LIMITS OF RATIOS OF TAILS OF MEASURES1

BY WALTER RUDIN

University of Wisconsin

Suppose μ is a positive measure on the half-line $[0, \infty)$, of total mass m, Φ is the sum of a power series with nonnegative coefficients which converges at the point m, and λ is the measure on $[0, \infty)$ whose Fourier transform $\hat{\lambda}$ is $\Phi(\hat{\mu})$. The lower limit of the ratios $\lambda([s, \infty))/\mu([s, \infty))$, as $s \to \infty$, is compared to the number $\Phi'(m)$, under a variety of conditions.

1. Introduction. Suppose μ is a finite positive Borel measure on the half-line $[0, \infty)$, of total variation $||\mu||$, and $\Phi(t) = \sum_{0}^{\infty} \Phi_{n} t^{n}$ converges absolutely when $t = ||\mu||$. Let μ^{0} denote the unit mass at 0. Define $\mu^{n} = \mu^{n-1} * \mu$, for $n = 1, 2, 3, \cdots$ where * denotes convolution. Then $\lambda = \sum_{n} \Phi_{n} \mu^{n}$ is a finite measure on $[0, \infty)$ which may be denoted by $\Phi(\mu)$. The behavior of the ratios

(1.1)
$$\frac{\lambda([s,\infty))}{\mu([s,\infty))}$$

as $s \to \infty$ is the topic to which the title of this paper refers.

If μ happens to be concentrated on the nonnegative integers, the problem becomes one about coefficients of power series and has therefore a particularly elementary character.

To begin with this special case, suppose $f(x) = \sum_{n=0}^{\infty} f_n x^n$, $f_n > 0$ for all n, $\Phi(t) = \sum_{n=0}^{\infty} \Phi_n t^n$, and

(1.2)
$$g(x) = \Phi(f(x)) = \sum_{0}^{\infty} g_n x^n$$
.

What can one say about the ratios

(1.3)
$$\frac{g_n}{f_n} \quad \text{and} \quad \frac{g_n + g_{n+1} + g_{n+2} + \cdots}{f_n + f_{n+1} + f_{n+2} + \cdots}$$

as $n \to \infty$?

When $\{f_n\}$ is a probability measure, i.e., when f(1)=1, then the coefficients g_n have a number of probabilistic interpretations. The following examples were kindly supplied by Peter Ney. If 0 < m < 1 and $\Phi_n = m^n$ then g_n is the expected number of visits to n by a subcritical branching random walk on the integers. The analogous model with a probability measure μ on $[0, \infty)$ leads to the mean of an age-dependent branching process. (See Section 6 of [1]). If $\Phi_n = 1$ then $\{g_n\}$ is the classical renewal sequence. (This case, however, is not covered in the present paper since $\sum \Phi_n(f(1))^n = \infty$.) If $\{\Phi_n\}$ is itself a probability measure on the positive integers then $\{g_n\}$ is the probability measure of

Received October 11, 1972; revised March 28, 1973.

¹ This research was supported by N.S.F. Grant GP-24182.

AMS 1970 subject classifications. Primary 60E05; Secondary 60F99.

Key words and phrases. Convolutions, tails of measures, functions of measures.

the sum of a random number (with distribution $\{\Phi_n\}$) of identically distributed independent random variables. In all of these situations it is often important to know the asymptotic behavior of $\{g_n\}$.

In [1] it is proved that the following four hypotheses, (a) to (d), imply that the ratios (1.3) converge to $\Phi'(f(1))$:

- (a) $f(1) = \sum_{n=0}^{\infty} f_n < \infty$.
- (b) $\lim_{n\to\infty} f_{n+1}/f_n = 1$.
- (c) $\lim_{n\to\infty} g_n/f_n$ exists (finitely) for the special case $\Phi(t)=t^2$.
- (d) Φ is holomorphic on $f(\bar{U})$, where \bar{U} is the closed unit disc in the complex plane.

Among these hypotheses, (c) is rather strong (see Example 1) and is not at all easy to verify; see [1] for some conditions that imply (c). In the present paper I omit (c), I weaken (b) and (d), I add the assumption that $\Phi_n \geq 0$ for all n, and I show that one can then establish very close relations between the number $\Phi'(f(1))$ and the lower limits of the ratios (1.3). These conclusions are weaker than those that are obtained in [1], but they are derived from different hypotheses and their proofs are quite elementary, whereas rather complicated Banach algebra techniques are used in [1]. However, [1] also deals with measures on $(-\infty, \infty)$, whereas the present paper is confined to the half-line $[0, \infty)$.

Section 4 contains some examples that complement the theorems which are stated in Section 2 and are proved in Section 3.

