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ON THE AMOUNT OF VARIANCE NEEDED TO
ESCAPE FROM A STRIP!

BY DAvVID BLACKWELL AND DAVID FREEDMAN
University of California, Berkeley

On the intrinsic time-scale, a martingale with uniformly bounded in-
crements escapes from a strip at the same asymptotic rate as Brownian
motion.

We would like to dedicate this paper to the memory of our friend and colleague,
Jimmie Savage.

1. Introduction. Let 7, be the time at which standard Brownian motion starting
from y first hits 4-b, where |y| < b. As is known, (or see Section 7, below),

(1) P{rb>v}z%cosg—£exp<— 87;:2 v> as v — oo,
where exp u = e* and f(v) ~ g(v) means f(v)/g/(v) — 1. A more precise result,
Fiirth’s formula, is known: a reference is (Feller (1968), page 359).

Our main result is that (1) nearly holds for all martingales with bounded in-
crements, on the intrinsic time scale. To state this precisely, suppose Y, ¥, - - -
are random variables on a triple (Q, &%, P) which satisfy

(2) Y| <1 and EY;|Y, -, Y,_))=0.
Let
(3) i = E(Yzzl Yv ) Yi—l) 5

so V, is a random variable, measurable on (Y, ---, Y, ), with 0 < V, < 1. It
is the conditional variance of Y, given the past.

4 DEerINITION. The intrinsic time, or total amount of conditional variance
W, used by Y,, Y,, - - - in escaping the strip +b is };{s V;, where 7, is the least
n if any with |Y; 4 --. 4+ Y,| > b, and 7, = oo if there is no such n.

At first sight, 7, is a natural measure of the time to escape, and W, an artifice.
Here is some motivation. Suppose first that Y, Y,, --. are independent and
identically distributed, taking the values +1 with chance { each. Then r, =
W,, because Var ¥, = 1. According to (5) and (6) below, W, is approximately
exponential, with parameter 8 = #?/(86%). Suppose second that Y}, Y,, - - . are in-
dependent and identically distributed, with |Y;| < 1and E(Y;) = Oand Var ¥, > 0.

Received August 11, 1972; revised February 22, 1973.

1 Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace
Research, USAF, under Grant AFOSR-71-2100A. This manuscript is submitted for publication
with the understanding that the United States government is authorized to reproduce and dis-
tribute reprints for governmental purposes.

AMS 1970 Subject classifications. Primary 60G45

Key words and phrases. Martingale, crossing time, hitting time.

772

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability.

d ®
www.jstor.org



ESCAPING FROM A STRIP 773

Then W, = (Var Y))r,, because Var Y, is constant. If the Y, are small, for in-
stance if P(Y, = 0) is near 1, then r, is enormous: but Var Y, is small. And W,
is still approximately exponential with the same parameter 3. Suppose third that
Y,, Y,, - .- areindependent, |Y;| < 1,and E(Y,) = 0,and ¥ Var Y, = co. Then

W, = Vary,.

So moves with large variance contribute a large amount to W,, and moves with
small variance contribute a small amount. Again, W, is approximately expo-
nential with the same parameter 8. Finally, replace the independence-mean 0
assumptions by (2). This still does not affect the approximate distribution of W,
if you replace variance by conditional variance. The idea here is that different
paths move at different speeds; you have to take this into account in W,. Total
conditional variance as a measure of intrinsic time was introduced by Lévy
(1954), and used by Dubins and Savage (1965). It is also used in the invariance
principle; one exposition is in Freedman (1971).

(5) THEOREM. Suppose (Y,, Y,, .- -) satisfies (2). Define W, by (4). Ifb = 16
and v > 0, then
P{W, > v} < Aexp (—kpv), where

A= (Sb)tand k = 1 — 3b~% and § = n*/(8b?).

6) THEOREM. Suppose (Y,, Y,, - - -) satisfies (2). Define v, and W, by (4). If
b= 16 and v > 0, then

(@) Pfr, < coand W, < v} <1 — 0(v) where 0(v) = exp[—kB(v + 1)], k=
1 + 1567% and B = =*/(8b%). If also P{r, < oo} = 1, then
(b) P{W, > v} = 6(v).

The cut-off & > 16 is arbitrary: it does simplify calculations. However, (6) is
false for 6 < 1. Part (b) of (6) is immediate from (a). To see why conditions
on 7, are needed, think about Y, which are identically 0. So P{W, < v} = 1.

