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LIMITS OF RATIOS OF TAILS OF MEASURES!

By WALTER RUDIN .
University of Wisconsin

Suppose # is a positive measure on the half-line [0, oo), of total mass
m, @ is the sum of a power series with nonnegative coefficients which
converges at the point m, and 2 is the measure on [0, co) whose Fourier
transform 1 is @(f). The lower limit of the ratios A([s, o0))/([s, o)), as
s — oo, is compared to the number ®’(m), under a variety of conditions.

1. Introduction. Suppose x is a finite positive Borel measure on the half-line
[0, co0), of total variation |||, and ®(f) = 3, @, " converges absolutely when

= ||g|]|. Let ° denote the unit mass at 0. Define p" = p"'x p, for n =
1,2, 3, ... where x denotes convolution. Then 2 = 3] @, p" is a finite measure
on [0, o) which may be denoted by @(x). The behavior of the ratios

(1.1) A([s, ©0))
#([s, o))
as s — oo is the topic to which the title of this paper refers.

If 4+ happens to be concentrated on the nonnegative integers, the problem
becomes one about coefficients of power series and has therefore a particularly
elementary character.

To begin with this special case, suppose f(x) = 3¢ f,x", f, > 0 for all n,
(1) = 30,1, and

(1.2) 9(x) = ©(f(x)) = X gux" .
What can one say about the ratios

gl‘, and gn + gn+1 + gn+2 + ct
fn fn +fn+1 +f'n+2+ M

(1.3)

asn — co?

When {f,} is a probability measure, i.e., when f{1) = 1, then the coefficients
g, have a number of probabilistic interpretations. The following examples were
kindly supplied by Peter Ney. If 0 < m < 1 and ®, = m" then g, is the ex-
pected number of visits to n by a subcritical branching random walk on the
integers. The analogous model with'a probability measure p on [0, co) leads
to the mean of an age-dependent branching process. (See Section 6 of [1]). If
®, = 1 then {g,} is the classical renewal sequence. (This case, however, is not
covered in the present paper since )} ©,(f(1))" = o0.) If {®,} is itself a prob-
ability measure on the positive integers then {g,} is the probability measure of
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RATIOS OF TAILS OF MEASURES 983

the sum of a random number (with distribution {®,}) of identically distributed
independent random variables. In all of these situations it is often important
to know the asymptotic behavior of {g,}.

In [1] it is proved that the following four hypotheses, (a) to (d), imply that
the ratios (1.3) converge to ®'(f(1)):

@) f(1) = X7 fu < oo.

(b) 1imn—»°°fn+l/fn = 1

(¢) lim,_, g,/f, exists (finitely) for the special case ®(r) = 2.

(d) @ is holomorphic on f(U), where U is the closed unit disc in the com-
plex plane.

Among these hypotheses, (c) is rather strong (see Example 1) and is not at all
easy to verify; see [1] for some conditions that imply (c). In the present paper
I omit (c), I weaken (b) and (d), I add the assumption that ®, > 0 for all n,
and I show that one can then establish very close relations between the number
@’(f(1)) and the lower limits of the ratios (1.3). These conclusions are weaker
than those that are obtained in [1], but they are derived from different hypo-
theses and their proofs are quite elementary, whereas rather complicated Banach
algebra techniques are used in [1]. However, [1] also deals with measures on
(—o0, 00), whereas the present paper is confined to the half-line [0, co).

Section 4 contains some examples that complement the theorems which are
stated in Section 2 and are proved in Section 3.

2. Statement of results. In Theorems 1 to 4, the following standing assump-
tions will be made.

(A) flx) = 2¢ fux", f. > 0 for all n, and the series converges when x = 1.
B) O@) =3y ®,, ®, =0 for all n, and the series converges when ¢t =

f().
The notation
(2.1) Tlf]1=Z%. 1
will be used for the tails of the series 3 f;.
Furthermore, D*f denotes the pth derivative of f, @ o f is the composition
defined by (® o f)(x) = ®(f(x)), and
(2.2) Q(f(1)) = B n®, f1)"

whether this series converges or not.
THEOREM 1. If (A) and (B) hold, then

, .. T (Do f]
2.3 D'(f(1)) <1 froe 2~ S 1,
0.3 (/1) = timnf, . O

THEOREM 2. [In addition to (A) and (B), assume that there is a positive integer p
such that
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(i) D*fis unbounded on [0, 1), but
(iiy D*® is bounded on [0, f(1)).