- 2. Statement of results. In Theorems 1 to 4, the following standing assumptions will be made.
 - (A) $f(x) = \sum_{n=0}^{\infty} f_n x^n$, $f_n > 0$ for all n, and the series converges when x = 1.
- (B) $\Phi(t) = \sum_{n=0}^{\infty} \Phi_n t^n$, $\Phi_n \ge 0$ for all n, and the series converges when t = f(1).

The notation

$$(2.1) T_n[f] = \sum_{i=n}^{\infty} f_i$$

will be used for the tails of the series $\sum f_i$.

Furthermore, $D^p f$ denotes the pth derivative of f, $\Phi \circ f$ is the composition defined by $(\Phi \circ f)(x) = \Phi(f(x))$, and

(2.2)
$$\Phi'(f(1)) = \sum_{n=0}^{\infty} n \Phi_n f(1)^{n-1}$$

whether this series converges or not.

THEOREM 1. If (A) and (B) hold, then

(2.3)
$$\Phi'(f(1)) \leq \lim \inf_{n \to \infty} \frac{T_n(\Phi \circ f)}{T_n[f]}.$$

THEOREM 2. In addition to (A) and (B), assume that there is a positive integer p such that

- (i) $D^p f$ is unbounded on [0, 1), but
- (ii) $D^p\Phi$ is bounded on [0, f(1)).

Then

(2.4)
$$\lim \inf_{n \to \infty} \frac{T_n[\Phi \circ f]}{T_n[f]} = \Phi'(f(1)).$$

The next two theorems have analogous conclusions, but about ratios of individual coefficients, not of tails.

THEOREM 3. In addition to (A) and (B), assume that

$$(2.5) \qquad \lim \inf_{n \to \infty} \left(f_n / f_{n+1} \right) \ge 1.$$

Then

(2.6)
$$\Phi'(f(1)) \leq \liminf_{n \to \infty} \frac{(\Phi \circ f)_n}{f_n}.$$

THEOREM 4. In addition to (A) and (B), assume that

(i)
$$\sum_{0}^{\infty} f_n x^n = \infty$$
 for every $x > 1$, but

(ii)
$$\sum_{n=0}^{\infty} \Phi_n t^n < \infty$$
 for some $t > f(1)$.

Then

(2.7)
$$\lim \inf_{n \to \infty} \frac{(\Phi \circ f)_n}{f_n} \le \Phi'(f(1)).$$

REMARKS. (a) If the hypotheses of Theorems 3 and 4 are both satisfied, then

(2.8)
$$\lim \inf_{n \to \infty} \frac{(\Phi \circ f)_n}{f_n} = \Phi'(f(1)).$$

- (b) Assumption (2.5) holds whenever $\{f_n\}$ decreases monotonically.
- (c) The trivial inequality

(2.9)
$$\lim \inf_{n \to \infty} \frac{(\Phi \circ f)_n}{f_n} \leq \lim \inf_{n \to \infty} \frac{T_n[\Phi \circ f]}{T_n[f]}$$

shows that (2.8) holds if the hypotheses of Theorems 2 and 3 are both satisfied.

(d) I have not been able to decide whether the conclusion of Theorem 2 holds under the hypotheses of Theorem 4.

Theorems 1 and 2 refer to tails, and it seems therefore natural to try to extend them so that they apply to measures on $[0, \infty)$. To do this, (A) is replaced by the analogous assumption (A*):

(A*) μ is a positive finite Borel measure on $[0, \infty)$, $\mu([s, \infty)) > 0$ for all $s \ge 0$, and

(2.10)
$$f(x) = \int_0^\infty x^t d\mu(t) \qquad (0 \le x \le 1).$$

Here and later the symbol \int_0^∞ indicates integration over the *closed* half-line $[0, \infty)$.

The tails are now defined for all real $s \ge 0$ by

$$(2.11) T_s[f] = \mu([s, \infty)) (0 \le s < \infty)$$

if f and μ are related by (2.10).

Observe that $f(1) = ||\mu||$. If (A^*) and (B) hold, it follows that the series $\sum_{0}^{\infty} \Phi_n \mu^n$ converges, in the total variation norm, to a measure λ that satisfies (A^*) and that is related to $\Phi \circ f$ by

$$(2.12) \qquad (\Phi \circ f)(x) = \int_0^\infty x^t \, d\lambda(t) \qquad (0 \le x \le 1).$$

Thus $T_s[\Phi \circ f] = \lambda([s, \infty)).$

THEOREM 1*. If (A*) and (B) hold, then

(2.13)
$$\Phi'(f(1)) \leq \liminf_{s \to \infty} \frac{T_s[\Phi \circ f]}{T_s[f]}.$$

THEOREM 2*. In addition to (A^*) and (B) assume that there is a positive integer p such that

- (i) $\int_0^\infty t^p d\mu(t) = \infty$, but
- (ii) $\sum_{0}^{\infty} n^{p} \Phi_{n} f(1)^{n} < \infty$.