Theorems (5) and (6) hold for all processes satisfying (2), all b6 > 16, and all
v > 0. They imply

(7 If v — co and then 6 — oo,

2

b? :
7logP{W,, > v} — _%

uniformly in processes satisfying (2) with P{r, < co} = 1. If b — oo first, W,/b?
converges in distribution to the time for standard Brownian motion to escape
from +1. This follows, for instance, from the invariance principle. But (7)
seems to be quite different, for there we estimate very small tail probabilities,
as v — oo.

In Section 7, we make some estimates like (1) for the random walk. If the Y,
are independent and +1 with equal small probability p, and 0 with large
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probability (1 — 2p), then

2

. 1 e
8 lim, . — log P{W v - .
®) v O (W, > 0} > — T
Once you have two different limits, it is easy to make an example where
) L log P{W, > v} oscillates as v — oo .
v
Think of two distributions with different limits. Let 1 < ny < n, < -- - increase

quickly. Let the Y, be independent, having the first distribution for n,, < i <
Ny,.., and the second for n,, , < i < ngyyye

The constant multipliers, like 4 = (5b)! in (5), probably are not very im-
portant. Their effect is drowned out, for large v, by small changes in the constant
appearing inside the exponential. Our error terms inside the exponential, like
3b-t in (5), are probably of the wrong order of magnitude: but they do go to 0
as b increases.

We started working on (5) to get another proof of a known result:

(10) COROLLARY. Suppose (2) and (3). Then P{sup, |Y, + --- +Y,| < o0
andz: Vi=00}=0.

Proor. It is enough to show that for all b = 16, 17, ...
P{lY,+ ---+ Y, >0b forno n and ) V, =00} =0.
But definition (4) makes
{IY;,+ -+ Y, >b forno n and } ¥, = oo} C {W, = oo}.

So (5) proves (10). ]

In particular, P{}] V; = oo} = 1 implies P{r, < oo} = 1. We remind you
that
(11) Fact. P{Y 7Y, diverges and 37V, < o} = 0.

This holds even for unbounded Y,. A reference is Lemma (10) of Dubins-
Freedman (1965).
We might also note:

(12) Suppose Y., Y,, --- satisfies (2). Define r, and W, by (4). Suppose
P{r, < oo} = 1. Then b* < E{W,} < (b + 1)%

This is almost immediate, once you observe that (Y, +--- 4 Y, ) —(V;+- .-+ V,)
is a martingale. For a complete discussion, see Dubins (1972). It suggests there
is no process which maximizes or minimizes P{W;, > v}.

Our proofs of (5) and (6) depend on a gambling technique of Dubins and
Savage. The original reference is Theorem (2.12.1) of Dubins and Savage (1965).
A secondary reference is Theorem (22) of Dubins and Freedman (1965). We
will review the technique in Section 2. We prove some easy inequalities on
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trigonometric and exponential functions in Section 3. Then we can prove (5),
in Section 4, and (6), in Section 5.

We discuss a related estimate in Section 6—we got it while trying for (5).
Relax (2) to '

EY,;|Y, -+, Y,)=0 and Yi+ -+ Y, [Sb+1
where 7, and W, are still defined by (4). Then
b+ 1y [ v ]
13 P(W, 1y < —_° 1.
( ) { » > U+ }_2b—|-lexp (b—l—l)z

We have an example to show this bound is of the right order of magnitude.

2. Gambling. In this section, we present a special case of Theorem 2.12.1 of
Dubins and Savage (1965). We will use these results to prove (5) and (6). We
follow Section 2 of Dubins and Freedman (1965).

