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AN INDEX OF GENEALOGICAL RELATEDNESS
DERIVED FROM A GENETIC MODEL

By STUuART P. LLOoYD AND CoLIN L. MALLOWS
Bell Laboratories, Murray Hill

The coefficient de parenté o(x,y) of Malécot, which measures the
genealogical relatedness of individuals x and y, is derived as a correlation
coefficient of certain genotype scores. An explicit formula is given for
o(x, y) involving path sums in the ancestral charts of x and y. The expected
value of ¢(x, y) is worked out for certain random population models.

1. Introduction. The notion of a genealogical distance function, measuring
the degree of unrelatedness of two individuals in a population, is due to Mycielski
and Ulam. These authors define various such distance functions in [7], and
compute the expected values in a certain random population model. Kahane and
Marr in [2] extend the considerations of [7] to a somewhat more general model.

One of the Mycielski-Ulam distances is the /, metric on a certain vector space;
the corresponding /, metric for 1 < p < oo gives a whole family of genealogical
distance functions, called here d,(x, y). In[4] it is shown that the inner product
associated with dy(x, y) serves to define an index of genealogical relatedness r(x, y)
which measures the degree of cousinship of individuals x and y, and the expected
value of r(x, y) is obtained for certain random population models, including the
Mycielski-Ulam model. It turns out that common ancestors in the remote past
count for too much in r(x, y); one has r(x,y) = 4+ oo w.p. 1 in the random
models when the past is infinite. A discount or mutation rate 1 — & > 0 can
be introduced which makes r(x, y; §) finite, with divergence at the natural value
§—1.

In [6] an index of genealogical relatedness p(x, y) is defined as the probability
that x and y have the same makeup with respect to a pseudogene pair 4, a obeying
a simplified version of the Mendelian inheritance law. Associated with o(x, y)
there is a genealogical distance d,(x, y) = 1 — p(x, y). In this treatment one has
p(x,y) = 1 and d,(x, y) = 0 w.p. 1 for populations with an infinite past unless
a mutation rate 1 — & > 0 is introduced. The difficulties are again connected
with the influence of the remote past, but in a more subtle way.

The coefficient de parenté of Malécot 5] is the first general formation of an
index of genealogical relatedness based on Mendelian genetics, although the no-
tion appears in many places in the earlier literature. (A substantial bibliography
is given in [3].) In the present paper we derive the coefficient de parenté o(x, y)
as a correlation coefficient, define an associated genealogical distance function
d,(x, y), and work out the expected values of these for the random population
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INDEX OF GENEALOGICAL RELATEDNESS 759

models of [4]. The difficulties with the remote past are not removed; we find
o(x,y) =1 and d,(x,y) = 0 w.p. 1 for populations with infinite past unless a
mutation rate 1 — & > 0 is introduced.

2. The population. We follow the notation of [4]. The population .5’ under
consideration, a subset of some designated sexually reproducing species, is assumed
to have the properties:

(i) s finite.
(ii) each member of “is the issue of two other distinct individuals, his father
and his mother, not necessarily members of .&7;
(iii) if x € &7 then all descendants of x up to the present are members of &

Let <% denote the set <5’ = {0, 1}, and let . be the set & = [, 0, 1, 00,
01, - - -} of all finite sequences of members of <7, including the empty sequence
@. The length of se.5” is denoted by i(s), the concatenation of s, ¢ .5 is
denoted by st, of length Z(St) = A(s) + A(r), and s < t means ¢ = so for some
o e.%”. For each fixed x e.S” the ancestral designating function x,, s€.%] is
determmed by: x, = x, x,, = father of x,, x,, — mother of x,, 1.5 With

= {x: xe % and & = {x;: xe &7} the parental sets of members of .2/
the set of progenitors of .©7is 0.2 = (& U &) — &7 we put &7F = &7 U 0.9
For xe &/, &, = {x,: s ¢ & and x, e 57"} denotes the set of members of
<+ who are ancestors of x, plus x himself. No xe.”* is his own proper
ancestor, whence x € .%7, and y € %/, implies y = x. The ancestral chart <7,

x

is the graph <7, = {(s, x,): s € &} of the function x.