Then

(2.14)
$$\lim \inf_{s \to \infty} \frac{T_s[\Phi \circ f]}{T_s[f]} = \Phi'(f(1)).$$

It is clear that Theorems 1 and 2 are special cases of Theorems 1* and 2*, obtained by requiring μ to be concentrated on the nonnegative integers.

3. Proofs.

PROOF OF THEOREM 1*. We are assuming (A*) and (B). Let us write the relation (2.10) in the form $f = \hat{\mu}$, and define

(3.1)
$$M_s[f] = M_s[\hat{\mu}] = \mu([0, s)) \qquad (0 \le s < \infty).$$

If $g = \hat{\lambda}$ for some positive finite Borel measure λ on $[0, \infty)$, then $fg = (\mu * \lambda)^{\hat{}}$, and our first objective is the inequality

$$(3.2) M_s[fg] \leq M_s[f]M_s[g] (0 \leq s < \infty).$$

Define

$$\Delta(s) = \{(x, y) : 0 \le x, 0 \le y, x + y < s\},$$

$$Q(s) = \{(x, y) : 0 \le x < s, 0 \le y < s\}.$$

If $\mu \times \lambda$ denotes the product measure, then the inclusion $\Delta(s) \subset Q(s)$ gives

$$(\mu * \lambda)([0, s)) = (\mu \times \lambda)(\Delta(s))$$

$$\leq (\mu \times \lambda)(Q(s)) = \mu([0, s))\lambda([0, s)),$$

which is (3.2). It now follows by induction on n that

(3.3)
$$M_s[f^n] \leq (M_s[f])^n \qquad (n = 0, 1, 2, \dots).$$

Multiply (3.3) by Φ_n and add. This yields

(3.4)
$$M_s[\Phi \circ f] \leq \Phi(M_s[f]) \qquad (0 \leq s < \infty),$$

first for all polynomials Φ with nonnegative coefficients, and then, by an obvious passage to the limit, for any Φ that satisfies (B).

Note that $M_s[f] + T_s[f] = f(1)$. The same is true with $\Phi \circ f$ in place of f. Hence (3.4) becomes

$$(3.5) T_s[\Phi \circ f] \ge \Phi(f(1)) - \Phi(f(1) - T_s[f]).$$

Divide both sides of (3.5) by $T_s[f]$, which is positive, by (A*), and let $s \to \infty$. Then $T_s[f] \to 0$, and (2.13) is proved.

PROOF OF THEOREM 2*. Let p be the smallest positive integer for which the hypotheses of Theorem 2* hold. Put $g = \Phi \circ f$. We shall prove that

$$\int_0^\infty s^{p-1} x^s T_s[f] ds \to \infty \qquad \text{as} \quad x \to 1$$

and that

(3.7)
$$\lim_{x \to 1} \frac{\int_0^\infty s^p x^s T_s[g] ds}{\int_0^\infty s^p x^s T_s[f] ds} = \Phi'(f(1)).$$

Let us see how these imply the theorem. Let c and s_0 be constants such that $T_s[g] \ge cT_s[f]$ for all $s > s_0$. By (3.6), the limit in (3.7) is not changed if the integrals are taken over $[s_0, \infty)$ instead of $[0, \infty)$. This limit is therefore $\ge c$. Thus $c \le \Phi'(f(1))$. Consequently,

(3.8)
$$\lim \inf_{s \to \infty} \frac{T_s[g]}{T_s[f]} \leq \Phi'(f(1)).$$

In view of Theorem 1^* , (3.8) gives the desired conclusion (2.14).

It is therefore enough to prove (3.6) and (3.7).

For $k = 0, 1, 2, \dots$, define

(3.9)
$$f^{[k]}(x) = \int_0^\infty t^k x^t d\mu(t) \qquad (0 \le x \le 1),$$

and

(3.10)
$$m_k = f^{[k]}(1) = \int_0^\infty t^k d\mu(t) .$$

Note that $f^{[0]} = f$, that $f^{[k]} \le m_k$, that $m_p = \infty$, and that $m_k < \infty$ if $0 \le k \le p-1$.

A simple computation gives

$$\int_0^\infty s^{p-1} x^s T_s[f] ds = \int_0^\infty s^{p-1} x^s ds \int_s^\infty d\mu(t)
= \int_0^\infty d\mu(t) \int_0^t x^s s^{p-1} ds = \int_0^\infty t^p d\mu(t) \int_0^t x^{tu} u^{p-1} du$$

or

(3.11)
$$\int_0^\infty s^{p-1} x^s T_s[f] ds = \int_0^1 f^{[p]}(x^u) u^{p-1} du.$$

This computation depended only on the fact that $f = \hat{\mu}$. Since $g = \Phi(\hat{\mu})$, (3.11) holds also with g in place of f.