Then

2.4 timint,_. T2 11 _ avpary.
2.4) iminf, . 0 = @)

The next two theorems have analogous conclusions, but about ratios of
individual coefficients, not of tails.

THEOREM 3. In addition to (A) and (B), assume that

(25) lim infn—wo (fn/fn+l) g 1.
Then
(2.6) (f(1)) < liminf, ., (P )n

n

THEOREM 4. In addition to (A) and (B), assume that
(i) 225 fux" = co for every x > 1, but
(i) X5 @, 1" < oo for some t > f(1).

Then

2.7) lim inf, ... @l%& < D(f(1)).

REMARKS. (a) If the hypotheses of Theorems 3 and 4 are both satisfied, then
(2.8) lim inf, .. @% = d(f(1)) -

(b) Assumption (2.5) holds whenever { f,} decreases monotonically.
(c) The trivial inequality

(2.9) timinf,__ (@ < timinf, TP /f1
fa T.lf]
shows that (2.8) holds if the hypotheses of Theorems 2 and 3 are both satisfied.
(d) I have not been able to decide whether the conclusion of Theorem 2 holds
under the hypotheses of Theorem 4.

Theorems 1 and 2 refer to tails, and it seems therefore natural to try to extend
them so that they apply to measures on [0, co). To do this, (A) is replaced by
the analogous assumption (A*):

(A*) p is a positive finite Borel measure on [0, o0), p([s, o0)) > 0 for all
s> 0, and
(2.10) fx) = §5 x* dpu(t) O<x=1).

Here and later the symbol {; indicates integration over the closed half-line
[0, c0).
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The tails are now defined for all real s > 0 by
(2.11) T[f]1 = p(s, ) (0 =5 < )

if fand p are related by (2.10).

Observe that f{1) = ||¢||. If (A*) and (B) hold, it follows that the series
Yo @, 4" converges, in the total variation norm, to a measure 1 that satisfies
(A*) and that is related to ® o f by

(2.12) (Do f)(x) = §5 x dA(1) n=sxg).
Thus T,[(I) of] = 2([5, 00))
THEOREM 1*. If (A*) and (B) hold, then

’ 1 1 7s[I of]
2.13 O'(f(1 1 ot 1,
( ) (f( )) = limin s T,[f]

THEOREM 2*. In addition to (A*) and (B) assume that there is a positive integer
p such that

(i) §¢ e du(t) = co, but
(iiy 1@, f(1)" < co.
Then

. T[Dof] _ gy
(2.14) lim inf, ., _WT_ =d'(f(1)) .

It is clear that Theorems 1 and 2 are special cases of Theorems 1* and 2%,
obtained by requiring x to be concentrated on the nonnegative integers.

3. Proofs.

Proor oF THEOREM 1*. We are assuming (A*) and (B). Let us write the
relation (2.10) in the form f = f, and define

(3.1) M[f] = M[A] = «([0, 9) (0 =5 < o0).

If g = 4 for some positive finite Borel measure 4 on [0, co), then fg = (¢ * 2)",
and our first objective is the inequality

(3-2) M[ f9] = M[fIM 9] (0 =5 < o0).

Define '
AS) ={(x):0=x,0=y,x+y<s},

06) ={(x%,y): 0= x< 50y <5}
If # x A denotes the product measure, then the inclusion A(s) < Q(s) gives
(12 ([0, 5)) = ( x )(A(5))
= (¢ x A(Q(s) = ([0, A0, 9)) »
which is (3.2). It now follows by induction on n that
(3-3) M[f"] = (ML) (n=0,12-.).
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Multiply (3.3) by @, and add. This yields
3.4) M[D o f] = PM[f]) 0 =s5< ),

first for all polynomials ® with nonnegative coefficients, and then, by an obvious
passage to the limit, for any @ that satisfies (B).