Let F be the set of fortunes, endowed with a g-field £. Let u be a nonnegative
Y-measurable function on F. This u is the utility or payoff function: if you stop
at fe F, you win u(f); if you never stop, you win nothing. For each fortune f,
there is a set I'(f) of available gambles 7, each 7 being a (countably additive)
probability on X. If your present fortune is f, you are allowed to select any
reI'(f), to pick a new fortune f’ at random from F according to r, and to
move to f’. A T'-process starting from f on the triple (Q, &, P) is an F-valued
stochastic process ¢, ¢,, - - - such that: ¢, is falmost surely; and the conditional
distribution D, (¢, - -+, ¢,) of ¢,,, given &, ---, ¢, is an element of I'(¢,)
almost surely. Think of ¢,, ¢,, - - - as your sequence of fortunes when you start
from f, and use the strategy defined by ¢,, ¢,, - - -. A strategy is a rule for se-
lecting gambles based on past results, and the strategy defined by ¢, ¢,, - - - is
to use D, (%, - -+, $,) €I'(4,) when you have moved through the fortunes
oy + - +» §,. A stopping time s is a random variable taking the values 0, 1, 2, - - -,
co: where the set {s = n} must be an element of the o-field generated by ¢,, - - -,
é,, foralln =0,1,2, .... Informally, you decide to stop at s = n by looking
at ¢,, - -+, ¢,: and you win u(¢,). You win nothing on {s = oo}.

The next proposition gives an upper bound on E{u(¢,)}, valid for all I'-pro-
cesses ¢ and stopping times s.

(14) PRrOPOSITION. Let Q be a real-valued, Z-measurable function on F. Suppose
that for all fe F,

@ 0o(f) = u«(f)
(b) Q(f) = $» QUM (") for all y e T(f).
Then for each fortune f, each I'-process {¢,, ¢,, - - -} starting from f, and each
Stopping time s:
O(f) =z E{u(¢.)} »

when u(¢,) = 0 on {s = oo}.
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Proor. Condition (b) makes Q(¢,), Q(¢,), - -+ an expectation-decreasing
martingale (that is, a submartingale). To see this clearly, remember that
D, (Pg -5 Bn) = 7a(+, +) say is a regular conditional distribution for ¢,,,

given ¢, - -+, ¢,. S0 7,(, ) is a countably additive probability on (F, ), and
§ Q(f")r4(+, df") is a version of E(Q($n11)|P0 -« +» $a)- But 1,(, +) € T(g,(0))
for almost all w, because ¢, ¢,, - -- is a ['-process. For such w, condition (b)
ensures §, Q(f")7.(@, df") < Q[¢,(w)]. If A is in the o-field generated by
” - §4 Q(Pusn)dP = §4 E(Q(Pn11) | Pos - - 5 $a)dP

= §4 $r QU)7a(e, df')dP

= 4 Q(8,)dP .

So Q(éy), Q(¢,), - - - is an expectation decreasing martingale. Now s is a stopping
time, so

S Q(¢s/\n)dp é Q(¢0) *
Define Q(¢,) = O on {s = oo}. So Q(¢,) < liminf, ., O(¢,.,)- And Fatou makes

§ Q(¢,)dP = Q(9o) -

But u(¢,) < QO(¢,): use (a) on {s < oo} and the convention that u(¢,) = 0 on
{S = oo} So

(15) E{u(4,)} = E{Q(8,)} = Q%) = O(f) -
Here, Q(¢,) = Q(f) because ¢, ¢,, - - - starts from f. []

To prove (5) and (6), we let F be the set of pairs (v, y) of real numbers with
—1<v< oand|y| < b+ 1. Weendow F with the Borel o-field £. There
are two kinds of fortunes: the stuck positions (v, y) with v < 0 or |y| > b, and
the moving positions (v, y) with v = 0 and |y| < b. If you reach a stuck position
(v, y), you stay there: so I'(v, y) has just one element, point mass at (v, y). To
define I'(v, y) for moving positions (v, y), consider pairs (¥, Y) which satisfy

(16) Y is random variable with mean 0 and absolute value at most 1; the
real number ¥ is the variance of Y.

From a moving position (v, y), you can move to (v — V,y 4 Y) for any
(V, Y) satisfying (16). So we put y € I'(v, y) iff y is the distribution of (v — V,
y + Y) for some (V, Y) satisfying (16).

The T'-process we use is defined in terms of the process Y;, Y;, - - - of Section
1. Fix b = 16 and v = 0. Let s be the least n if any with

Yid oo+ Y[ >0 or Vit oo+ V> 03

let s = oo if there is no such n. Let f = (v, 0).
Let
o= —V,— oo =V, 1+ .- + 1) for n<s
= ¢, for n>s.
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Conditions (2)—(3) ensure that ¢, ¢,, - - is a I'-process starting from (v, 0).
Clearly, s is a stopping time, and s < z,.
To prove (5), we introduce the utility function u

u(v,y)y =1 for v<O0
=0 for v=0.