3. The genetic model. The genetics we use is the elementary model of [1]
Section V. 5. We single out for attention a particular chromosome pair C =
{C®, C™} in the species containing .7} and on C”, C¥ paired locations L™, LV,
We assume that for any given individual, L is occupied by one of two genes
A, a and that L is also occupied by one of 4, a. For (e £# the indicator
h'“(x) will specify the gene on location L in the typical cells of x € < accord-
ing to: 2(x) = +1 if A4 appears at L and £”(x) = —1 if g appearsat L. We
make the assumptions:

(i) a randomly chosen gamete (germ cell) of any x e .2”contains either C'”
or else CV with probability L each;
(ii) C is not the sex determining pair;
(iii) genes A4, a are neutral as far as gamete viability, survival value, mating
preference, or other phenotypic expression are concerned.

The simple Mendelian inheritance law then yields the distribution
(1) hO(x) = hO(x,) with probability 1
:h(“(x,) %, e B xe P

for the origin of the genes of x. (The assumptions (i)—(iii) are necessary because
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(1) is an a postiori distribution, given that x is a surviving member of & of sex
not specified.)

There are various equivalent ways of introducing a mutation parameter; the
following is the most convenient for our purposes. With each xe.2” we asso-
ciate a pair m®(x), m®(x) of +1-valued random variables; the probability dis-
tribution of the m’s will be specified presently. In place of (1) we assume

h(x) = h(x,) with probability 1§
(2) = hM(x,) 3, te F, xe P,
= m'(x) 1—-¢

with 0 < & < 1 the mutation parameter, the same for all x; when &§ =1 we
have (1).

Our measure of relatedness is based on the following idea. Suppose that genes
A, a are assigned at random to the members of the progenitor set 0.7, the as-
signments being independent. If x, y € &” have no ancestors in ¢.2” in common
then the genotypes of x and y will be statistically independent, whereas common
ancestors in 9.%° will introduce dependence, and the more dependence the closer
xand y are related. Our relatedness index measures the correlation of the geno-
types of x and y, in a sense to be made precise.

Explicitly, a probability structure is determined by the following assumptions:

(i) the various choices (2) for x e .27 are statistically independent;
(i) 77 ={h9(x): xc 0, te 28} U {m¥(x): xe & ce &£} is a set of mutu-
ally independent random variables, independent of the random choices (2);
(iii) the members u of </ are identically distributed with distribution P{u =
+1}=p, Plu= —1} =g=1—pforsome0 <p < 1.

Observe that (2) is suspended for x¢ 9.2 e.g., if both ze€ 905’ and z,€ 6.5
we still require A%(z), A (z), h'*(z,), h(z,) to be mutually independent.

The gene frequencies p, g of A4, a are stable under (2); that is, P{A'"(x) =
+1} = p, P{h9(x) = —1} = gforallxe .o e <. (Cf.[1] pages 135-136.) The
following proof of this introduces an idea to be used later. Let 2/ = {u,: y ¢ I'}
be an indexing of %/. By induction from (2), 4(x) is obtained by selecting a
member of 7/ according to some probability distribution P{A(x) = u,} =
p(r|x,¢), yeI', this random selection being independent of the values of the
members of 7. Although it is easy enough to give the explicit form for p(y | x, ¢),
we need only the property 3}, p(y|x,¢) = 1. We find

Eh0(x)} = 2, Elup(r | %, )
=2, —p(rlx o)
=p—gq, xeF e B,

The proof is concluded by the remark that the distribution ofa + 1-valued random
variable u is determined by E{u} according to P{u = +1} = }[1 + E{u}].
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For each x ¢ 7t the quantity k(x) = 3[#'”(x) 4+ h™(x)] scores the genotype
of xaccording to 4(x) = 1,0, —1 for x being 44, Aa, aa, respectively. We define
the genealogical distance d,*(x, y) = E{[A(x) — h(y)]’}. The expectation E{ } is
over the probability structure designated above, so that d,(x, y) depends on the
parameters &, p. We will write d,(x, y; §) when the & dependence is of interest;
the p dependence will require no notational observance. With an inner product
R(x, y) defined by R(x, y) = E{h(x)k(y)}, x, y € &%, d, and R satisfy the familiar
d}(x,y) = R(x, x) + R(y,y) — 2R(x, ).

THEOREM 1. d,(x, y) is a metric on 7% provided 0 < p < 1,0 <& < 1.