Since $f^{[p]}$ is an increasing function, and since $x \le x^u$, the right side of (3.11) is larger than $p^{-1}f^{[p]}(x)$, which tends to $p^{-1}m_p = \infty$ as $x \to 1$. This proves (3.6). To prove (3.7) we will first show that

(3.12)
$$g^{[p]}(x) = \Phi'(f(x))f^{[p]}(x)$$

is a bounded function on [0, 1), and we will begin with the special case $\Phi(t) = t^n$.

For multi-indices $\alpha = (\alpha_1, \dots, \alpha_n)$, in which each α_i is a nonnegative integer, such that $\alpha_1 + \dots + \alpha_n = p$, positive constants $c(\alpha)$ are determined by

$$(3.13) (t_1 + \cdots + t_n)^p = \sum_{\alpha} c(\alpha) t_1^{\alpha_1} \cdots t_n^{\alpha_n}.$$

Using this notation, we obtain

$$(f^n)^{[p]}(x) = \int_0^\infty t^p x^t d\mu^n(t)$$

$$= \int_0^\infty \cdots \int_0^\infty (t_1 + \cdots + t_n)^p x^{t_1 + \cdots + t_n} d\mu(t_1) \cdots d\mu(t_n)$$

$$= \sum_{\alpha} c(\alpha) f^{[\alpha_1]}(x) \cdots f^{[\alpha_n]}(x).$$

There are *n* multi-indices α in which one component is *p* and all others are 0. For these α , $c(\alpha) = 1$. Using (3.10), it follows that

$$(3.14) 0 \leq (f^n)^{[p]}(x) - nf^{n-1}(x)f^{[p]}(x) \leq \sum' c(\alpha)m_{\alpha_1} \cdots m_{\alpha_n}$$

where \sum' indicates that the summation extends only over those α in which $\alpha_i \leq p-1$ for all i.

If $0 \le k \le p-1$, Hölder's inequality gives

$$m_k^{p-1} \leq m_{p-1}^k m_0^{p-1-k}$$

so that $m_k \leq \gamma^{k/p-1} m_0$, where $\gamma = m_{p-1}/m_0$. For any α that occurs in \sum' , it follows that

(3.15)
$$m_{\alpha_1} \cdots m_{\alpha_n} \leq \gamma^{p/p-1} m_0^n = \gamma_1 m_0^n .$$

Since $\sum c(\alpha) = n^p$, (3.14) and (3.15) give

$$(3.16) 0 \le (f^n)^{[p]} - nf^{n-1}(x)f^{[p]}(x) \le \gamma_1 n^p f(1)^n,$$

for $n = 1, 2, 3, \cdots$. For n = 0, (3.16) holds trivially.

Now multiply (3.16) by Φ_n and add the resulting inequalities. Since $g = \Phi \circ f = \sum \Phi_n f^n$ and $\sum n^p \Phi_n f(1)^n < \infty$, it follows that

(3.17)
$$0 \le g^{[p]}(x) - \Phi'(f(x))f^{[p]}(x) \le C \qquad (0 \le x < 1)$$

for some constant C.

If $0 \le x \le 1$ and $0 \le u \le 1$, then $x^u \le x \le 1$. Since f and Φ' are increasing functions, (3.17) gives

$$\Phi'(f(x))f^{[p]}(x^u) \leq g^{[p]}(x^u) \leq \Phi'(f(1))f^{[p]}(x^u) + C.$$

Multiply this by $u^{p-1} du$ and integrate, to obtain, for 0 < x < 1,

(3.18)
$$\Phi'(f(x)) \leq \frac{\int_0^1 g^{[p]}(x^u)u^{p-1} du}{\int_0^1 f^{[p]}(x^u)u^{p-1} du} \leq \Phi'(f(1)) + \varepsilon(x),$$

where $\varepsilon(x)$ is C/p divided by the denominator in (3.18); by (3.6) and (3.11), $\varepsilon(x) \to 0$ as $x \to 1$. We have thus proved that the quotient in (3.18) tends to $\Phi'(f(1))$ as $x \to 1$. By (3.11) this gives (3.7), and the proof is complete.

It has already been pointed out that Theorems 1 and 2 are special cases of 1* and 2*, respectively.