We say u(¢,) is 1if W, > v, and is 0 if W, < v. Indeed, suppose W, > v. Then
Vi+ - + ¥V, > v for some n, so s < oo. If s is the least n with |Y; 4 - .. +
Y, >b,then s=7,and V, 4+ ... + V,= W, > v. If s is the least n with
Vit oo + Vo>, still ¥V, + ... 4+ V, > v. Either way, the first coordinate
v—V,— ... — V,of ¢, is negative, and u(¢,) = 1. On the other hand, suppose
Wy<wv. ThenV, + ... + V, < W, < v, because s < 74, 50 u(¢,) = 0 when s
is finite. Consequently,

P{W, > v} = E{u(4,)} .
We will produce a Q which satisfies (14a)—(14b), for which Q(v, 0) is the bound
in (5). So (14) proves (5).
To prove (6), we introduce the utility function
u(v,y)y =1 for v>0 and [y|>b
=0 elsewhere .

Then u(g,) is 1 if 7, < oo and W, < v; otherwise u(¢,) is 0. So
P, < oo and W, < v} = E{u(g)} .
We will produce a Q which satisfies (14a)—(14b), for which Q(v, 0) = 1 — 0(v).
So (14) proves (6).
Our Q’s were suggested by (1). Let
Q*(v,y) = q9(y) exp (—pv),

where
— cos ™ d =7
q(.y) Cos 2b an ﬂ 8b2
Then

(17) E[Q*(v — V, y + Y)] is nearly Q*(v, y) for moving positions (v, y) and
(V, Y) satisfying (16).

Indeed,
1 *(p — = Y tan ™ sin 7Y
Ty B =Yy = (,BV)EI:cos - — tan 2 sin 2b]
=[1 4 BV + 0@ ][1 — BV + 0(67)]

=1+ 0(b™).

We will tinker with ¢ and § to get rigorous inequalities instead of approximate



778 DAVID BLACKWELL AND DAVID FREEDMAN
equality. Here is a more careful statement. Continue to abbreviate

ﬂz
p="2.

(18) THE GAMBLING PROOF OF (5). Fixb > 16. Letk = 1 — 36-%. InSection
4, we will produce a function ¢q(y) for |y| < b + 1 such that

@) 9n =1
(b) E{g(y + Y)} = 9(y) exp{—kBV} for |y| < b and (V, Y) satisfying (16).

(¢) 9(0) = (Sb)*.

Then Q(v, y) = q(y) exp {—kpv} satisfies (14a)—(14b), and Q(v, 0) is the bound
in (5) by (c), so (14) proves (5). Condition (a) gives (14a) and (b) gives (14b),
as you can easily check. []

(19) THE GAMBLING PROOF OF (6). Fix b > 16. Let k =1 4 15b-%. In
Section 5, we will produce a function g(y) for |y| < b + 1 such that

@) 0=<9q(y)=1,and g(y) =0 for [y[ > b
(b) E{q(y + Y)} = q(y) exp (—kBV) for |y| < b and (¥, Y) satisfying (16)
() 90)=1.

Then Q(v, y) = 1 — q(y) exp [—kB(v 4 1)] satisfies (14a)—(14b), and Q(v, 0) =
1 — 6(v) by (c); so (14) proves (6). Condition (a) gives (14a)—remember there
isa v + 1 in the exponential; and (b) gives (14b), as you can easily check. []

3. The lemmas. We collect here some estimates of the trigonometric and
exponential functions, for use in Sections 4 and 5.

(20) LEMMA. Suppose 0 < ¢ < 1.

(a) sin(m/2)e = e.
(b) cos(n/2)(1 —¢) = e.
(c) tan(z/2)(1 — &) < 1/e.

(21) LEMMA. tanx < x 4 x®cos™y for 0 < x <y < /2.
Proor. Make a finite Taylor expansion of tan x. []
The next lemma is the key to (18b—19b).

(22) LeMMA. Suppose 0 < ¢ < land x| < (1 — €)r/2. Suppose X is a random
variable, with |X| < a and E(X) = 0. Then

I — (14 0)3EXY) < — Fleos (x + X)] = 1 — (I — 6)3E(XY),
CoSs x
where

0:%14-

@
3¢’
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Proor. By Taylor’s expansion,
(23) cos (x4 X) =cosx — Xsinx — LX?cosx 4+ R

where R = {X*sin (x 4 X’), and X" is a random variable with [X’| < |X| < a.
We claim

(24) |E(R)| < E(R|) < $0E(X*) cos x.
Taking E of (23) and using (24) proves (22). But
sin (x 4+ X’) = [sin X’ + (tan x) cos X"] cos x .