Note that M[f] + T,[f] = f(1). The same is true with ® o fin place of f.
Hence (3.4) becomes

(3-5) T[® o f] =z ©(f(1)) — ©(AL) = T.[f]) -
Divide both sides of (3.5) by T[ f], which is positive, by (A*), and let s — 0.
Then T,[f]— 0, and (2.13) is proved.

ProoF oF THEOREM 2*. Let p be the smallest positive integer for which the
hypotheses of Theorem 2* hold. Put g = @ o f. We shall prove that

(3.6) §o s~ T, f]ds — oo as x— 1
and that

3.7 lim, , 3 S T91ds _ g nryy

(3.7) im,_, (s T Lf] ds (A1)

Let us see how these imply the theorem. Let ¢ and s, be constants such that
T[g] = cT[f] for all s > s,. By (3.6), the limit in (3.7) is not changed if the
integrals are taken over [s,, co) instead of [0, co). This limit is therefore = c.
Thus ¢ < ®'(f(1)). Consequently,

(3.8) liminf, ,, =20 < @'(f(1)) .
T[f]
In view of Theorem 1%, (3.8) gives the desired conclusion (2.14).
It is therefore enough to prove (3.6) and (3.7).
Fork =0,1,2, ..., define

(3.9) fP(x) = §7 text du(r) O=x<1),
and

(3.10) my = (1) = §3 1+ dpu(e)

Note that f1° = f, that f*] < m,, that m, = oo, and that m;, < oo if 0 < k <
p— L

A simple computation gives
$oo 5P T [ flds = §5° sP7'x* ds §7 dp(r)
= S du(r) SExtsrrds = (12 dp(t) §) x™ur~' du
or
(3.11) (oo s? T [ flds = §) f1PU(x*)ur~ du .

This computation depended only on the fact that f = f. Since g = ®(2), (3.11)
holds also with g in place of f.
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Since (17! is an increasing function, and since x < x*, the right side of (3.11)
is larger than p~'f(*)(x), which tends to p='m, = oo as x — 1. This proves (3.6).
To prove (3.7) we will first show that :

(3.12) gr(x) — Q'(flx))f17(x)
is a bounded function on [0, ), and we will begin with the special case
DOty = 1.

For multi-indices @ = (a,, - - -, a,), in which each a, isa nonnegative integer,
such that @, + ... 4 @, = p, positive constants c(a) are determined by
(3'13) (tl + e + tn)p = er C(a)tlal e f"“n *

Using this notation, we obtain
(f)Px) = §5 orxt dper (1)
=85 (e Xttt dp(n) - dp(t,)
= Lo (@) f1mal(x) - flonl(x)

There are n multi-indices « in which one component is p and all others are 0.
For these a, c(a) = 1. Using (3.10), it follows that

(3.14) 0= (/M) = nfr=Hx)f0(x) = X e(a)my - m,,
where 3}’ indicates that the summation extends only over those a in which
a; < p—1forall i

If 0 < k < p — 1, Holder’s inequality gives

p~1 k p—1—-k
mk é mp—lmO

so that m, < y**~'m,, where y = m,_,/m,. For any a that occurs in ', it
follows that

(3.15) My voeom, < PPTimt = pomt
Since }; ¢(a) = n?, (3.14) and (3.15) give

(3.16) 0 = (/M7 = nfr () x) = 7im7f(1)"
forn=1,2,3,.... Forn =0, (3.16) holds trivially.

Now multiply (3.16) by @, and add the resulting inequalities. Since g =
Dof=73 O, frand 3 n?®, f(1)" < oo, it follows that
(3.17) 0 < g(x) — V'(f(x)f(x) = C O=x<1)
for some constant C.

fOo<x=<land0<u <1, thenx* <x < 1. Since fand @’ are increasing
functions, (3.17) gives

Q' (f)f(x) < g7I(x) = D'(AL))fPUx) 4 C.
Multiply this by u*~* du and integrate, to obtain, for 0 < x < 1,
$5 g U x* ur— du

(3.18) V) = gy S YU + e,
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where ¢(x) is C/p divided by the denominator in (3.18); by (3.6) and (3.11),
¢(x) >0 as x »> 1. We have thus proved that the quotient in (3.18) tends to
@’(f(1)) as x — 1. By (3.11) this gives (3.7), and the proof is complete.