Proor. The propertiesd,(x,y) = 0,d,(x,y) = d,(y, x) and d,(x, y) < d,(x, z) +
d,(z, y) derive from the inner product structure in the usual way. It remains to
show that under the hypotheses, d,(x, y) # 0 if x # y. The condition0 < p <1
is necessary, of course; if p = 1 or 0 then the 4*(+) are either all +1 orall —1,
respectively, with probability 1. The selections (2) being statistically independent
for x # y, the probability is at least (1 — &)* that the four A’(.) for x and y
constitute four distinct members Uy Upgy Uy U, of 77, e.g., each A'"(+) equal to
the appropriate m‘(+) when x, y € &. There follows, for x, y € &%, x # y,

dXx,y; €)= (1 1 <)* E{[t:71 +ou, —u, — u“]z}

=4dpg(l — &) >0, 0<é<1,0<p<1. [

The covariance of the random variables #(x), h(y) is E{h(x)h(y)} —
E{h(0)}E(h(Y)} = R(x, y) — (p — q)" since E{h(x)} = E{h()} = p — q. We show
now that this covariance is always nonnegative; a multiple of it will be our
genealogical relatedness index a(x, y).

The pair 2“(x), #”(y) for any fixed x,ye.Z°" and ¢, § € &% is obtained by
selecting a pair from 7/ according to some probability distribution P{A’(x) = u,,
and 29(y) = u,.} = p(r’s 7" | X, ¢; y, 0), 7', " € T'; this distribution is determin-
ed by &, and ’,. The random selections (2) involved are independent of the
values of the members of 77, and it follows that

E{hO () (y)} = 2 2y Elugu dp(r's 77 %, 65y, 0)
3) =2, p0s1|x 65y, 0)
+ (2= Dprer PG X 65, 0)
= =9+ 49 2, p0: 71X 65, 0),

where we have wused 3. 3. p(,71"|x,¢y,0)=1. Since R(x,y) =
(1) 2. 20 E{RO(0)hP(y)}, if we define a(x, y) by
) o(x,y) =% . 2o Ly P(rs 7%, 59, 0)

then we have

R(x,y) = (p — 9)* + 4pga(x, y) , x,ye Ft,
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and further

d;}(x, y) = 4pqla(x, X) + a(y, y) — 20(x, y)] » X, ye .
The quantity o(x, y) is independent of p, and is just R(x, y) for the value p = 1
of the parameter p. It is obvious from the definition that 0 < o(x, y) < 1 always.
The quantity ¢(x, y) is our index of genealogical relatedness in the Mendelian
genetic model.

For the case x = y we see from (4) that o(x, x) = { + Lo(x) with ¢(x) defined
by a(x) = X, p(r> 7], 0; x, 1). The quantity 0 < ¢(x) < 1 measures the in-
breeding in the ancestry of x. It also parameterizes the distribution of the
genotype indicator A(x); from

P{h(x) = £1} = FE{[1 &+ AO(0)][1 + AV(x)]}
= J[R(x, ) + (p — 9]
P{h(x) = 0} = 1 — E[R(x)}
=1— R(x, x),
and R(x, x) = p* + ¢* + 2pqo(x), we find

Pih(x) = 1} = p* + pgo(x)
Pih(x) = 0} = 2pq[1 — o(x)]
P{h(x) = —1} = ¢* + pgo(x) .

Another interpretation of a(x, y) is the following. Let 2(x), 2" (y) specify
the genes at L on two independently chosen gametes, one from x and one from
y. Then o(x, y) is seen to be P{A'"(x) = u, = h*”(y) for some y}. This is the
probability that the genes 4"(x), A~’(y) are identical by descent in the terminology
of Malécot, and our o(x, y) is just the coefficient de parenté of Malécot [5].
Moreover, o(x) is the coefficient de consanguenite of [5].

4. An explicit formula for ¢(x, y). We next derive some recurrence properties
satisfied by R(x, y). First, the symmetry R(x, y) = R(y, x) is obvious from the
definition R(x, y) = E{h(x)h(y)}; taking p = § gives the symmetry

) a(x,y) = a(y, %) , x,ye .

