensions of it. As straight forward applications of this and
related identities we are able to obtain the results of Hall [7] (under slightly
weaker assumptions) as well as other results including an inequality of Burkholder
and Gundy [1].
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In the next section we prove a generalization of Dynkin’s identity and specialize
it in Section 2 for a process with stationary independent increments with zero
mean. In Section 3 we discuss the relation between the moments of this process
and the associated canonical measure. Finally in Section 4 we give new proofs
of Hall’s results and some new results.

The referee pointed out that the identity in Theorem 4 may be obtained directly
from the change of variable formula for semimartingales in [2] provided one
knows that certain expectations are finite. Our techniques, however, depend on
standard material in the theory of Markov processes and can also be applied to
processes that do not have independent increments (see [10]).

1. Generalization of Dynkin’s identity. Let (Q, ¥, P) be a probability space and
let {X(t, w); t = 0} be a right continuous temporally homogeneous Markov process
with a topological state space E. Let B be the Banach space of bounded measur-
able real-valued functions on E endowed with the supnorm. For each ¢ define
the operator T, on B by

(T N)(x) = E(f(X(1)) | X(0) = x) .
It is known [4] that {T,; ¢ = 0} is a semigroup of bounded operators on B, which

is strongly continuous on some subspace. Let A4 denote the weak infinitesimal
generator of the semigroup {7} defined as follows: Let f € B be such that

(1 supisy | LD =) | ¢ oo
and
(2) limmw = g(x) exists
for each x in E where g € B. Denote this class of f’s as Z(A4). For fe Z(A)
define Af = g.
For fe Z(A)
3) (T )(x) = f(x) = §o (T, Af)(x) du .
Using E, for the expectation operator with X(0) = x this becomes
4) E f(X(1)) = f(x) = E(§; Af(X(u)) du) .
This plus the Markov property implies that
) V(1) = fIX(1) — f(X(0)) — §5 Af(X(u)) du

is a martingale.

Now if 7 is a stopping time with E (r) < oo thensince |Y ()| < 2||f]| + ||Af]|z,
applying Doob’s optional sampling theorem [3] one readily gets the following
identity first observed by Dynkin.

THEOREM 1. (Dynkin [4]). If f € Z(A) and f(X()) is right continuous in t a.s.
then for any stopping time t with E (7) < oo one has E,Y,(X(r)) = 0 or alternatively

() E, f(X(x)) = f(x) + E§; Af(X(w)) du) .
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Next, let g(¢) be a real-valued, absolutely continuous function. The following
semigroup identity is straightforward. For f e Z(A4)

(M) 9()(T(r — w)f)(x) — g)f(x) ,
= 1L 9'O)T(s — w)f)(x) ds + §L g(s)(T(s — u)Af)(x) ds .
If g(r) = 1, and u = 0 then (7) becomes (3). This, as before, implies that
(8) Y1) = g()fX(1) — 9(0)f(X(0)) — §i 9'(5)f(X(5)) ds — §5 9(s)Af(X(s)) ds
is a martingale.

Once again applying Doob’s optional sampling theorem [2] we get the following
generalization of Dynkin’s identity.

THEOREM 2. Let f € Z(A) and f(X(t)) be right continuous in t. Let g(t) be abso-
lutely continuous in t. If t is a stopping time such that

E (i lg(s) ds) < oo and  E,(§]]9'(s)| ds) < o0
then

(9)  E.9(0)f(X(2)) — 9(0)f(x) = E,(§; 9'(5)(X(s)) ds) + E(§; 9(s)Af(X(5)) ds) -
We can use Theorems 1 and 2 to obtain a further generalization of Theorem 1.

THEOREM 3. Forn = 1let f, Af, -- -, A"7'f € Z(A) and f(X(t)), Af(X(D)), - - -,
A"f(X(1)) be right continuous in t. Let t be a stopping time such that E (") < oo.
Then

(10) EfX@) = ) + Ti (“? E( A(X(2)
+ U (5 st (s) )
(n— 1)
Proor. Take g(7) = t* and f to be A*f in Theorem 2. We get for k < n — 1
(1) EA(X()) = KEL(§; s* 7 A(X(5)) ds) + E(§; s* AT f(X(s)) ds) .
Setting

(12) a, = (—>- E,(§; s A*f(X(s)) ds)
we get
(13) a = VB A = b,

By Theorem 1

E. f(X(2)) — fix) = a
which by (13) is

(S b+ 0] = Tt O B aE)
+ SO £ (5 (X)) ds)

(n — D!
proving (10). [
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ReEMARK 1. It is worth noting that one can again give a martingale proof of
Theorem 3 using the semigroup identity

(14) Tof — f =y 5D ) LT A — At

- ,_1_
(n — 1)!
REMARK 2. Theorem 3 appears implicitly in the work of Hasminskii [8] and

Helms [9] who used it to give a probabilistic representation of solutions of some
differential equations.