PROOF OF THEOREM 3. The hypotheses are now (A), (B), and

$$(3.19) \qquad \lim \inf_{n \to \infty} \left(f_n / f_{n+1} \right) \ge 1.$$

The desired conclusion is

(3.20)
$$\lim \inf_{n \to \infty} \frac{(\Phi \circ f)_n}{f_n} \ge \Phi'(f(1)).$$

We shall first prove this under the assumption that Φ is a polynomial P (with coefficients ≥ 0 , of course). (3.20) is trivial if deg $P \leq 1$. Assume deg P > 1, and assume that (3.20) holds for all polynomials Q with deg $Q < \deg P$. We may also assume, without loss of generality, that the constant term of P is 0. Then P(t) = tQ(t). Put $Q = Q \circ f$. Then

$$(3.21) (P \circ f)_n = (fg)_n = \sum_{i=0}^n f_i g_{n-i}.$$

Choose λ , $0 < \lambda < 1$. Then there exist integers M and N, with N > 2M, such that

$$(3.23) f_{n-1} \ge \lambda f_n \text{if} 0 \le i \le M \text{ and } n > N,$$

and

$$(3.24) g_k \ge \lambda Q'(f(1))f_k \text{if} k \ge N - M.$$

Of these, (3.22) is obvious, (3.23) follows from (3.19), and (3.24) uses our induction hypothesis.

Since N > 2M, (3.21) gives, for n > N,

$$(P \circ f)_n \ge \sum_{i=0}^{M} f_{n-1} g_i + \sum_{i=0}^{M} f_i g_{n-i} = I + II$$
,

where

$$I \ge \lambda f_n \sum_{i=0}^{M} g_i \ge \lambda^2 f_n g(1)$$

and

II
$$\geq \sum_{i=0}^{M} f_i \lambda Q'(f(1)) f_{n-i} \geq \lambda^2 Q'(f(1)) f_n \sum_{i=0}^{M} f_i$$

 $\geq \lambda^3 Q'(f(1)) f_n f(1)$.

Since g(1) = Q(f(1)), it follows that

$$\frac{(P \circ f)_n}{f_n} \ge \lambda^3 [Q(f(1)) + f(1)Q'(f(1))] = \lambda^3 P'(f(1)).$$

Letting $\lambda \to 1$, we now see that (3.20) holds with P in place of Φ .

To do the general case, fix $\alpha < \Phi'(f(1))$ and let P be a partial sum of the

series defining Φ , such that $P'(f(1)) > \alpha$. Then $(\Phi \circ f)_n \ge (P \circ f)_n$, so that

$$\lim\inf\nolimits_{n\to\infty}\frac{(\Phi\circ f)_n}{f_n}\geqq\lim\inf\nolimits_{n\to\infty}\frac{(P\circ f)_n}{f_n}\geqq P'(f(1))>\alpha\;.$$

This is true for every $\alpha < \Phi'(f(1))$. Hence (3.20) is proved.

PROOF OF THEOREM 4. This will be deduced from the case p=1 of Theorem 2, by means of the following lemma:

LEMMA. If f satisfies (A), if $\delta > 0$, and if

$$\sum_{n=0}^{\infty} f_n x^n = \infty \quad \text{for every} \quad x > 1,$$

then there exists a sequence $\{\gamma_n\}$, $\gamma_n \ge 1$, such that

$$(3.26) \gamma_i \gamma_{n-i} \ge \gamma_n \text{if} 0 \le i \le n,$$

$$\sum_{n=0}^{\infty} f_n \gamma_n < f(1) + \delta,$$

and

$$\sum_{n=0}^{\infty} n f_n \gamma_n = \infty.$$

We shall first prove the lemma.

Choose $k_1 \ge 2$ so that $T_{k_1}[f] < \delta/2$; see (2.1) for notation. Then choose $\varepsilon_1 > 0$ so that

$$\sum_{n=0}^{k_1} f_n \exp(n\varepsilon_1) < f(1).$$

Assume $p \ge 1$, and make the following induction hypotheses (which hold when p = 1): k_p and ε_p are chosen, $k_p \ge 2^p$, and

$$(3.30) T_{k_p}[f] < \delta \cdot 2^{-p} .$$

Now choose $k_{p+1} \ge 2^{p+1}$, and so large that (3.30) holds with p+1 in place of p, and that

Note that (3.31) can be achieved, because $\varepsilon_n > 0$ and (3.25) holds.