If x ¢ .7, the choices (2) for x € &7 are conditionally independent given the
values of £9(y), A¥(y), and moreover, m'“(x) is independent of A(y), ¢ € B, since
p(rs7|x ¢y, 0) = 0if u, = m“(x). From

E{R(x)h(y)} = -i—[E{h“”(X,)h(y)} + E{RP(x)h()}] + (1 — EE{m(x)h(y)}

= EE{h(x)h(y)} + (1 = &)p —9)*, x¢ Y, xeF ye Fr,
there follows

R(x,)) = 5 R(x0y) + 5 RGuup) + (p = (1 = 9),
x¢ ¥, xe T yeFt,
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and taking p = 1,
(6) a(x,y):éa(xo,y)+§a(xl,y), xeé%,xg@,ye@ﬁ

When y = x € &° we have by (2),
2R(x, x) — 1 = E{hO(x)hP(x)}

- <§>2 2o Do E{RO(x)h(x,)}

+ §(1 = O[E{A(x)m ()} + E{m @ (x)h(x,)}]
+ (I — EE{m @ (x)m™(x)}
= ER(xp x,) + (1 — E)(p — 9, xe P
with p = 1 we find
) o(x,x) =4 + % a(Xpy Xy) » xe .
By the basic assumption of the model, R(x, y) = (p — q)* + 2pqd,, for x,
y € 05 whence

(8) a(x%, ) = 30, x,y €07,
where d,, is the Kronecker symbol.

THEOREM 2. The properties (5)—(8) determine o(x, y) uniquely for x, y € °*.

Proor. Let 7(x,y) = o’(x, y) — ¢”(x, y) be the difference of two solutions.
Then, for all x, y e &°*,

(i) z(x,y) = 7(y, %),
(i) 7(x, y) = (§/2)7(%, ¥) + (§/2)7(x0, y) if x ¢ 7, xe T,
(iii) 7(x, x) = (§/2)7(x,, xy) if x € F,
@iv) 7(x,y) =0if x, yc 0.5~
Arguing as in [4], we apply (i)—(iii) in some order to obtain

T(x, )’) = z';,ezagr(z’: z")K(Z,’ "5 x, )’) s X,y € D

where the K’s are combinatorial coefficients depending possibly on the algorithm
used for the application of (i)—(iii). (This last point was not discussed in [4],
but the argument for [4] is similar.) From (iv) it then follows that ¢’(x, y) =
a’(x,y), x,ye F*. ]

We will now exhibit an expression ¢(x, y) which satisfies (5)—(8). For x ¢ &7+
and s e .&” the path z,(x) is defined to be the chain of successive ancestors of x
along s; that is, z,(x) is the sequence 7,(x) = [x,;: j = 0,1, - - -, A(s)] with 5, € &~
the unique s; < s such that A(s;) = j. The edges of r,(x) are the ordered pairs
[x,; x,;,,] for j=0,1,...,4(5) — 1. For x,ye " and s,te.5” we write
m(x) L =,(y) if the pair of paths r,(x), z,(y) has the properties:

(i) =,(x)and r,(y) have no edge in common;
(i) neither z,(x) nor z,(y) has an edge lying entirely in 0.7
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That is, common nodes are permitted (x,, = y,, for some j < (s), k < (7)) but
not successive common nodes.

THEOREM 3. The relatedness index o(x, y) is given explicitly by

E 2(8)+A(t)
© s =3nn(S) =y e T and ne Lro)},
X, ye .
Proor. We will show that the expression (9) has the properties (5)—(8). The
symmetry o(x, y) = o(y, x) of (9) is obvious, and it is soon apparent that (9) has
the values o(x, y) = 44,, for x, y € 0.5, which is property (8).
The ancestral chart <, of xe &t may be regarded as the disjoint union

x

&, ={x} U &, U<, in the sense that either x, = x for s = @ or else x, =
X0 = (X,), biuniquely for s’ € & or else x, = x,,,, = (x,),,, biuniquely for 5" ¢
With x ¢ &, y € &°* such that x ¢ %7, suppose s, t € & are such that x, = y,.
The assumption x ¢ %7, entails s = @, so that s = ¢s’ for unique ¢ € 5, s’ ¢ .
If z,(x) L =,(y) then x,(x,) L =,(y) certainly. On the other hand, for any ¢ ¢ <&
and §’, t €. such that x,, =y, and =,(x,) 1 =,(y), the paths =z (x), =,(y) for
s = ¢s' will also satisfy =,(x) 1 =,(y), since the added edge [x, x,] is not in 7 ,(y),

from x ¢ %7, O 7,(y), nor in 0.7, from x € &. Thus (9) becomes

S 1+2(s") +A(t)
o(5y) =4 %, Zv T {(5) i3y =y.e P and 7,(x) L =)}

:.g_o(xo,y)+§a(xl,y), x¢ ,xe AyeIFt,

showing that (9) has property (6).