Now [sin X’| < |X’| < a, and [cos X’| < 1, and [tan x| < 1/e by (20¢). So [sin (x +
X)| £ B = (a + ¢! cos x. Furthermore, [X?¥ < aX?, so |R| < laBX?, proving
4). 0
(25) LeMMA. If 0 < x < &, then (1 — x) > exp[—(1 + x)x].

Proor. Make an infinite Taylor expansion of log (1 — x). [

4. The upper bound. We return to (18). Fix b = 16. Let
(26) q(y) = Acos[(1 — ¢)(my/2b)] with A4 = (5b)} and ¢ = (2b)"*.

We claim this ¢ satisfies (18).

We needed large 4 and positive ¢ to get (18a). For the check, confirm that
A(e — b7) = 1, using the condition b = 16. Furthermore, (1 — ¢)(1 + 67 < 1.
So ¢ is minimized when y = 4 + 1. Using (20b),

9(y) = 96 + 1)
= Acos[(1 — &)(1 + b7)(n/2)]
Ale — b7 + b7
1.

v v

Condition (18c¢) is obvious: that is how we came to the multiplier (55) in (5).

Conditien (18b) is harder to check. To make it hold, we need ¢ > 0 for (22),
the difficulty being tan 7/2 = oo.

The smaller k is, the less informative (5) is. So we wanted k to be reasonably
large. It had to be less than 1, as (9) shows; but we wanted it close. Our k
drops out of (22), and putting ¢ = (2b)~* approximately maximizes it.

Here is the systematic argument. We claim

27) E{g(y + Y)} = g(»)[1 — kpV] for |y| < b and (V, Y) satisfying (16),
where g is defined by (26) and k = 1 — 3b~* and § ==?/(8b%).

This proves (18b), because 1 — u < exp (—u). We now argue (27), by using
(22) with

x=(1-92  and X:(l—e)%.
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If |[y] <b, then [x| < (1 —¢)mj2. If (V,Y) satisfies (16), then 1E(X?) =
(1 —&)*8V, and |X| < @ = 7/(2b). So (22) proves (27) for any k < k,, where
ky=(1—06)(1—cp and 6=2 42
3 3

We now estimate k, fairly crudely: a*/3 = #?/(12b*) < 1/8?, and a/3 = =/(6b) <
1/b. Regrouping,
(28) 0 < b 4 (¢b)*.

Now
ky=(1—0)1 —¢)?
>1—60 — 2¢
1 — 672 — (eb)™ — 2¢.

[\

We chose ¢ so 2¢ = (eb)™?, approximately maximizing k,. In any case, putting
e = (2b)~t gives

kg=1—0b2—2.2¢.p7%,
Now b = 16, so

b2 =b"%.b"t < 64711

and

ky=1— (6472 + 2. 241

=>1—3b%,

This proves (27), so (18b), so Theorem (5).

5. The lower bound. We return to (19). The most natural ¢ was g(y) =
max [cos (my/2b), 0]. As before, this fails because tan /2 = oo, spoiling (22).
Rescaling by 1 — ¢ spoils (19a). Our solution was to replace the last bit of the
cosine function by a line segment. To avoid subscripts, fix & > 16 and set

(29) e = 3671, so 0<e .
This choice of ¢ roughly minimizes the k in (6). Draw the tangent line 4 to the
cosine at (1 — ¢)z/2. Extend A downward and to the right until it meets the
horizontal axis. Call the point of intersection (1 + d)z/2. So ¢ depends on e,
and we will compute it later. Let ¢ = ¢, be the cosine on [0, (1 —¢)7/2], the
tangent line 2 on [(1 — ¢)7/2, (1 + d)x/2], and O on [(1 + 0)7/2, c0). Let
o(—x) = ¢(x). Now rescale so (1 4+ d)z/2 becomes b: let

(30) W =¢[a+0 I L]