By (3 30) and (3.31) there exists ε_{p+1} , $0 < \varepsilon_{p+1} < \varepsilon_p$, such that

(3.32)
$$\sum_{n=1+k_n}^{k_{p+1}} f_n \exp(n\varepsilon_{p+1}) = \delta \cdot 2^{-p}.$$

Our induction hypotheses hold now with p+1 in place of p, and the construction of $\{k_p\}$ and $\{\varepsilon_p\}$ can proceed. We define

(3.33)
$$\gamma_n = \exp(n\varepsilon_1) \quad \text{if} \quad 0 \le n \le k_1$$
$$= \exp(n\varepsilon_{p+1}) \quad \text{if} \quad k_p < n \le k_{p+1}, \quad p = 1, 2, 3, \cdots$$

Then (3.26) holds because $(\log \gamma_n)/n$ decreases as n increases, so that

$$\log \gamma_i + \log \gamma_{n-i} \ge \frac{i}{n} \log \gamma_n + \frac{n-i}{n} \log \gamma_n = \log \gamma_n.$$

Next, (3.27) holds because (3.29) and (3.32) give

$$\sum_{n=0}^{\infty} f_n \gamma_n = \sum_{n=1}^{k_1} f_n \exp(n\varepsilon_1) + \sum_{p=1}^{\infty} \sum_{n=1}^{k_{p+1}} f_n \exp(n\varepsilon_{p+1})$$

$$< f(1) + \delta \sum_{n=1}^{\infty} 2^{-p} = f(1) + \delta.$$

Finally, (3.28) holds because

$$\sum_{\substack{1+k_n\\1+k_n}}^{k_{p+1}} n f_n \gamma_n > k_p \sum_{\substack{1+k_n\\1+k_n}}^{k_{p+1}} f_n \exp\left(n\varepsilon_{p+1}\right) = k_p \delta 2^{-p} \geqq \delta$$

for $p = 1, 2, 3, \cdots$

The lemma is thus proved, and we turn to the proof of Theorem 4.

Choose $\delta > 0$ so that $\sum_{0}^{\infty} \Phi_n t^n < \infty$ for some $t > f(1) + \delta$, choose $\{\gamma_n\}$ as in the lemma, and define

(3.34)
$$g(x) = \sum_{n=0}^{\infty} f_n \gamma_n x^n \qquad (0 \le x \le 1).$$

By (3.28), $g'(x) \to \infty$ as $x \to 1$. Our choice of δ ensures that Φ' is bounded on [0, g(1)] since $g(1) < f(1) + \delta$. Theorem 2 implies therefore (via (2.9)) that

(3.35)
$$\lim \inf_{n \to \infty} \frac{(\Phi \circ g)_n}{g_n} \le \Phi'(g(1)).$$

For $k = 1, 2, 3, \dots, (3.26)$ implies that

$$(g^k)_n = \sum g_{i_1} \cdots g_{i_k} \quad (i_1 + \cdots + i_k = n)$$

$$= \sum f_{i_1} \gamma_{i_1} \cdots f_{i_k} \gamma_{i_k}$$

$$\geq \gamma_n \sum f_{i_1} \cdots f_{i_k} = \gamma_n (f^k)_n.$$

If we multiply this by Φ_k and add, we obtain

$$(\mathfrak{d} \circ g)_n \geq \gamma_n (\Phi \circ f)_n \qquad (n = 0, 1, 2, \cdots).$$

Hence

$$(3.37) \qquad \frac{(\Phi \circ f)_n}{f_n} \le \frac{(\Phi \circ g)_n}{f_n \gamma_n} = \frac{(\Phi \circ g)_n}{g_n}.$$

By (3.35) and (3.37)

$$\lim\inf\frac{(\Phi\circ f)_n}{f_n} \leqq \Phi'(g(1)) \leqq \Phi'(f(1)+\delta).$$

If we now let $\delta \to 0$, we obtain the desired inequality (2.7).

4. Examples.

Example 1. This is an example of an f that satisfies the standing assumption (A), and also

(a)
$$f_n^2 \le f_{n-1} f_{n+1}$$
 for $n = 1, 2, 3, \dots$

(b)
$$\lim_{n\to\infty} (f_{n+1}/f_n) = 1$$
,

(c)
$$\sum_{0}^{\infty} n f_n = \infty$$
,

although

(d)
$$\limsup_{n\to\infty} \frac{(f^2)_n}{f_n} = \infty$$
.

In the conclusion of Theorem 4, \liminf can therefore not be replaced by \lim , even when $\Phi(t) = t^2$.

By Theorems 2, 3, and 4, this f does satisfy

$$\lim\inf_{n\to\infty}\frac{(f^2)_n}{f_n}=\lim\inf_{n\to\infty}\frac{T_n[f^2]}{T_n[f]}=2f(1)<\infty\;.$$

The example shows also that the convexity of $\{\log f_n\}$ (which is another way of stating (a)) does not guarantee the existence of $\lim [(f^2)_n/f_n]$. Conceivably, the convexity of $\{\log f_n\}$ might imply the existence of $\lim (T_n[f^2]/T_n[f])$, I have no counter-example.

The inequality

$$(4.1) 1 < \varepsilon \sum_{n=0}^{\infty} \exp\left(-n\varepsilon\right) < 2 (0 < \varepsilon \le 1)$$

will be used below.