When x = ye & we have x, = y,e & and r,(x) L =,(y) iff either s =
t = @ orelse xe & and x, = x,, € 9" and 7,(x) L 7, (x,) with § =1 — ¢
and s = ¢s’, t = ¢ for unique ¢ € <% and s, ' € . From this one verifies that
(9) has property (7).

By the uniqueness result of Theorem 2, expression (9) is an explicit represen-
tation for the relatedness index p(x, y) defined in (4). [

We next obtain an expression for o(x, y) corresponding to [4] Equation (3).
Let us say that paths r,(x), 7,(y) satisfy =,(x) L =,(y) provided:

(i) x,; # y,, forall 0 < j < A(s) and 0 < k < A(2);
(ii) neither = (x) nor z,(y) has an edge lying entirely in 0.7

Thus a pair = ,(x), 7,(y) for which x, = y, € & is minimal in the sense of [4]
provided 7 (x) L 7 (y).

THEOREM 4. In terms of minimal path pairs, o(x, y) is

10 o= nf(5) " @ din=n=1eF

and 7,(x) L 7 y)} : X, ye T,
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Proor. If x,ye &7t and s, t € & aresuch that x, = y, e &t and n,(x) | =,(y)
then there exist uniquely ze .o°*, s, ¢, 0,7 € .5 such that s = s'e, t = t'r,
Xy =Yy, = ze P, n,(x) L =,(y), and further, z, = z. ¢ &°* and = (z) | #.(2).
Conversely, if x, y e & and ¢, ' € & are such that x,, = y, € " and =,,(x) L
m,.(y),and if z = x, = y, and ¢, r € & are such that z, = z_ € &7 and 7,(z) |
7.(z), then the composites s = s'o, t = ¢/t satisfy x, = y, € & and n(x) L 7,(y).
The theorem follows. []

The relatedness index po(x, y) of [6] being

) =B EA(3) i x = me s and a) Lo,

x,ye o,

we see that Jo(x, y) < o(x, y) < o(x, ), x, y € &°F, since the coefficients o(z, 2)
in (10) satisfy 1 < a(z, z) < 1, from (7).

5. The random families. We describe now the probabilistic population models
treated in [4], for which E{o(x, y)} can be obtained explicitly. The population
is stratified into generations </®, &”® ... into the past, with the parents of
z € ™ being members of ..+, The .o of the preceding sections will be
GOy .U 49D for some large M, but only the limit as M — oo will be given
for quantities involving M. Ina few places we use without mention the uniform
convergence of the series for o(x, y;§)on 0 < £ < 1.

Each ™ consists of 2¢ individuals, named 1, - .., 2¢, paired into couples
™ = {i,c+ i}, 1 £i < ¢, with ¢ > 1 independent of m. Each .25 ™*V has
as issue a son and a daughter in <™. For 1 < i < ¢ let the infant names of
the two children of .57 ™*? be {i, ¢ + i}. The adult names of the members of
4™ are obtained by applying a permutation operator 7™ to the list 1, - .-, 2¢
of infant names. The random family structure is determined by:

(i) for each m the permutation =™ is a random variable uniformly distributed
on a set of admissible permutations, to be designated;

(if) the =™ for various m are mutually independent random variables, inde-
pendent also of the basic random variables of the genetic part of the model.

The models we treat are:

Model = = 2: An admissible permutation is the identity on (1, ---, ¢) and
nonrencontre on (¢ + 1, ..., 2¢). The interpretation is that the couples are
surnamed 1, .- ., ¢. Thesoniof 2 ™ = “Mr. and Mrs. i” of £~™*+V becomes
“Mr. i of >77'™, and the daughter ¢ + / = “Miss i’ becomes ¢ + v, = “Mrs.
v,” of %""L’;", with (v,, -+ -, v,) a nonrencontre permutation of (1, ---, ¢). That
is, no 7™ consists of siblings.

Model r = 0: The same without the taboo; each permutation which is the
identity on (1, .- -, c) is admissible.
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Model r = 1: Each permutation of (1, - - -, 2¢) is admissible. The determi-
nation of sex and surnames in this model involves random renumbering of the
couples, which we will not need to discuss in detail, see [4] Section 4.