We will show that g satisfies (19). Conditions (19a) and (19c) are easy to check.
Condition (19b) is harder. To begin with, we have to compute d. The slope
of the tangent can be computed both as a derivative and a ratio of lengths,

giving the equation
in| (1 —¢ % | = Cosld —o)=/2]
- [( °) 2] (¢ + 0)n/2
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or
(31) To=tan T e — "¢,
2
So d ~ ¢*. We need an upper bound. Remember ¢ < 1 from (29). Use estimate
(21):
e T\
0= -<cos~_> e,
4 8
But cos*7/8 = (1 + cosx/4) = §(1 + 27t), so cos* /8 = L(3 + 2.2%). Esti-
mate n? < 10, and eliminate the surd:

(32) 0203 — 2.2 < 3t < gy,

where ¢ is obtained from (29).
We are now ready to tackle (19b). As the main step, we claim

(33) E{q(y + Y)} = q(»)[1 — kBV] for |y| < b and (V, Y) satisfying (16),
where ¢ is defined by (30) and 2 = 1 + 14b6~% and 3 = =*/(86%).

By symmetry, it is enough to prove (33) when 0 <v < 6. Let ¢ =b(1 —¢)/(14-9).
There are three cases to consider: 0 < y < ¢, where ¢ is a rescaled cosine; ¢ <
y < ¢+ 1, where y ++ Y can fall in both intervals [0, ¢] and [c, b]; finally, ¢ 4
1 <y < b, where ¢ is linear. These cases are handled by (34), (38), and (45)
respectively.

The first case of (33). We claim

(34) Elq(y + V)] = q9(»)[1 — k,8V]for0 < y < cand (V, Y)satisfying (16),
where k; = 1 + 3b-% and 8 = =?/(8b?).

In proving (34), it is convenient to abbreviate

(35) 9(y) = cos (1 + d) g ,

so by definition (30),

(36) 9(y) = 9(») for |yl <ec.
By convexity,

(37) 9(y) > 9(y) for e <[y =c+1.

To pin (37) down, you have to check that the cosine did not get positive again,
past 37/2. After rescaling, you need to know

3b
c+I<h+ 1<
(14 9)
which follows from (32) and the assumption b = 16. So
E{q(y + )} = E{g(y + Y)} by (36)—(37)
= 91 — kpV] by (22)

= g1 — kpV] by (36)
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all provided %, > k,, where
ko= (1 4 0)(1 + 9)?

_® o«
3 3e

= (140"

@ (+)2b

Using (29) and (32) and b > 16, confirm
a =< 2/b
0 < (4b7t + 4)p7t < b
ky=1+ (1 + 06)’60 + (2 + 0)0
=1+ @390+ 330
<14 3p%,
This completes the proof of (34).
The second case of (33). We claim

(38) E[q(y + Y)] = 9(»)[1 — k,fV]forc < y < ¢ + land (V, Y) satisfying
(16), where k, = 1 + 14b~% and B = =?*/(8b%).

This is the most delicate step. To begin with, the function ¢ is convex on
[—b, b] and linear on [c, b]. Consequently, if you slide the graph down the
tangent line at ¢, so (c, g(c)) moves to (y, ¢(y)), the new graph is below the old.
Algebraically,

(39) 9y +Y) 2 90) + 9(c + Y) — q(c) -
So (34) on y = ¢ shows
(40) E[9(y + Y)] = 9(y) — kiBV4(c) -
But g is linear on [c, ], with slope
— Tsin(l—e)F> —2
(148 Zsin(l = 2> -2,

using (32). Since c <y < ¢ + 1,

(41) q(c) = q(y) + 2671
Use estimate (20b) and (35)—(36):

(42) gle) =cos (1l —e) 2 = <.
Combine (41)—(42):

(43) q(y) Z ¢ — 267",
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Combine (41)—(43):
9 <y 2
9() — bl —(2/p)

2
4 =1
(44) +o

<148t
by (29), using b > 16. This and (40) prove (38) for
ko = (1 + 8b7H)k,
= (1 + 8b7%)(1 4 3b7%).
But (1 + 867%)(1 + 3b7%) < 1 + 1461, This completes the proof of (38).
The third case of (33). We claim
(45) Elg(y + Y)] = q(y)forc + 1 <y < band (V, Y) satisfying (16).

To argue this, let / be the linear function which agrees with g on [c, b]. So
g=lon[c,b+ 1], and
Elg(y + Y)] = E[l(y + Y)]
=)
=4()) -
THE PROOF OF (33). Combine (34), (38) and (45) to prove (33).