We now begin the construction of f.

Put $n_0 = 0$, $\varepsilon_1 = 1$, $\alpha_1 = 1$, $n_1 = 4$. For $p \ge 1$, make the induction hypothesis (satisfied when p = 1) that ε_p , α_p , n_p are chosen and that

$$(4.2) \alpha_n n_n \exp\left(-n_n \varepsilon_n\right) < \frac{1}{2} \varepsilon_n.$$

Define ε_{n+1} to be the left side of (4.2), put

(4.3)
$$\alpha_{p+1} = \alpha_p \exp\left\{-n_p(\varepsilon_p - \varepsilon_{p+1})\right\}$$

and let n_{p+1} be an even integer, so large that (4.2) holds with p+1 in place of p, that $n_{p+1} > 2n_p$, that $\alpha_{p+1}n_{p+1} > p+1$, and that

Our induction hypothesis holds now with p+1 in place of p, and the construction of the sequences $\{\varepsilon_n\}$, $\{\alpha_n\}$, and $\{n_n\}$ can proceed.

Define

$$(4.5) f_n = \alpha_p \exp(-n\varepsilon_p) (n_{p-1} \le n \le n_p; p = 1, 2, 3, \cdots).$$

Note that f_{n_p} is determined twice by (4.5); however, (4.3) shows that these two determinations agree.

The choice of ε_{p+1} and α_{p+1} shows that

$$\begin{split} \sum_{n_p+1}^{n_p+1} f_n &< \alpha_{p+1} \sum_{n_p}^{\infty} \exp\left(-n\varepsilon_{p+1}\right) \\ &< \frac{2\alpha_{p+1} \exp\left(-n_p\varepsilon_{p+1}\right)}{\varepsilon_{p+1}} \\ &= \frac{2\alpha_p \exp\left(-n_p\varepsilon_p\right)}{\varepsilon_{p+1}} = \frac{2}{n_p} \,. \end{split}$$

Thus $\sum_{0}^{\infty} f_n < \infty$, and (A) holds. Similarly,

$$\begin{split} \sum_{n_p}^{n_{p+1}} n f_n &> n_p \alpha_{p+1} \sum_{n_p}^{n_{p+1}} \exp\left(-n \varepsilon_{p+1}\right) \\ &> \frac{n_p \alpha_{p+1} \exp\left(-n_p \varepsilon_{p+1}\right)}{\varepsilon_{p+1}} = 1 \; . \end{split}$$

Thus f satisfies (c). Properties (a) and (b) hold because ε_p decreases to 0 as $p \to \infty$.

Finally, the convexity of $\{\log f_n\}$ implies that $(f_n)^2 \le f_i f_j$ if i+j=2n. Thus

$$(4.6) (f^2)_{2n} = \sum_{i+j=2n} f_i f_j \ge 2n(f_n)^2.$$

If n is taken so that $2n = n_p$, then $n_{p-1} \le n \le n_p$, and (4.5) and (4.6) imply

$$(f^{2})_{n_{p}} = (f^{2})_{2n} \ge 2n\alpha_{p}^{2} \left[\exp\left(-n\varepsilon_{p}\right)\right]^{2}$$

$$= n_{p}\alpha_{p}^{2} \exp\left(-n_{p}\varepsilon_{p}\right)$$

$$= n_{p}\alpha_{p}f_{n_{p}} > pf_{n_{p}}.$$

This shows that f has property (d).

EXAMPLE 2. In this example, (A), (B), and hypotheses (i) of Theorems 2 and 4 hold (with p=2 in Theorem 2), but the hypotheses (ii) fail, as do the conclusions. This will be done by taking an f with f(1)=1, $f'(1)=\lambda<\infty$, but f'' unbounded on [0,1), and by taking $\Phi=f$. If $g=\Phi\circ f$, then

(4.7)
$$g''(x) = f''(x)f'(f(x)) + f'(x)^2 f''(f(x)).$$

If $f''(f(x))/f''(x) \to 1$ as $x \to 1$, it follows that

(4.8)
$$\lim_{x\to 1} \frac{g''(x)}{f''(x)} = \lambda + \lambda^2.$$

Since $g_n/f_n = (g'')_{n-2}/(f'')_{n-2}$ and since $f''(x) \to \infty$ as $x \to 1$, (4.8) suggests (by an argument similar to one used in the proof of Theorem 2*) that

(4.9)
$$\lim_{n\to\infty} \frac{(\Phi\circ f)_n}{f_n} = \lambda + \lambda^2 > \lambda = \Phi'(f(1)),$$

if the above limit exists.