The probability P{ } and expectation E{ } of the preceding sections are to

be treated as conditionals for given z(¥, ..., z¥~: in the present section P{ }
and E{ } involve averaging also over the =™’s. We denote by E{ |.&,]} the
conditional expectation for given x'”, ..., z("=D,

Consider now the random variable ¢(x, y) for xe F®, ye 7, with 0 <
k < I. The rest of the present section is devoted to obtaining E{a(x, y)} explicitly
in the various cases. Let us first examine (10). For ze &*™ the random
variable g(z, z) depends only on =™, z»*» ... while the event {x, =y, =z
and 7,(x) L m,(y)} is .7, measurable. Let random variable M,,(x, y) be the total
number of minimal path pairs to some (unspecified) member of .&7™. Using
E{o(z, 2)| &} = E{o(z, z)} for z e &7™ and the fact (to be verified presently)
that E{o(z, z)} is the same for all z e &4, we obtain from (10):

(1) Elo(x, ) = Blo(z, 2) X (5 ) ElMu(x. )
= E{o(z, 2)}E{o(x, )} x,ye .
Now, the genealogical index r(x, y) of [4] satisfies a similar identity
(12) E{r(x, y)} = E{r(z, 2)}E{p(x, y)}

for these random families. Combining (11) and (12), we obtain the remarkable
result
(13) Elotx, ) = | 20E D B,y 5ye .
{r(z, 2)}
Since E{r(x, y)} is given explicitly in [4] for all cases, we need only to calculate
E{a(z, z)} to obtain E{g(x, y)} in all cases.
Let us classify pairs (z/, z) in each £”™ according to

2’{15z" if 722 =2z"

/(27" if 2/ 7 belong to the same couple
/(37" if 2z # 7" are of the same sex
/(457" otherwise .

For a path pair 7(x), 7,(y) we write m(x){uyr,(y) for p = 1,2, 3,4 provided
m(x) 1 m,(y) and x,{¢)y, are satisfied. Consider a path pair 7,(x) L 7,(y) such
that x, = 2/ € &™), y, = 7/ ¢ &™. There are four extensions to a path pair
T (X), m,(y) with ¢, 0. and x, = w' e ™D, x, =w'e ", The
number of extensions which satisfy r,,(x){¢>,,(y) depends on the relatedness of
7', 7" according to:
wl<1>wll wl<2>wll wl<3>wll wl<4>wll

7 =7z 0 2 0 0
(14) 7'+ 7' sibs 2 2 0 0

z' = z'" not sibs 0 0 2 2.
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Whether 7/, z”” € %™ are sibs or not depends on =™, as well as the class of
Z/, z"; we find easily
Z/< 1 >zll ZI<2>ZII Zl<3>zll Z/<4>'zll

a5y  Pr#zrsibs|#,) 0 0 27T 9 z .
2¢ — 7 2¢ — 7T

For p =1,2, 3,4 let N,™(x, y) denote the random total number of {y)-path-
pairs to ™
N, y) = L Zefli xoe ™ and y,e & and z(x){¢y7(y)},
mz=1,

and let |[N™(x, y)|| denote the column vector with components ||N™(x, y)||, =
N, ™(x,y), 1 £ p < 4. With [|4]| the matrix

0 2 — 0 2
i 2 \pe—c 2-2 o0 2
_<2c—‘[> 0 2c—2 2c—7 20—17—2

0 2c—2 2c—7 2c—17—2

there holds E{|[N™+V(x, y)|| | &} = [[AE{N"™(x, y)}||, m = I, using (14) and (15).
Taking expectations, we see that E{||[N™(x, y)||} = ||A™"E[NV(x, y)}||, so that

Elo(, ) =4 Zsa (5 ) BN )

= 3 B (5 ) - tm e

= 1(35) I — @HAPENU, ),

According to (13), we need to work this out only for y = x, in which case
N,®(x, x) = 0y, and E{a(x, x)} = &||[1 — (§*/4)A]7Y|,.,- We find

det ||1 — (&%/4)4|| = (8¢ — 47) — (8¢ — 67)&% — z&* 4 (1 — 7)&8
8¢ — 4r

and altogether

(16) Efo(x, x)} = . (4e = 27) — (4c = 30) 4 (1 — )¢
(8¢ — 4t) — (8¢ — 67)& — &t 4 (1 — 7)€