THE PROOF OF (19b). Let x = ~V. Using the condition » > 16 and ¥ <1,
and the estimate n* < 10, you find

With the help of (25),
(1= x) = exp[—(1 + x)x]
> exp[—(1 + 4b-)hpV].

But (1 4 467*)h < (1 + 1567, s0 (38) proves (19b) for g defined by (30). This
completes the proof of (6).

6. A more general inequality. Suppose Y,, Y,, --- are random variables
which satisfy
(46) EY,|Y,, ---, Y, )=0.

Do not assume |Y;| < 1. Define ¥, by (3) and ¢,, W, by (4). In general, there
is nothing to say about P{W, > v}. It can be made arbitrarily close to 1 by
taking the Y, to be independent and identically distributed, 0 with high prob-
ability, and + N with the remaining probability, where N is enormous. In the
other direction, if Y, = 4 (b 4 1), then P{W, > v} =0 for v > (b + 1)
Suppose, however, that

(47) PIY,+ - £ Y, [ <b+1)=1.
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This is clearly weaker than |Y;| < 1. We claim:

(48) ProposiTION. If'Y,, Y,, ... satisfy (46)—(47), where T, and W, are de-
fined by (4), then :

P{W, >v+ (b+ 1)} < Aexp (—kv),
where A = (b + 1/(2b + 1) and k = 1/(b + 1)

Proor. Consider this gambling situation. Your fortunes are the set of pairs
(v, ), with —co < v < oo and |y| < b + 1. If v < 0or |yl > b, youare stuck
at (v,y). On the continuation region v > 0 and |y| < b, you can move to
(v—V,y+7Y), where E(Y)=0, E(Y*) =V, and |y + Y| < b+ 1. Your
utility function # is 1 on the win region {(v, y): v < 0 and |y| < b}, and O else-
where. Let

0(v,y) = A[1 — (b + 1)7")"] exp (—kv) .
Then Q = u, and
E[Qv — V,y 4+ Y] = Q(v, )
on the continuation region, as you can easily check. If W, > v 4 (b + 1),
then (V,, Yy), (V,, Y,), --- move you from the starting position (v, 0) to the
win region. This has chance at most Q(v, 0), by (14). [J

Here is an example to show (48) is of the right order of magnitude. Let
e>0 IfY, + --- +Y,=0,letY,,;, = + ¢ with equal conditional probability
1. The conditional mean is 0, the conditional varianceis ¢’ If Y; 4 ... + Y, =
¢, let Y, , be —e or b + 1 — ¢, with conditional probabilities 1 — (b + 1)~
and (b + 1)~e respectively. The conditional mean is 0, the conditional variance
ise(b+1—¢). If Y; + --. 4 Y, = —e¢, reverse the sign. Starting at 0, you
have chance 1 — (b 4 1)~'¢ of returning to 0 in two moves, and chance (b 4 1)7'e
of absorption in two moves. Either way, you pick up

Et+edb+1—¢)=¢bd+1)

units of conditional variance. So W, is distributed like ¢(b 4+ 1)N,, where N, is
the number of tosses it takes to get the first head with a coin that lands heads
with probability (b 4 1)~%. So
(49) P{W, > v} > exp{—(b+ 1)} as e —0.

7. Brownian motion and random walk. Our results here are very close to
known ones, so we will report the facts'and only sketch our argument. We got
(1) this way. Let B be standard Brownian motion starting from y, and let

b = |y|. Let = be the least r with [B(f)] = b. Wald’s identity (Freedman (1971)
Section 1.11) shows

(50) E{exp [AB(r) — 3]} = e

Replace 2 by —2 and solve the two equations:

51 E| _1pr)) = Sosh Ay
(s fexp (— o)) = S A



ESCAPING FROM A STRIP 785

where cosh u = 4(e* + e~*). This holds for real . Some complex variable
arguing allows you to put 2 = i(2z)}, getting

(52) E(exp (—zt)) = cos y(2z)}/cos b(2z)} ,

for nonnegative real z less than the first zero of cos b(2z)}, namely 0 < z <
7*/(86*). Expanding the right side and using a Tauberian theorem (Feller (1966)
Section 13.5) gets (1). The square root looks nonanalytic, but cosine has only
even powers. Incidentally, if you make a partialfraction expansion of the right
side of (51), you get Fiirth’s formula (Feller (1968) page 359).