To see that this heuristic argument is correct for suitably chosen f, define

$$(4.10) f(x) = x + \frac{1}{2}(1-x)^{\frac{3}{2}}.$$

The binomial theorem shows that $f_n > 0$ for all n. This f thus has the above mentioned properties, with $\lambda = 1$.

A rather long and tedious computation, based on (4.7), shows that the derivative of

$$(4.11) g''(x) - 2f''(x) + \frac{15}{64}f'(x)$$

is bounded in the unit disc. [Here is one way of doing this: Put $u = (1 - x)^{\frac{1}{2}}$; then $(1 - f(x))^{\frac{1}{2}} = u(1 - u/2)^{\frac{1}{2}}$; differentiate (4.11) with respect to x, using (4.7), then express everything in terms of u; in the resulting Laurent expansion, all negative powers of u cancel.] Since $(f'')_n \sim c \cdot n^{-\frac{1}{2}}$, we have $(f')_n \sim c n^{-\frac{3}{2}}$. Hence the boundedness of the derivative of (4.11) implies that

$$(4.12) (g'')_n = 2(f'')_n + O(1/n).$$

Thus $g_n/f_n \to 2$ as $n \to \infty$, as predicted by (4.9).

This example shows that (ii) cannot be omitted from the hypotheses of Theorems 2 and 4, even if $\lim (\Phi \circ f)_n/f_n$ is assumed to exist as a finite number.

Example 3. Let f again satisfy (A), with f(1) = 1, for simplicity, and assume that every derivative of f is bounded on [0, 1). (Equivalently, assume that f is infinitely differentiable on the closed unit disc \bar{U} .) Note that this can happen if f has radius of convergence 1, i.e., if hypothesis (i) of Theorem 4 holds. Hypothesis (ii) of Theorem 4 says that Φ is holomorphic on an open set containing \bar{U} . Let us see whether this can be weakened to the assumption that Φ is infinitely differentiable on \bar{U} ; of course, (B) is still assumed to hold.

Under these circumstances, I claim that

(4.13)
$$D^{p}(\Phi \circ f)(1) \geq D^{p}\Phi(1) \cdot f'(1)^{p} \qquad (p = 1, 2, 3, \dots).$$

Since

$$(4.14) \qquad (\Phi \circ f)' = (\Phi' \circ f) \cdot f'$$

(4.13) holds when p = 1. Assume (4.13) is proved for same p and all such Φ . By (4.14),

$$D^{p+1}(\Phi \circ f)(1) = D^{p}((\Phi' \circ f) \cdot f')(1)$$

$$= \sum_{i=0}^{p} {p \choose i} D^{p-i}(\Phi' \circ f) \cdot D^{i}(f')$$

$$\geq D^{p}(\Phi' \circ f)(1) \cdot f'(1)$$

$$\geq (D^{p}\Phi')(1) \cdot f'(1)^{p} \cdot f'(1)$$

$$= (D^{p+1}\Phi)(1) \cdot f'(1)^{p+1}.$$

The first of these inequalities is obtained by discarding all terms of the sum with i > 0; the second inequality uses the induction hypothesis. Thus (4.13) is proved for all p.

In particular, if f'(1) > 1, we apply (4.13) with $\Phi = f$, and obtain (with $g = f \circ f$)

$$\frac{(D^p g)(1)}{(D^p f)(1)} \ge f'(1)^p \to \infty \qquad \text{as } p \to \infty.$$

If there were a constant $C < \infty$ such that $g_n \le Cf_n$ for all n, then obviously $D^p g \le CD^p f$. Hence (4.15) shows that g_n/f_n cannot be bounded.

The following conclusion has thus been reached:

If $f_n > 0$ for all n, if f(1) = 1, f'(1) > 1, and f is infinitely differentiable on the closed unit disc, then

(4.16)
$$\lim \sup_{n \to \infty} \frac{(f \circ f)_n}{f_n} = \infty.$$

In particular, it is not true that these ratios tend to f'(f(1)) = f'(1).

To see an example of this, in which the radius of convergence is 1, choose $\alpha > 0$ so that $\exp(4^{\alpha}) < 3$, and define

(4.17)
$$f_n = c \cdot \exp(-n^{\alpha}) \qquad (n = 0, 1, 2, \dots),$$

where c is picked so that $\sum_{0}^{\infty} f_n = 1$; the choice of α is made so that f'(1) > 1. For this example (4.17), it seems very plausible that \limsup can actually be replaced by \liminf in (4.16).

REFERENCE

[1] Chover, J., Ney, P. and Wainger, S. (1973). Functions of probability measures. J. D'Analyse. To appear.

DEPARTMENT OF MATHEMATICS 213 VAN VLECK HALL 480 LINCOLN DRIVE MADISON, WISCONSIN 53706