Seur—'T,_,Af du .

2. Processes with stationary independent increments and their generators. Let
{X(r); t = 0} be aright continuous process with stationary independent increments.
The general form of the infinitesimal generator for this process is given by (see
Feller [5])

X — f(x) — yf'(x
(19 4 = 50 AN =S =T 0wy
X — f(x) — f'(x ,
+ 4 NI =T 9@y b

where b is a constant, the integrand is defined as f”’(x) at y =0, and Q is a
measure on R, § (1 4+ y?)7'Q(dy) < oo and is defined for all bounded f which are
twice continuously differentiable functions with bounded derivatives—of two
orders. We take the Banach space on which the semigroup T, associated with
X(?) acts to be the space of all bounded continuous functions having limits as
x— +oo. If

1

16 _— Qd o)

(16) S 5oy 2@ <

then we may take A4 to be of the form

a1 Af = g SEED SO =) @y 1 ).

)y

Also, it is known that E|X(¢)| < oo for ¢ > 0 ifand only if (16) holds. If EX(r) = 0
then b becomes zero in (17). From now on we shall assume (16) holds and take b = 0
in (17). Thus {X(¢); ¢ = 0} is a process with stationary independent increments
with zero mean. We shall always assume that this process has right continuous
sample paths. The generator 4 now simply becomes

(18) Af(x) = §22 50 6./ (x + yu) du dz Q(dy) .
The right side of (18) is well defined for all f such that
(19) SUPosust § 1S (x + uy)|Q(dy) < oo .

We may extend the operator A to all f’s satisfying (19). We shall denote this
extension by .%/. We know that Theorems 2 and 3 are valid for f’s in the domain
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of 4. We can now extend them to a larger class of f’s. Of course, we have to
use the extended operator .o/ on the right side. The precise result is

THEOREM 4. Let ¢ be a nonnegative twice continuously differentiable convex func-
tionon R. Let g be continuously differentiable and nondecreasing. Let t be a stopping
time such that E () < oo. Then

(20) E.9(c)e(X(2)) — 9(0)e(x) = E,(§; g'(s)p(X(s)) ds)
+ EY5 9(5)-p(X(s)) ds)
where equality holds even when one side is infinite.

ProoF. Let us assume first that g and ¢’ are bounded and there exists k < oo
such that ¢ is linear for |x| > k. This implies that ¢"" has compact support and
¢’ is bounded. There exists a sequence of bounded, twice continuously functions
¢, such that

SUP,. [@.'(X)] < oo, sup,, @, (X)] = M < oo
and ¢, 1 ¢. Theorem 2 is valid for each ¢, and the Ay, are uniformly bounded
in n. By monotone convergence on the left and dominated convergence on the
right we obtain (20).

Next let g and ¢ satisfy the hypothesis of the theorem. It is not difficult to see
that there exist continuously differentiable g, such that g, and g,’ are bounded,
9. 19,9, 19 and there exist ¢, nonnegative, convex and ultimately linear such
that ¢, 7 ¢, ¢, 1 ¢"”. Thus .%%, 1 .%%. Now by the monotone convergence
theorem and the first part of the proof we get (20) with the interpretation that if
one side is infinite so is the other.

REMARK 1. Both sides of (20) are linear in g and ¢. Hence, when all the
quantities involved are finite then (20) will be valid for linear combinations of
¢’s and g’s i.e. in much greater generality.

REMARK 2. As asimple application of Theorem 4 consider the case Q(R) < oo
g(r) = 1 and ¢(x) = x*. Then .« is well defined and by Theorem 4 we get

COROLLARY 1. If E (1) < oo then
(21) E, X*(7) = Q(R)E(7) .

REMARK 3. The hypothesis E,(r) < oo is indispensable. In fact, if {X(¢)} is
standard Brownian motion and r is the first time the process exceeds one then

E|(t) = oo whereas by continuity of paths X*(z) = 1 w.p. 1. and thus has all the
moments.