The situation for random walks is very similar. Let Y;, Y,, - - . be independent
and identically distributed, with P(Y; = +1) = p < 4and P(Y, = 0) = 1 — 2p.
So (2) holds. Now edge effects are important. Let 7, be the least n with
[Y,+ -+ + Y,|=0b. Let W,=VarY, %, So W, < W,.

Our first result shows that the ordinary coin tossing game (p = 1) hits b an
order of magnitude faster than Brownian motion. To get a process satisfying
(2) which leaves +b an order of magnitude faster than Brownian motion, stop
the coin tossing game when it first hits ==4. Then, move ¢ away from 0 with
probability 1/(1 + ¢); move 1 toward 0 with probability ¢/(1 + ¢).

(53) If p = 4, then lim,_,, (1/v) P{W, > v} = logcos n/2b < — /8%

Of course
2
logcos = = — & _ oY,
R TR TR
so the constant is even closer than (5) and (6) predict.
Our second result shows that for small p, the walk uses an order of magnitude
more variance than Brownian motion to hit 4-5; even more is needed to leave.

(54) lim_, P{W, > v} = H,(v) exists, and lim,_,, 1/v log H,(v) = —2sin®x?/8}".

p—0

Incidentally, you can identify H,(v) as the time it takes a Poisson process with
jumps =+1, of equal probability 4, and unit rate of jumping, to hit +5. We
give an explicit formula in (63).

Let | j| < b, and let = be the least n with |S,| = b, where S, =j+ Y, + .- -+ Y.
We will obtain a variant of the Lagrange formula for P{r = n}. The idea is to
make a partial fraction expansion of the Laplace transform, computed by Wald’s
identity. Namely, let

(55) #(2) = E[exp (AY))] =1 + 2p(cosh i — 1),
so ¢(2) = 1 for real 4. Let ¢(4) = log ¢(4). Then

Efexp (4S5, — ¢(2)7)} = expja,
SO

o — cosh jA
(56) E{exp (—9(Ae)} = <L
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The right side of (56), call it F(4), is analytic in the whole plane, except for
simple poles at the zeros of cosh b4, namely, at

57 A= (2 n=ri.
(57) n (m+)2bl

Because of the periodicity, only the roots with m =0, ..., 5 — 1 are interest-
ing. We now make a partial fraction expansion of F, but in terms of ¢. That
is, we ask for a,, such that

58 FQ) =yt %m
©8) D=L s — i)

To compute a,,, multiply across by ¢(1) — ¢(4,,) and let 2 — 4,,. So

a, =.cosh (j2_)lim, M
" ()l cosh b4

Remember that cosh iz = cos z, and use L’Hospital:

2 , T\ . 7
59 = (=1 2P (2 1*> (2 1*>.
(39) a, = (—1) bcos Jj2m + )Zb sin ( (2m + )2b

But why does (58) hold? Well, cosh k2 is a polynomial of degree || in cosh 2,
so in ¢(4). Consequently, (58) is right modulo a polynomial. Both sides of (58)
tend to 0 as |1] — co, so the polynomial is zero.

Now expand (58) as a power series in 1/¢(4):

60 FQQ) = Y=t A =, B(An) "_
) @ = 2y w5

But exp (—¢(4)) = 1/$(4), so the left side of (56) is E{¢(2)~*}. Comparing this
with (60), we get

(61) P{T = n} = an_zlo amrmn_1 for nh= 13 23 cee
where the g, are defined by (59) and

= () =1—2p {1 — COS[(Zm + 1)2735]} .

When p = }, relation (61) is the Lagrange formula. The leading terms cor-
respond to m = 0 and 4 — 1, and the signs depend on the relative parity of n,
J, and b. If you bother sorting it out, you get (53).

When p < 1, it is more convenient to write

re =1 —4psin2|:(m +%)§’EB].

Summing,

(62) P{r > n} = >tha,(1 —r,)r,".
So

(63) Hy(j, v) = lim__, P{2pr > v}

o b—1
- Zm=0 (memv ’
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where

a, =a,(l —r)t=(—1)" 11) cos [j(2m +1) %J cot [(m +9) 2%}

O = lim,_,r, 27 = exp[—z sin® (m + %) 2%] .
This proves (54).
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