E{o(x, x)} _ 4(1 — &)2c — v — (c — 7)&

E{r(x,x)}  8c —4r — (8c — 67)& — & 4 (1 — 7)&®

For ¢ = 1 the roots # of (8¢ — 47)h* — (8¢ — 67)h* — th + 1 — ¢ are

_ (4c —3) + [4(2c — 1> + 17F _ _ 1 1
h, = 42c — 1) =1 8c_3+0<?>
_ (4c—3) — [4Q2c — 1 + 17F _ _ 1 i

hy=0.
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For = 0, 2 the roots are

1 1
Bo—1— o<_>
! 8c—z-—2+ ct

1 — 27 1 r—1 1\7?
»os 16¢ t ¢/ 8¢ + c

the last two being complex when = 0. In all cases we find

E{N,"™(x, y)} ~ (comst.) X 2*™ X h™

= (const.) X \:4 — _2% + 0 <;1;>:l"‘

for the asymptotic behavior of the number of | -path-pairs to F*™. Observe
that this exponential increase in the number of | -path-pairs is just barely less
that the discount factor 4-™ in the series for a(x, y; 1).

6. Further considerations in the random families. Let us return to the iden-
tity (13). From [4], E{r(x, y)} has for each ¢ the form

. N(x, y; §)
17 Elr(x, y; )} = 22 2] 0sét,
(17 (r(xy: ) = S50
with N(x,y;€) a polynomial in & and D,£) the polynomial D,(§) =
4(1 — &)[2¢ — = — (¢ — 7)&%]; the = dependence need not be displayed. If we
define D,(§) = N(x, x; §) = (4¢c — 27) — (4c — 30)& + (1 — 7)&* then we have,
as is shown in [4],
. N(x,y; €)
18 pr’ 95 = 0§8§1’
(18) (ot 33 O} =~
for the same N(x,y; £). Comparing with (16), we see that E{s(x, x; §)} =
D,(8)/D,(€) with D,(§) = (8¢ — 47) — (8¢ — 67)& — & + (1 — 7)€%, whence,
from (13).
. N(x, y; §)
19 Elo(x, y; &)} = =22/ <é<t1,
(19) (ot 33 80 = =508 0=
again with the same N(x, y; ).

Since N(x, y; 1) =1 and D (1) = 1, there follows E{s(x, y; 1)} =1 for all
x,ye Z But g(x,y) is a random variable with the property 0 < o(x, y) < 1,
so we have further a(x, y; 1) = 1 with probability 1 for all x, y ¢ & This failure
to measure relatedness can be explained as follows. The vector process [A“(x):
xe P™, e F] is Markov in the forward time sense m = M, M — 1, ---
with stationary transition probabilities. Of the 2* states, two are absorbing
when & = 1 and accessible from all the other states viz., all A)(+) = +1 and
all A(+) = —1. With probability 1, then, the system will be eventually in one
of the absorbing states. (An explicit calculation appears in [1] page 380.) This
is to say,

lim,, ,_., P{o(x,y) = 1 forall x,ye 5™ |stateat M} =1.
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The process being stationary, we have also
limy ... Plo(x,y) = 1 for all x,ye.cm |state at M} =1

for any m > 0, implying o(x, y) = 1 for all x, y e The same argument ap-
plies to p(x, y) of [6].

Added in proof. Indeed, an “Adam effect” is apparent: as M — m —s oo all
4c genes in generation m will w.p. 1 eventually be replicates of a single one of
the 8¢ progenitor genes, treating these as distinct.

From [4], the genealogical distance dy(x, y) defined there has for the random
families the form

ceym = 8e(l — §A(x, y; &)
E d2 s Vs = ’ 0= 1’
([(x, : ) D% <¢<
for a certain polynomial A(x, y; £); the expression A(x, y; 1) = E{[dy(x, y; 1)]} is
given explicitly in [4] Section 5. Since [dy(x, Y)I* = 2[r(x, x) + r(y, y) — 2r(x, y)]
it follows from (17) that
ey = AN, x5 €) — N(x, y; §)]
E{[dy(x, y; =
([e(x, y: )1} .5

_[4D,9) .
—[A®JH¢W%®L

whence

ey = 261 — HA(x, 3 &)
E{d,(x, y; §)} = :
’ D,(<)
This and A(x, y; €) # 0 for x = y shows that A(x, y; &) is a metric. In[4] Section
6 a genealogical distance function d(x, y) was defined by d(x, y) = lim,_, d,(x,
Y3 9/[2(1 — &)], so that E{d(x, y)} = cA(x, y; 1), a result which appears in [4].
For the Mendelian distance d,(x, y) we have similarly

E{[dy(x, y; )1} = 2E{o(x, x; §) — a(x, y; £))

— D_GZ(B [N(x, x; &) — N(x, y; §)]

_[2D,8) .