It has already been pointed out that Theorems 1 and 2 are special cases of 1*
and 2*, respectively.

Proor oF THEOREM 3. The hypotheses are now (A), (B), and

(3‘19) lim infn—wo (fu/fu+l) g 1 .

The desired conclusion is

(3.20) lim inf,,ww > o/(f(1)).

We shall first prove this under the assumption that @ is a polynomial P (with
coefficients > 0, of course). (3.20) is trivial if deg P < 1. Assume deg P > 1,
and assume that (3.20) holds for all polynomials Q with deg Q < deg P. We
may also assume, without loss of generality, that the constant term of P is 0.
Then P(t) = tQ(t). Put g = Qo f. Then

(3.21) (Pof)o=(f0)n=Ziofi9ni-

Choose 4, 0 < 2 < 1. Then there exist integers M and N, with N > 2M, such
that

(3.22) Lofiz ), Eig = e(l),
(3.23) S = Af,, if 0<i<M and n> N,
and ’

(3.24) 9 = AQ'(f()fe if k=ZN-M.

Of these, (3.22) is obvious, (3.23) follows from (3.19), and (3.24) uses our
induction hypothesis.
Since N > 2M, (3.21) gives, for n > N,

(Pof)o= XNiofuur¥i + 2o fiuoe =14+ 11,
L=, X9 = #f9(1)

L= 2 fidQ (f())f-i 2 2Q'(S)fn Zilo fi
= £Q(f)ff) -

where

and

Since g(1) = Q(f(1)), it follows that
(—P]f}& = PLO(f(N) + AH' ()] = £P(f(1))

Letting 2 — 1, we now see that (3.20) holds with P in place of ®.
To do the general case, fix a < ®'(f(1)) and let P be a partial sum of the
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series defining @, such that P'(f(1)) > a. Then (® o f), = (P o f),, so that

liminf, .. ®° ) > lim inf, . (j_}ﬁ@ > P(f(1) > a.

n

This is true for every a < ®’(f(1)). Hence (3.20) is proved.

ProoF oF THEOREM 4. This will be deduced from the case p = 1 of Theorem
2, by means of the following lemma:

LeMMA. If f satisfies (A), if 6 > 0, and if
(3.25) Do fuX" = 0 forevery x> 1,

then there exists a sequence {y,}, v, = 1, such that

(3.26) [iTwi =7 if 0Zi<Zn,
(3.27) Do fuln < A1) + 6,
and

(3.28) T nfur. = oo

We shall first prove the lemma.

Choose k, = 2 so that T,[f] < d/2; see (2.1) for notation. Then choose
&; > 0 so that
(3.29) ko fuexp (ney) < f(1).
Assume p = 1, and make the following induction hypotheses (which hold when
p = 1): k, and ¢, are chosen, k, > 27, and

(3.30) T, [f1<d-277.

Now choose k,,, = 27+, and so large that (3.30) holds with p 4 1 in place

of p, and that

(3.31) Tarit, fuexp(ne,) > 0.

Note that (3.31) can be achieved, because ¢, > 0 and (3.25) holds.
By (3 30) and (3.31) there exists ¢,,,, 0 < ¢,,, < ¢,, such that

(3.32) S, fu €Xp (n6,p0) = 0 - 277

Our induction hypotheses hold now with p 4+ 1 in place of p, and the con-
struction of {k,} and {¢,} can proceed. We define

p+1

(3.33) 7. = €xp (ne,) if 0<n<k,
= exp (ne,,,) if k,<n<k,,,, p=123,...

Then (3.26) holds because (log 7,)/n decreases as n increases, so that

logy, + log7,_; = L log 7, + n—i log 7, =logr, -
n n
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Next, (3.27) holds because (3.29) and (3.32) give

D=0 futn = 261 fu€Xp (ne) + 25, Zf—{lt;fn exp (ne, 1)
<f)+0 X872 =f1) +4.
Finally, (3.28) holds because
Sitinf,r, > k, DS, exp (ne,,,) = k0277 2 0

forp=1,2,3,....