REMARK 4. One can extend the result of Theorem 3 to a larger class of f’s in
a similar fashion. We note that
SUPost;<1,i=1,2,- -,k §5 510 (x + tyy 4 6y, + -+ + 6.2)|Q(dy)(dy.)R(dyy)
< oo
fork = 1,2, ..., nimplies . W, %%, ..., "¢ are all well defined.
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3. Moments of a processes with stationary independent increments and the asso-
ciated canonical measure Q. The results of this section are part of the oral tradi-
tion in this area and in fact, are even derivable for some cases from results of
Feller [6] regarding the relation between the tails of X(s) and Q. We present
them here for the sake of completeness as well as due to the fact that they are
not readily available. Also the power of the semigroup approach is illustrated
here very clearly.

THEOREM 5. Let {X(t); t = O} be a process with stationary independent increments
with zero mean. Let Q be the associated measure in the sense of (18). Then, for a > 1

(22) EX(9]" < oo T §,, 5 [y"7(dy) < oo
Proor. For a > 2, taking ¢ = 1 and ¢(x) = |x|°, Theorem 4 implies
@3)  EX@) — "
=a-(a — DE,(§5§+2 3§z | X(s) + yu|*"*du dz Q(dy) ds) .
For p = 0, |a + b|” < ¢(|a]® + |b|”) where ¢ = 2771 if p > 1land 1if0 < p < 1.
Consequently
(24) EJX(0)" = X" + (6 EJX(5)[*™ + ¢;) ds

where ¢, = 272§ |y|*?Q(dy). If §|y|**Q(dy) < oo, it follows easily that
E,|X(1)|* < oo. Conversely, if E|X(r)|* < oo then E,|X(s)|** < oo fors < tand
from (23) we get (* §3 $: E,|X(s) + yu|*~*du dz Q(dy) < oo. Since

Lyu[*=* = e(lyn + X(5)|*7* + [X(5)"7)

we have §*= (1 (2 | yu|** du dz Q(dy) < oo, and hence § |y|*"*Q(dy) < oo.
Turning now to the case 1 < a < 2 we first note that for ¢(x) = |x|*, . is
not well defined. To avoid this difficulty define

d(x) =1 if |x] <1

= |x|*? if x| >1
and

o(x) = §§ §§p(n) drdy .

Then ¢(0) = ¢'(0) = 0, ¢”'(x) = 0 and decreasing as x — oo. It is easily checked
that

lo(x + ) — @(x) — ye'(¥)] = §¢' §5 ¢"(w + x) dw dz

2§ (a2 0" (w)ydwdz (since ¢ is |)

w(3)

(25)

IA

IA

Consequently, if § |y|**Q(dy) < oo

‘Q/‘P(x)g“'swg(dy)EK(oo,
Y
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and hence
(26) E,o(X(1) = @(x) + E(§s S70(X(s)) ds)
<14+ Kt< oo

Since ¢(x) ~ (a(@ — 1))7}x|* as |x| — oo this proves that E|X(#)|]* < co. The
converse is proved in the same way as before using the estimate

27) O'(x + y) = |x + y*? for x=0,y=1.

By a similar method one can establish the following result on moment gener-
ating functions.

THEOREM 6. For 6 > 0, § e”Q(dy) < oo implies E e"** < co.
PrOOF. Let ¢, (x) = 6%°=*") and
Ox(x) = §%u §¥e (1) dt dy = e x<N
:e“’(l +0(x_N)+02(i_2_N)2> x>N.
Then ¢, is convex and
(28) E, on(X(1) = ¢(x) + E(§§ 5 px(X(s)) ds) -
But 70 y(x) = §*2 §3 §2 ou(x + wy) dw dz Q(dy) and since
Pu(x + wy) < €™y (x) = 0%V y(x)

E, 70 (X(s)) £ 0%a(0)E, ¢ (X(s)) where a(f) = sup,c, § €’**Q(dy). Thus from
(28) we get

E,on(X(0) < o(x) + 0°a(0) §} E,0y(X(s)) ds .

It can be checked that E,(¢,(X(7))) < oo, so Gronwall’s inequality implies

(29) E,px(X(1)) < Ker

where K and y depend on # but not N. If we let N — co, the theorem follows

by Fatou’s lemma.

4. Application to moments of X(z). In this section we obtain Hall’s [6] results
on E(X(r)") where ¢ is a stopping time for the process {X(r); t = 0}. We remind
the reader that X(.) is a process with stationary independent increments with
zero mean. We shall assume without loss of generality that X(0) = 0 a.s.