—[%®]E%awf»

_ 4e(1 — &)A(x, y; §)
D,()

s 0<é<1
whence E{[d,(x, y; 1)J’} = 0 and
lim,_, w = 4cl(x, y; 1).

7. Some generalizations. Instead of the pair A4, a, suppose that there are n
genes 4,, - - ., 4, which can occupy locus L, and that these have been assigned
score values v,, - -, v,, assumed for convenience to be distinct. For each indi-
vidual x we may define scoring indicators h®(x), h"(x) according to: h(x) = v,
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if A4, appears at locus L in the cells of x, for ¢ ¢ £#'; we define also the average
score h(x) = [A”(x) 4+ A¥(x)]. The inheritance law still being (2), assume as
before that the 27 = {u, : y € I'} are independent identically distributed random
variables, the distribution of u € 7 being P{u = v,} = p;, 1 < i < n, for some
choice of the p’s. Denote the mean and variance of eachu € ZZby M = 37 p,v,
and $* = Y17 p, v, — M?, respectively. In place of (3) there holds

E{h ()R (y)y = X, 2,0 Elu o dp(r's 177 1%, ¢ p, 0)
= (D pv®) 2, P11 %, 65, 0)
+ (Z?:lpilvi)z ;:*rz”: P(T, T’ | X, ¢35 ), 0)

=M+ 85, p(rs 7% 65, 0).
With R(x, y) = E{h(x)h(y)} as before, we find
R(x,y) = M* + S%(x, ), X, ye T+,

with ¢(x, y) the same quantity previously defined in (4).

Even more generally, suppose that the 4(+) take values in a linear space with
inner product ¢ , ), still with inheritance law (2) and the members of 7 inde-
pendent and identically distributed. The only requirement is that E{<u,., u...)},
7', 7" € T be well defined, necessarily of the form E{{u,., u..)} = M® 4 §% ...
for real constants M® and $* = 0. With R(x, y) now R(x, y) = E{{A(x), k(y))},
x, y € &*, a calculation similar to the above shows R(x, y) = M® | S%(x, y),
again for the same o(x, y).

Thus a(x, y) of (4) emerges as a coefficient of covariance in any L, setup for
the £(+). Suppose the basic random variables u € 77 are real valued, with the
property E{|u|*} < oo for some 1 < @ < co. Then a genealogical distance func-
tion d,(x, y) is determined according to 4, (x,y) = [E{|h(x) — h(y)|*}]V*,
x,y € 7, as we have seen, the case a = 2 is distinguished by the existence of
an associated relatedness index.

There is a curious relation among the distances d,(x, y) when the 4(.) are
+ 1-valued, as originally specified. With each of 4(x), A(y) taking values 1, 0, —1,
there holds E{|h(x) — h(y)|*} = 2*4(x, y) + B(x, y) with A(x, y) = P{one of x, y
is AA, the other aa} and B(x, y) = P{exactly one of x, y is Aa}. The functions
A(x, y), B(x,y) are determined if we know d,'“(x, y) for two distinct values of
1 £ a < oo;e.g., using a = 1, 2 we obtain, forall 1 < a < oo,

(4, (x, y)]* = 2°7H[d,(x, Y)I' — d, (%, )} + {2d,7(x, y) — [do(x, ))I'}
X, yeFt.
There is a discontinuity in d,(x, y) at § = 1 for certain x, y provided 0 < p < 1
and .7 is finite:
d, = (x,y;§) = 2(1 — d,,) if 0¢6<1,
d, = (x,y;1) =1 if one of x, y is parent of the other,
=2(1 —9,,) otherwise .
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8. Addendum. Reference [3] came to our attention after the above was

written. The coefficient of kinship of Karlin ([3] page 85 et. seq.) involves the
joint distribution of all four of 2*(x), A(x), 2(y), A"(y), and does not satisfy
a recurrence scheme as simple as (5)—(8).

(1]
[2]

[3]

[4]
[3]
(6]
[7]
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