The lemma is thus proved, and we turn to the proof of Theorem 4.

Choose 6 > 0 so that 3} ® " < oo for some t > f(1) + d, choose {r,} as in
the lemma, and define
(3.34) 0(3) = Dimo furux® O=x<).

By (3.28), g’(x) — oo as x — 1. Our choice of ¢ ensures that @’ is bounded on
[0, g(1)] since g(1) < f(1) 4+ 6. Theorem 2 implies therefore (via (2.9)) that

(3.35) lim inf, . %_g% < D(g(1)) .

For k =1,2,3, ..., (3.26) implies that
@)=29y-+9;, (4 - +i,=n)
=2 fary  fuTu
g Tnz.fll .”f;:k :rn(fk)n'
If we multiply this by ®, and add, we obtain

(3.36) (@o9)yZ7u(Pof) (n=0,1,2, -.-).
Hence
(3.37) (@of)y . (@o9), _ (Pog),

I Y 9,

By (3.35) and (3.37)
lim inf% < D(g(1)) < V(A1) + 9).

n

If we now let § — 0, we obtain the desired inequality (2.7).
4. Examples.

ExampLE 1. This is an example of an f that satisfies the standing assumption
(A), and also

@) [ £ fuafomforn=1,23, ...,
() lim, o, (fosalfo) = 1,
(€) 238 nfu = oo,
although
(d) limsup, . % = co.

n
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In the conclusion of Theorem 4, liminf can therefore not be replaced by
lim, even when ®(¢) = .
By Theorems 2, 3, and 4, this f does satisfy

timinf, .. YD = liminf, . L] — 241) < oo
e S aTi f(1) <
The example shows also that the convexity of {log f,} (which is another way
of stating (a)) does not guarantee the existence of lim [(f?),/f,]. Conceivably,
the convexity of {log f,} might imply the existence of lim (T[ f*]/T,[f]), I have
no counter-example.
The inequality

(4.1) L <edippexp(—ne) <2 O<eg]
will be used below.

We now begin the construction of f.

Putny=0,¢, = 1,a, = 1,n, = 4. For p = 1, make the induction hypothesis
(satisfied when p = 1) that ¢, @, n, are chosen and that

(4'2) a,n, €Xp (_np ep) < %ep .
Define ¢, ,, to be the left side of (4.2), put
(4.3) Apyy = Ay EXP {_np(sr - €p+l)}

and let n,,, be an even integer, so large that (4.2) holds with p 4 1 in place of
p, that n,, > 2n,, that a,,,n,,, > p + 1, and that

(4.4) Tzitexp (—ne,,,) > KR M)
€41
Our induction hypothesis holds now with p + 1 in place of p, and the construc-
tion of the sequences {¢,}, {«,}, and {n,} can proceed.
Define

(4.5) fo = a, exp (—ne,) (ny,=ns=n;p=1273,...).

Note that f, is determined twice by (4.5); however, (4.3) shows that these two
determinations agree.
The choice of ¢, ,; and «,, shows that

Z:iﬂfn < Api1 Z:,, exp (_nem-l)

< 2ain+1 eXp (_nr 5zH—l)
€

p+1

_ 2a,exp(—nye,) 2

= |

€P+1 ?

Thus )5 f, < oo, and (A) holds. Similarly,

Z:ZH ”fn > n,a,,, Z:zﬂ exp (-n€p+l)

> npQpyy exP(—”pepH) =1.
&

p+1
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Thus f satisfies (c). Properties (a) and (b) hold because ¢, decreases to 0 as
P — 0.

Finally, the convexity of {log f,} implies that (f,)* < f.f; if i + j = 2n. Thus
(4.6) (/M = 2iivi=m fif; Z 20(f.)" .
If n is taken so that 2n = n,, then n,_, < n < n,, and (4.5) and (4.6) imply

(ﬂ)np = (f2)2n = znap2 [exp (_nep)P
= n,a,’exp(—n,e,)
= npapfnp > anp :

This shows that f has property (d).