THEOREM 7. Let t be a stopping time for X(+). Then the following hold.
(i) For n = 2 there exist constants ¢ and C (finite and positive) depending on n
and Q such that if E(r) < oo and § |y|""*Q(dy) < oo then

(30) cEc"? < EIX(T)I” < C max {E(‘L’), E(T”/Z)} .

(i) If n = 2, E(z"*) < o0, § |y|"*Q(dy) < co then there exist constants a, ; in-
dependent of t but depending on n and Q such that

(1) E(X(7)") = Xisn-,pstnm 1 E(X(2)') -
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Proor. Taking ¢(x) = |x|* and g(¢) = 1 in Theorem 4 we get
E(|X()[") = n(n — 1)E(§5 § 5 §5 §2 [X(5) + wy|"~* dw dz Q(dy) ds) .
But, |a + b|** < ¢(Ja]*"* + |b|"~*) and hence '
(32) E(|X(2)]") = e E(7) + &, E(§; | X(s)["* ds)
where we used the fact § |y|"~*Q(dy) < oo. Clearly,
E(§5 | X(s)|"* ds) < E(z sup,s. [X(9)["™)
< (E(=""))"E((Supas- | X(5))") 72" .

Let = be a bounded stopping time. It follows from (32) that E(|X(7)|") < oo. By
Doob’s result on submartingales (note that for n > 1, | X(s)|" is a submartingale) [2]

(33) E(sup,.. X)) = (") (EIXE)P) for n> 1.
From (32) we now have

(34) EX@)" < & E(2) + (B )Y (EX(E)) "

and hence

(33) EXE) = [ gy + ey

Now drop the assumption that 7 is bounded. Taking ¢ A N and letting N — oo
in (35) yields the finiteness of E(|X(z)|*) as well as (34) and (35) for all stopping
times with E(z™?) < co. Now either Er < (Et™*)*"(E|X(7)|")""~®/* or the other
way around. In the former case we see from (34) that
EX(0)" = (e + )" (E() -
In the latter case we get
EIX(@)* < (¢ + 6)E() .

This proves the right half of (30).
We now turn to the left half of (30).
Let g(s) = (s A k)™*»~1. Then by Theorem 4 and the nonnegativity of g’

(36) E(g(z)X(c)) Z cE(§; 9(s) ds)
where ¢ = Q(R)/2. By the Holder inequality this yields
(Eg(c)/m=2)m=2/mE|X(2)|" )" = cE(§; (s A k)21 ds)
(E( k)0 EXE)PY = BS54 ds)
= 2 (5= k)
n

or

(37) (2)" £ A b < X)L

Letting kK — oo we get (30).
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In view of Remark 4 following Theorem 4 the following result is valid. Let
¢ = ¢, — ¢, where ¢, and ¢, are nonnegative with ¢, > 0 forv =0,1, ...,
[n/2] + 1.

Then provided the quantities involved are all finite one has

(38) E.o(X(@) = o) + Z12t )7 B (eharp(x(e))
—1 .
I B (X))
For the function ¢(x) = x" for n even (38) follows directly from Theorem 4.
For ¢(x) = x™ for odd n = 2, (38) holds if we set

0, = X" if x>0 0, =0 if x>0
=0 if x<0 = —x" if x<0 and ¢ = ¢, — ¢, .

Given an n, %7 *¢ will be zero for k > [n/2]. This is clear from (18). Also
7*p(x) is a polynomial in x of degree at most n — 2k. So to prove (31) it is
enough to check the finiteness of E (7*|X(r)|') for k < [n/2] and [ < n — 2k. But
by Holder’s inequality

Eka]X(T)]l é (ExTﬂ/2)2k/n(Ex]X(T)ll’n/(’n—2k))(’ﬂ—2k)/n
since | < n — 2k and E,|X(7)|" < oo by (i).

REMARK 1. In the case of the standard Browninan motion the constant ¢, in
(32) in zero and we can improve (30) to read

for n > 2. This result is known and is due to Burkholder and Gundy [1] who
employ very different methods.

REMARK 2. For processes other than the Brownian motion the right side of
(30) cannot be improved to CE, t** for n > 2. In fact, if that were to be the
case then lim sup, ,t=*2E | X(#)|" < C < oo. But for n > 2 this implies the conti-
nuity of the sample paths and hence makes the process a Brownian motion.
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