ExAMPLE 2. In this examplé, (A), (B), and hypotheses (i) of Theorems 2 and
4 hold (with p = 2 in Theorem 2), but the hypotheses (ii) fail, as do the con-
clusions. This will be done by taking an f with f(1) = 1, f(1) = 2 < oo, but
f"" unbounded on [0, 1), and by taking ® = f. If g = ® o f, then
(4.7) 9"(x) = f"f (fx)) + L&PF(f(%) -
If f"(f(x))/f"(x) — 1 as x — 1, it follows that

. gll(x) . .
(4.8) lim, , =l =24 2.
)

Since g,/f, = (9")a-2/(f")n-. and since f’(x) — oo as x — 1, (4.8) suggests (by
an argument similar to one used in the proof of Theorem 2*) that

(4.9) tim, . @S 3252 = @1y,

n
n

if the above limit exists.
To see that this heuristic argument is correct for suitably chosen f, define

(4.10) flx) = x + (1 — x)t.
The binomial theorem shows that f, > 0 for all n. This f thus has the above
mentioned properties, with 2 = 1.

A rather long and tedious computation, based on (4.7), shows that the de-
rivative of

(4.11) ¢'(x) = 2f"() + 31/

is bounded in the unit disc. [Here is one way of doing this: Putu = (I — x)t;
then (1 — f(x))t = u(1 — u/2); differentiate (4.11) with respect to x, using (4.7),
then express everything in terms of u; in the resulting Laurent expansion, all
negative powers of u cancel.] Since (f”), ~ ¢ - n7%, we have (f’), ~ cn-3.
Hence the boundedness of the derivative of (4.11) implies that

(4.12) (@) = 2(f")n + O(1/n)..

Thus g,/f, — 2 as n — oo, as predicted by (4.9).
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This example shows that (ii) cannot be omitted from the hypotheses of
Theorems 2 and 4, even if lim (O o f),/f, is assumed to exist as a finite number.

ExampLE 3. Let fagain satisfy (A), with f(1) = I, for simplicity, and assume
that every derivative of f is bounded on [0, 1). (Equivalently, assume that f is
infinitely differentiable on the closed unit disc U.) Note that this can happen
if f has radius of convergence 1, i.e., if hypothesis (i) of Theorem 4 holds.
Hypothesis (ii) of Theorem 4 says that @ is holomorphic on an open set con-
taining U. Let us see whether this can be weakened to the assumption that ®
is infinitely differentiable on U; of course, (B) is still assumed to hold.

Under these circumstances, I claim that

(4.13) DH® o f)(1) = D) - £ (p=1,2,3,--1).
Since
(4.14) (@of)y =(@f) f

(4.13) holds when p = 1. Assume (4.13) is proved for same p and all such ®.

By (4.14),
D@ o f)(1) = DP((P" o f) - f))(1)
= D (DPPH(@ o f) - D(S)
= D@ f)(1) - /(1)
2 (Dr@)(1) - f()r - /(1)
= (DPHw)(1) - f(1)r
The first of these inequalities is obtained by discarding all terms of the sum
with i > 0; the second inequality uses the induction hypothesis. Thus (4.13) is
proved for all p.
In particular, if f’(1) > 1, we apply (4.13) with ® = f, and obtain (with
g9=r°f) ot
P
(4.15) ((D”_ji%; = f'(1)» - oo as p—oo.
If there were a constant C < oo such that g, < Cf, for all n, then obviously
Drg < CD*f. Hence (4.15) shows that g,/f, cannot be bounded.
The following conclusion has thus been reached:

If f, > 0 forall n, if f(1) =1, f(1) > 1, and f is infinitely differentiable on the
closed unit disc, then

(4.16) lim sup, .., ([_}f)_n = 0.

In particular, it is not true that these ratios tend to f(f(1)) = f'(1).
To see an example of this, in which the radius of convergence is 1, choose
a > 0 so that exp (4*) < 3, and define

(4.17) fo = ¢ - exp(—n° n=0,1,2,...),
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where c is picked so that } 5 f, = I; the choice of « is made so that f7(1) > 1.
For this example (4.17), it seems very plausible that lim sup can actually be
replaced by lim inf in (4.16).

‘.
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